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Abstract: Lateral gene transfer (LGT) from bacteria to
animals occurs more frequently than was appreciated
prior to the advent of genome sequencing. In 2007, LGT
from bacterial Wolbachia endosymbionts was detected in
,33% of the sequenced arthropod genomes using a
bioinformatic approach. Today, Wolbachia/host LGT is
thought to be widespread and many other cases of
bacteria-animal LGT have been described. In insects, LGT
may be more frequently associated with endosymbionts
that colonize germ cells and germ stem cells, like
Wolbachia endosymbionts. We speculate that LGT may
occur from bacteria to a wide variety of eukaryotes, but
only becomes vertically inherited when it occurs in germ
cells. As such, LGT may happen routinely in somatic cells
but never become inherited or fixed in the population.
Lack of inheritance of such mutations greatly decreases
our ability to detect them. In this review, we propose that
such noninherited bacterial DNA integration into chro-
mosomes in human somatic cells could induce mutations
leading to cancer or autoimmune diseases in a manner
analogous to mobile elements and viral integrations.

Introduction

Many eukaryotic chromosomes contain DNA of microbial

origin that arose via lateral gene transfer (LGT). One such

example is the directed transfer of Agrobacterium tumefaciens DNA

that results in crown gall disease in plants and that has been used

to create transgenic crops. A. tumefaciens specifically transfers 10–

30 kbp of DNA from its 200–800 kbp tumor-inducing (Ti) plasmid

to plants via the bacterial type IV secretion system [1]. The DNA

from the Ti plasmid (T-DNA) is targeted to the nucleus,

incorporated into the plant chromosome by illegitimate recombi-

nation, and transcribed from eukaryotic promoters in the T-DNA

[2,3]. LGT events are not limited to occurring between microbes

and plants, but can also occur between microbes and animals. In

this review, we synthesize our current understanding of the

potential for LGT from bacteria to the somatic human genome by

examining (a) LGT in animals with a particular emphasis on

bacteria-animal LGT, (b) insertional mutagenesis in the human

genome, and (c) the role of microbes in oncogenesis. Current and

future work is then presented through two hypotheses about such

integrations and their potential role in bacteria-associated chronic

human diseases like cancer. Such transfers in the human genome

may have been missed previously because they would not be

inherited, and until recently, most LGT research has focused

solely on the inherited consensus genome (e.g., [4–6]). However,

important mutations are not limited to merely the vertically

inherited genome. For example, several recent studies (e.g., [7–

10]) have shown that the somatic genome can carry important

novel mutations related to disease.

LGT in Animals

An Overview of LGT in Animals
Since plant germ cells are not physically protected, A.

tumefaciens–mediated LGT in plants may be expected to occur

more frequently when compared to inherited LGT in vertebrate

animals where germ cells are protected. Yet, LGT can be detected

in many animals, including vertebrates [11,12]. For example,

phylogenetically related antifreeze proteins in fish are scattered

across disparate fish taxa, indicating a role for lateral gene transfer

[13]. These proteins allow fish to survive at temperatures below

freezing by preventing the formation of ice crystals [13]. Pea

aphids and the two-spotted spider mite have both been found to

synthesize carotenoids from an LGT that may have originated

from fungi [14,15]. In aphids, the resulting red-green color

polymorphism changes the insect’s susceptibility to natural

enemies [14], while in the spider mite these carotenoid biosyn-

thetic genes are differentially expressed in diapause [15], the

arthropod equivalent to hibernation.

Overview of Functional Bacteria-Animal LGT
In addition to the eukaryote-eukaryote transfers described

above, several functional LGTs have been described between

bacteria and invertebrate animals. For example, in mealybugs,

LGTs from at least three different bacterial lineages have resulted

in hybrid biosynthetic pathways [16]. These pathways are

composed of genes of eukaryotic ancestry in the mealybug

genome, genes of bacterial ancestry in the mealybug genome,

and genes of bacterial ancestry in the obligate endosymbiont

bacterial genome [16]. For example, riboflavin biosynthesis

requires one endosymbiont genome–encoded protein and three

insect genome–encoded proteins that arose via LGT that have a-

Proteobacteria and Bacteroidetes ancestry [16]. The bacterial

donors of these bacteria-eukaryote LGTs are proposed to be
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facultative bacterial symbionts, not the primary obligate endo-

symbionts [16].

