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Abstract

The process of transcription is highly stochastic leading to cell-to-cell variations and noise in gene expression levels. However, key

essential genes have to be precisely expressed at the correct amount and time to ensure proper cellular development and function.

Studies in yeast and bacterial systems have shown that gene expression noise decreases as mean expression levels increase, a rela-

tionship that is controlled by promoter DNA sequence. However, the function of distal cis-regulatory modules (CRMs), an evolutionary

novelty of metazoans, in controlling transcriptional robustness and variability is poorly understood. In this study, we used live cell

imaging of transfected reporters combined with a mathematical modelling and statistical inference scheme to quantify the function of

conserved Msx1 CRMs and promoters in modulating single-cell real-time transcription rates in C2C12 mouse myoblasts. The results

show that the mean expression–noise relationship is solely promoter controlled for this key pluripotency regulator. In addition, we

demonstrate that CRMs modulate single-cell basal promoter rate distributions in a graded manner across a population of cells. This

extends the rheostatic model of CRM action to provide a more detailed understanding of CRM function at single-cell resolution. We

also identifyanovelCRMtranscriptionalfilter function thatacts to reduce intracellularvariability in transcription ratesandshowthat this

can be phylogenetically separable from rate modulating CRM activities. These results are important for understanding how the

expression of key vertebrate developmental transcription factors is precisely controlled both within and between individual cells.
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Introduction

Transcription is a fundamentally stochastic process that occurs

discontinuously in bursts in single cells as described by random

telegraph models of gene expression (Paulsson 2005; Raser

and O’Shea 2005; Cai et al. 2006; Raj et al. 2006; Pedraza and

Paulsson 2008; Suter et al. 2011). Experiments in microbial

systems and in Drosophila have revealed that stochasticity in

gene expression can be actively used to generate cellular di-

versity of adaptive value in large cell populations (Samoilov

et al. 2006; Wernet et al. 2006), whereas in vertebrates cell-

to-cell variations in the expression of key developmental reg-

ulators in progenitor cells have been shown to drive cell fate

choices during lineage differentiation (Chang et al. 2008; Raj

and van Oudenaarden 2008). Comparative embryology and

developmental genetics, on the other hand, have revealed

that transcription factor and signaling networks are expressed

and deployed in a highly stereotypic and exquisitely precise

spatiotemporal fashion during development. Furthermore,

studies in yeast have shown that the expression of essential,

haplo-insufficient genes is controlled in a more precise manner

when compared with nonessential genes, such as those in-

volved in the stress response, and that noise in the expression

of these dose-dependent genes appears to have been reduced

by natural selection to prevent deleterious stochastic variations

(Newman et al. 2006; Batada and Hurst 2007; Lehner 2008).

Random fluctuations in gene expression are therefore subject

to regulation and can be either beneficial or deleterious for cell
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function depending on the type of gene and biological

process.

Noise and robustness in gene expression can be controlled

at a number of different levels. A large number of studies in

yeast and bacteria have demonstrated that noise in gene

expression decreases as mean expression levels increase

(Bar-Even et al. 2006; Newman et al. 2006), and that pro-

moter sequence, length and chromatin structure are all

major determinants of this relationship (Tirosh and Barkai

2008; Hornung et al. 2012; Carey et al. 2013). In addition,

random fluctuations in gene expression can be buffered at

both the RNA and protein levels (Raser and O’Shea 2005;

Pedraza and Paulsson 2008; Barriere et al. 2011), whereas

signaling pathways such as Wnt have been proposed to

filter out and reduce transcriptional noise (Arias and

Hayward 2006). Moreover, transcription factors do not func-

tion in isolation but work in a highly coordinated manner

within gene regulatory networks (GRNs) and particular net-

work motifs, for example, feed-forward or feedback loops,

have been shown to buffer out fluctuations in gene expression

(Barkai and Leibler 1997; Alon et al. 1999; Mangan and Alon

2003; Macneil and Walhout 2011).

Within GRNs key transcription factors interact with DNA

sequence elements called cis-regulatory modules (CRMs),

such as transcriptional enhancers and silencers, and pro-

moters, to control the expression of large numbers of target

genes (Jeziorska et al. 2009). Communication between CRMs

and their target promoters is a key metazoan novelty in tran-

scriptional control. CRMs may be predicted to play an impor-

tant role controlling transcriptional noise as, for example,

shadow enhancers in Drosophila have been shown to pro-

mote gene expression robustness in response to various

stimuli (Boettiger and Levine 2009; Frankel et al. 2011).

However, the full dynamic scope of CRM function beyond

spatiotemporal control is still to be determined as the majority

of studies investigating the control of transcriptional noise at

single-cell resolution have been performed in bacteria and

yeast. As such, the involvement of CRMs in regulating tran-

scriptional variability has not been well explored (Macneil and

Walhout 2011).