Bacteria-animal LGTs have also been observed in multiple

agricultural pests where the LGT facilitates parasitization of an

agricultural crop. For example, Hypothenemus hampei, the coffee

berry borer, acquired a Bacillus mannanase gene, which allowed it

to exploit coffee berries as a new ecological niche relative to the

insect’s sister taxa [17]. Several plant parasitic nematodes have

acquired plant cell wall–degrading enzymes from bacteria that

allow the nematodes to invade plant tissues and exploit plants as a

new ecological niche. More specifically, LGT followed by

duplication resulted in 60 genes of bacterial origin in the nematode

Meloidogyne incongita genome, including cellulases, pectate lyases,

and expansin-like proteins that degrade or modify plant cell walls

and are not typically found in other animals [18]. These proteins

have been biochemically characterized, are secreted into plant

tissues, and are involved in parasitism [18]. M. incongita also

acquired cellulase genes via an additional independent LGT by

Pristionchus nematodes [19,20], necromenic nematodes that live in

association with beetles.

A Case Study: Wolbachia Endosymbionts Have Recently
Transferred DNA to Multiple Invertebrate Host Genomes

In contrast to the examples above, where single genes were

transferred, are functional, and have persisted over time,

Wolbachia-insect LGTs span many hundreds of kilobases of

DNA, have no evidence of being functional with no obvious

change in insect phenotype, and are likely recent given that they

have minimal divergence from the likely donor. Of the systems

being studied today, recent LGT from bacteria to animals seems to

be most prevalent between Wolbachia endosymbionts and their

invertebrate hosts. In this case, the term gene is used loosely since

a phenotype has not been ascribed to the transferred DNA.

Wolbachia endosymbionts colonize a wide range of arthropods and

filarial nematodes, including 20–70% of insect species, and are

maternally inherited through the egg cytoplasm [21,22]. Trans-

mission through the egg cytoplasm provides ample opportunity for

Wolbachia DNA to transfer to the host genome [11]. In addition,

Wolbachia endosymbionts can sometimes colonize their host’s germ

stem cell [23]. Increased prevalence of LGT may be expected in

hosts with colonized germ stem cells since a transfer in the germ

stem cell will be inherited by a larger number of progeny in

comparison with a transfer in a single gamete, like an ovum or

spermatozoon.

Recent LGT from Wolbachia endosymbionts to their hosts has

been characterized in diverse invertebrate hosts, including beetles

[24–26], fruit flies [27], wasps [27,28], tsetse flies [29], and filarial

nematodes [27,30,31], and has been reviewed recently [11,12]. In

2007, most of the genome sequencing projects (8/11) containing

Wolbachia endosymbiont sequences showed evidence of having

recent LGT between the endosymbiont genome and the host

chromosome [27]. We successfully characterized LGT in all five of

the hosts that we examined [27]. Therefore, we estimated that

,70% of sequenced Wolbachia-infected hosts may have at least one

Wolbachia-host LGT [27].

The high prevalence of Wolbachia-host LGT is not reflective of

all microbe-host relationships. Many characteristics of their

association have an effect on the frequency of LGT between the

two organisms. One of the major factors limiting the occurrence of

LGT is the proximity of the two organisms [32], which helps

explain the increased prevalence of LGT between obligate

intracellular endosymbionts and their hosts [11]. However, other

factors are also likely at work, as evidenced in aphids where

functional LGTs are not detected that arise from Buchnera

aphidicola, the primary obligate endosymbionts of aphids [33,34].

However, in aphids, functional LGT is detected from relatives of

Wolbachia endosymbionts [33,34]. Likewise, in the mealybug, LGT

is attributed to facultative symbionts instead of the primary

obligate endosymbionts [16]. This may suggest that LGT from

Wolbachia endosymbionts and other similar bacteria (e.g., bacteria

in the Arsenophonus and Cardinium clades) is more abundant for

other reasons. For example, with Wolbachia endosymbionts, it may

be because they do not merely pass through the germ cell, but

rather colonize the germ cell and the germ stem cell. However, the

characterization of transfers from Wolbachia endosymbionts to

their hosts highlights that LGT is an ongoing process in at least

some animals and that LGT can result in DNA transfers that are

not functional and may never become functional.

An Open Question: Does Somatic LGT from Bacteria
Occur in Humans?

Despite extensive microbe-animal LGT in invertebrates,

bacterial LGT to humans and other mammals has rarely been

described. One barrier to inherited LGT in humans is the

segregation of gametes. Unlike in insects and plants, the human

germ line is both physically and immunologically well protected

from bacteria. Nevertheless, there are 106 more bacterial cells

than human cells in the human body [35]. Therefore, somatic

human cells can be bathed in bacteria and have ample opportunity

to be mutagenized by bacterial DNA through LGT. Such LGT

will not become inherited by offspring of the human, but may be

propagated through the individual’s lifetime if the cell is capable of

undergoing clonal expansion. LGT to somatic tissues acting as a

mutagen may therefore be important in bacteria-associated

diseases like cancer, chronic inflammatory diseases, and autoim-

mune disease. Under this scenario, somatic LGT events would not

enable adaptation to a new niche, but rather have the potential to

be disruptive to normal gene function. While this review focuses

on the potential for integrations of bacterial DNA in the somatic

human genome, it is possible that DNA may also get integrated

from the food we consume.

To protect human cells from bacteria, the innate immune

system uses pattern recognition receptors (PRRs) to recognize

pathogen-associated molecular patterns, or PAMPs, including

LPS, flagellin, lipoteichoic acid, lipoproteins, and peptidoglycan

[36]. Both microbial DNA and mRNA are also PAMPs in humans

[37,38], while a subset of microbial rRNA does not elicit an

immune response [38]. Therefore, we might expect that bacterial

rRNA is more likely to mutagenize the human somatic genome.

This is a particularly interesting proposition considering some

mobile elements in animals have rRNA as their origin and are

mobilized by the LINE-1 machinery [39,40].

We hypothesize that bacterial rRNA may integrate into the

human somatic genome and induce disease through random

mutagenesis, as do other insertion-creating mutagens, like mobile

elements and viruses. Should this integrated DNA mutagenize a

gene by disrupting the coding region or causing deregulation, the

consequences could potentially be severe. For example, such

insertional mutagenesis by mobile elements and viruses has been

associated with cancer.

Insertional Mutagenesis of the Human Genome

The Role of Mobile Elements in Cancer Progression
Since mobile elements are already known to mutagenize the

human genome, including cancer genomes, they provide a useful

comparison for thinking about mutagenesis via LGT. Only the

non–long terminal repeat (LTR) retrotransposons, including LINE
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and Alu elements, have been shown to actively jump throughout

the human genome and thus cause ongoing mutagenesis [41].

LINE-1 (L1) is the only non-LTR retrotransposon that has the

machinery to move itself in the human genome, and it also

mobilizes Alu elements [41,42]. L1s and Alu elements move to new

genomic locations through germ line retrotransposition [42,43],

but both elements tend to be inactive in somatic tissues [41].

However, their reactivation may contribute to tumorigenesis [44].

L1s have been implicated in both colon and lung cancer. An L1

insertion was found in the APC gene in colon tumor cells but not in

normal cells [45]. In colorectal cancer, tumors can be identified

that have been mutagenized by L1s while matched normal DNA

samples lack such mutations, and some insertions disrupt genes

with known cancer driver functions [46]. Nine L1 insertions were

found to be only in lung cancer tumors, but not normal adjacent

tissue, with 30% of tumors having between one and three new

insertions [47]. However, it is not clear if somatic L1 insertions are

passenger mutations, or if they are directly related to tumor

formation [47].

With .1 million copies in the human genome, it is not

surprising that Alu insertions are also related to carcinogenesis. Alu

insertions have been reported in the MLV12 and MLL genes

associated with leukemia, the BRCA1 and BRCA2 genes associated

with breast cancer, and the MLH1 and MSH2 genes leading to

hereditary nonpolyposis colorectal cancer syndrome (HNPCC),

among others [42]. The number of Alu and L1 integrations

detected that are related to disease shows the potential importance

of such integration events.

Viral Integrations and Oncogenesis
Viruses are also known to integrate into the somatic human

genome and cause mutations that are associated with cancer. In

2008, it was estimated that 15–20% of cancers worldwide were

linked to infections by viruses, parasites, or bacteria [48]. The

integration of human papillomavirus (HPV) is a critical event

leading to HPV-associated tumorigenesis and may be an important

biomarker of invasive cervical cancer [49]. In the absence of

integration, the virus replicates but the cell maintains control of its

own proliferation. However, cellular proliferation becomes dereg-

ulated when HPV integrates in a manner that results in the loss of

E1 and E2, viral proteins required for transcriptional control and

replication. Absence of these regulator proteins leads to subsequent

deregulation of E6 causing downregulation of the p53 pathway,

which increases cell proliferation [50]. As many as 80–100% of

cervical carcinoma tumors have an integration of HPV-16 or HPV-

18 [51,52] and these integrations are clonal within tumors [53],

providing evidence that HPV acts as a carcinogen.

Hepatitis B virus (HBV) was linked to hepatocellular carcinoma

(HCC) in 1981 [54], prompting its vaccine to be the first approved

for cancer prevention [55]. HBV’s exact role in formation of HCC

is unclear despite the fact that its integrations can be found clonally

in HCC tumors. Regardless, levels of HBV integration in tumor

cells can predict patient survival. Individuals with .3 integrations

have decreased survival compared to those with ,3 integrations

[10]. Seven human oncogenes and tumor suppressor genes have

repeatedly been shown to contain HBV integrations, including

TERT, ITPR1, IRAK2, MAPK1, MLL2, MLL4, and CCNE1

[10,56–59]. This vast number of genes disrupted by HBV

illustrates the multitude of ways that HBV can contribute to

HCC carcinogenesis.

Mitochondrial Insertions and Disease
Integrations into the nuclear genome of human cells are not

limited to mobile element and viral integrations. Transfers of

mitochondrial DNA (mtDNA) into the nuclear genome have long

been described and are called nuclear mitochondrial DNA

segments (numts) [60]. There are various methods that have been

suggested for how the mtDNA exits the mitochondria and enters

the nucleus, including mitochondrial lysis, direct contact between

the nucleus and the mitochondria, degradation of abnormal

mitochondria, and mitochondrial DNA encapsulation inside the

nucleus [61]. Once entrance into the nucleus has occurred, the

mtDNA can integrate into the nuclear genome through nonho-

mologous end joining of double-strand break repair [61,62].

While various numts have been reported, only a handful are

implicated in disease. In one case, a reciprocal translocation

occurred between chromosomes 9 and 11 resulting in a 41-bp

insertion of mtDNA linking the breakpoint of chromosome 9 to

the translocated portion of chromosome 11 [63]. There has been

one report of a numt from the mitochondrial coxIII gene inserted

in the c-myc gene of HeLa cells forming a chimeric RNA, but it is

unknown if this numt contributed to carcinogenesis [64]. Other

examples that link numts to human diseases are a 251-bp numt

insertion into the human plasma factor VII gene causing severe

factor VII deficiency [65], a 72-bp numt insertion in the GLI3 gene

associated with Pallister-Hall syndrome [66], a 93-bp insertion into

MCOLN1 related to mucolipidosis IV [67], and a 36-bp insertion

into the USH1C gene implicated in Usher syndrome type IC

[68,69]. Thus far, most research on numts is focused on inherited

mutations. While it has been noted that numts confound analyses

of the mitochondrial genome in cancer samples [70], we are not

aware of a published analysis of numts in the human somatic

genome or cancer genomes, although it would be informative. An

increase in somatic numts has been associated with aging in rats

[71], and increases in both somatic numts and nuclear plastid–

derived DNA, or nupts, have been associated with environmental

stress in plants [72].

The Role of Microbes in Oncogenesis

Microbial Involvement in Tumorigenesis
Many bacterial associations with cancer have been character-

ized, including Helicobacter pylori with gastric carcinoma and gastric

mucosa–associated lymphoid tissue (MALT) lymphoma [73],

Escherichia coli with colorectal cancer [74], Schistosoma haematobium

with bladder carcinoma [75], Bacteroides fragilis with colon cancer

[76], and Fusobacterium spp. with colorectal cancer [77]. Many of

these associations have been disputed, as it is often difficult to

determine if an existing microbial infection is a symptom or a

cause of cancer. Additionally, a single microbial species may

merely be a marker for a more complex microbiome whose rare

members contribute most substantially to oncogenesis, as has been

observed in other systems [78]. Despite these associations between

microbes and cancer, and the association of viral and mobile

element integrations with cancer, microbial DNA integration has

not been described for microbe-associated cancers. Prior to the

widespread use of whole genome sequencing, the large size of

microbial genomes made microbial integrations more difficult to

detect. For example, viral integrations can be detected with

Southern blots using viral-specific probes (e.g., [79]). The relatively

larger genome size and thus higher complexity of microbial

genomes likely precludes identifying integrations in the same

manner without knowing something about the specific insert a

priori. Sequencing reads that resemble bacterial DNA are

sometimes removed from eukaryotic genome projects, further

preventing identification of legitimate bacterial sequences in

eukaryotic genomes. Instead, the microbial contribution to

carcinogenesis is generally thought to occur via increased
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inflammation leading to DNA damage and secretion of bacterial

effector proteins like toxins [80,81].

Current and Future Directions

Hypothesis 1: Bacterial DNA Integration into Somatic
Cells Could Induce Oncogenic Mutations

Bacterial integration that disrupts and mutagenizes proto-

oncogenes or tumor suppressor genes could provide an additional

avenue for bacteria-associated oncogenesis, beyond inflammation-

induced damage. Such integrations could arise through a directed

mechanism, as has been observed with Agrobacterium-induced

crown gall disease. Alternatively, these integrations may merely

result from the release of nucleic acids following lysis of bacteria.

Integrations could occur specifically with particular integration

sites as is observed with mobile elements or randomly in a manner

analogous to mutations induced by exposure to known carcino-

gens, like UV radiation and cigarette smoke. Because bacterial

DNA and mRNA are recognized by the human immune system

[37,38], we anticipate that most bacterial integrations will arise

from nucleic acids that are not recognized as PAMPs, like some

rRNA [38]. Given that L1 machinery can mobilize Alu elements as

well as cellular genes [42], we hypothesize that the L1 machinery

may also play a role in integrating bacterial rRNA into the somatic

human genome. Although these events could lead to any type of

genetic disorder, LGT events in cancer are easier to detect due to

clonal expansion within the tumor (Figure 1).

The availability of large cancer genome datasets like The

Cancer Genome Atlas (TCGA) facilitates testing this hypothesis

across a wide variety of cancer types. Evidence has recently been

presented supporting bacterial LGTs of Acinetobacter-like DNA in

acute myeloid leukemia samples and of Pseudomonas-like DNA in

stomach adenocarcinoma samples [82]. There was a higher

frequency of LGT in the tumor samples when compared to the

available normal samples [82]. The integrations found in stomach

adenocarcinoma samples were in known oncogenes and tumor

suppressor genes, while the integrations in acute myeloid leukemia

samples were in the mitochondrial genome or numts [82]. It was

not possible with this analysis to determine if bacterial integrations

contributed to carcinogenesis or occurred as passenger mutations

during cancer progression. For example, cancer cells may become

more permissive to mutations during carcinogenesis and thus

receptive to LGT. Regardless, the clonal expansion of tumor cells

containing LGTs, as depicted in Figure 1, likely facilitated this

discovery. Integrations were found only from specific members of

the microbiome, suggesting that LGT is limited to a subset of

bacteria [82]. In these cases of mutagenesis involving explicit

carcinogenic bacteria, the transfers and any resulting etiology

could be prevented through the development of vaccines.

Hopefully this new evidence supporting the existence of bacte-

ria-human LGT will prompt more investigation of this topic.

Hypothesis 2: Bacterial Integration into Somatic Cells
Could Yield a Protein or Epitope

With all frequency-based interactions, even the most unlikely

event can still occur, albeit very infrequently. Integration of bacterial

DNA is more likely to disrupt gene function than to result in

expression of transferred genes in the new host. However, following

integration of bacterial DNA there is the potential for a bacterial

gene to become transcribed and a protein or peptide to be

synthesized. Expression of some bacterial genes, like the vitamin K

biosynthetic gene, could be beneficial in intestinal cells. In contrast,

the synthesis of a protein or peptide with a particular bacterial

pathogenicity epitope could elicit an adverse immune reaction to a

human cell. Such a reaction could in turn lead to an immune

reaction to human epitopes. In combination with the well-

established mechanism of imperfect removal of autoreactive

lymphocytes [83], this could lead to an autoimmune response and

possibly an autoimmune disease. The autoimmune response may

persist for a lifetime since it is based on the human epitopes. But, the

DNA integration that began the chain reaction may not persist or be

detected since the human cell expressing the bacterial epitope may

be destroyed in the initial immune reaction. It is important to

consider that this is only a hypothesis and no data has been presented

to demonstrate that this occurs. While this hypothesis may be more

unlikely than the first, it is an idea that should be considered.

Figure 1. A scenario for bacteria-human LGT and carcinogenesis. (A) Normally, human cells (red circles) can coexist with a population of
microbial cells (blue rectangles), which are not drawn to scale. (B) Occasionally, bacteria-human LGT may occur from one bacterial cell to one human
cell as depicted by the human chromosome with bacterial DNA within it (pink chromosome with blue insertion). The bacterial sequence (blue)
inserted into the human sequence (red) is illustrated below. (C) The cell with the LGT can undergo transformation to a cancerous phenotype,
represented by the scalloped red cell. Such transformation may be related to the integrations or may instead be related to some other alteration in
the cell. (D) The now cancerous cell clonally expands and forms a tumor where the majority of cancer cells share the original LGT.
doi:10.1371/journal.pgen.1003877.g001
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Conclusions

Extensive LGT has been detected between bacteria and

animals, particularly between endosymbionts and their hosts.

Recent LGT may be associated specifically with endosymbionts

that colonize germ cells and the germ stem cell of their respective

hosts. The extensive LGT observed between Wolbachia endosym-

bionts and their invertebrate hosts suggests that LGT involving

bacteria and animals may occur more frequently than was thought

a decade ago. While vertebrates have an immune system and

segregated gametes that may prevent transfers like those seen in

invertebrates, transfers to the vertebrate somatic genome have not

been appreciated and warrant further examination. Bacterial

DNA integration may be a mutagen associated with noninherited

genetic diseases, like cancer, as described in a recent paper

demonstrating LGT from Acinetobacter spp. in leukemia samples

and from Pseudomonas spp. in stomach cancer samples.
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