In this study, we used live cell imaging of transfected

reporters and mathematical modeling to quantify the function

of mouse–fugu conserved Msx1 CRMs and promoters in reg-

ulating single-cell transcription rates in real time in C2C12

mouse mesenchymal cells. We predicted that variability in

the expression of Msx1 would be finely controlled as Msx1

is an important regulator of pluripotency in mesenchymal

stem cells, acting at a key node in a GRN, to control proximo-

distal branchial arch patterning and craniofacial and dorsal

CNS development (Satokata and Maas 1994; Odelberg

et al. 2000; Hu et al. 2008). Also, the spatial and temporal

expression of Msx1 is highly conserved across vertebrates and

appears to show an ON/OFF behavior akin to ultrasensitivity

(Hu et al. 2008). Our results showed that the negative

correlation between transcriptional noise and mean expres-

sion is not determined by distal CRMs but is solely promoter

derived for vertebrate Msx1. We found that Msx1 CRMs func-

tion to modulate single-cell basal promoter rate distributions

in a graded manner across a population of cells. This further

refines the rheostatic model of CRM action, proposed on the

basis of single time point reporter measurements, to provide a

more detailed understanding of CRM function. Unexpectedly,

our results also identified a novel CRM transcriptional filter, or

robustness control, function that acts to reduce intracellular

variability in transcription rates. By combining promoters with

homologous mouse–fugu CRMs, we identified examples of

conservation and divergence in CRM function and showed

that CRM robustness control can be phylogenetically separa-

ble from rate modulating CRM activities. These results are

important for understanding how the expression of key de-

velopmental regulators is finely controlled, which in principle

will also have important ramifications for synthetic biology and

gene therapy.

Materials and Methods

Plasmid Construction

The pGL3-vGFP3xnls Venus fluorescent protein reporter plas-

mid used as a backbone for all species-specific CRM-promoter

reporter constructs was cloned as follows: Recombinant poly-

merase chain reaction (PCR) was performed to insert a triple

nuclear localization sequence in frame at the 30-end of the

Venus gene from pCS2Venus. This generated a vGFP3xnls

fragment flanked by NcoI–XbaI sites. The luciferase gene

from pGL3-BASIC (Promega) was then excised as an NcoI–

XbaI fragment and replaced with vGFP3xnls. Species-specific

CRM-promoter hybrid fluorescent reporters were then gener-

ated as follows: The mouse and fugu Msx1 promoter regions

were PCR cloned as HindIII fragments from genomic DNA and

inserted into pGL3-vGFP3xnls. The SV40 promoter was PCR

amplified as a HindIII fragment from pGL3-PRO (Promega)

and cloned into pGL3-Venus. Individual species-specific

CRMs were then PCR amplified as XmaI–BglII fragments

from genomic DNA and cloned upstream of the respective

promoter Venus reporters. The fidelity of all reporter

constructs was verified by sequencing. The oligonucleotides

used are shown in supplementary table S1, Supplementary

Material online.

Cell Culture

C2C12 myoblast cells were grown in Dulbecco’s modified

Eagle’s medium supplemented with 10% fetal bovine serum

(FBS) (Growth Medium [GM]).

Flow Cytometry

Flow cytometry-based measurement of reporter activity was

performed as described in Jeziorska et al. (2012). 2�105 cells
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per well were seeded in six-well plates. The next day cells were

transfected with 1mg of pGL3-vGFP3xnls reporter plasmid and

250 ng pCMV-mCherry expression vector using lipofectamine

2000 (Invitrogen). pCMV-mCherry contains the cytomegalo-

virus promoter driving the expression of a mCherry reporter

and was used to control for transfection efficiency. After

42–46 h cells were washed twice with phosphate-buffered

saline (PBS), trypsinized, and harvested in 1 ml GM. GM was

removed, cells were then washed twice with PBS, resus-

pended in 800ml Cell Fix (BD Biosciences), and incubated over-

night at 4 �C in the dark. To activate wnt signaling, 40 mM LiCl

was added to each well 20 h after transfection.

To measure MSX1 protein levels, cells were pelleted,

washed with PBS, and then permeabilized using 0.1%

Triton X-100 in PBS for 15 min at room temperature. Cells

were subsequently washed with PBS and blocked using

20% FBS in PBS for 1 h at room temperature. Cells were

then incubated overnight at 4 �C with 1:200 dilution anti-

Msx1 (Clone 4FII; Abcam) mouse monoclonal antibody,

washed three times with 5% FBS in PBS, and incubated for

1 h with 1:200 dilution goat anti-mouse AlexaFluor647 anti-

body (Invitrogen). Cells were washed again with PBS, resus-

pended in 500ml Cell Fix, and analyzed on a BD Influx Cell

Sorter. Venus was excited using the blue laser (488 nm) and

measured with the 530/40 bandpass (BP) filter set, mCherry

was excited using the yellow laser (561 nm) and measured

using the 593/40 BP filter whereas Alexa647 was excited

with the red laser (642) and measured using the 670/30 BP

filter set.

Real-Time Imaging

1.25�104 cells per well were seeded in 0.17-mm glass

bottom 96-well plates (MatriCal). The next day cells were

treated with Hoechst 33342 (Invitrogen) to label individual

nuclei. To do this, GM was removed, cells were washed

twice with PBS, and then incubated with 400 ng/ml Hoechst

in GM at 37�C for 30 min. Cells were then washed twice with

PBS and GM without phenol red was added back to the well.

Cells were then transfected with 200 ng reporter plasmid

using Lipofectamine 2000 (Invitrogen) according to the man-

ufacturer’s instructions. The 96-well plate was subsequently

transferred to a Cellomics KineticScan KSR machine. The KSR

contains a humidified incubator, an inverted fluorescent Zeiss

microscope with a high resolution CCD camera, and an inte-

grated computer system. Real-time images were generated

with a 10�magnification, 0.4 numerical aperture objective

using both the Hoechst and GFP filter sets. The Hoechst chan-

nel was used to focus and we acquired images every 30 min

for 48 h. Cells were segmented, tracked, and fluorescence

levels extracted using custom software. The autofluorescence

GFP value of an untransfected cell reached a maximum of

7,000 units. To remove background, we set a preselection

threshold value of 8,000 fluorescent units in the GFP channel

and measured the response profiles for cells which have at

least ten measurement points above this value. We synchro-

nized fluorescence response profiles in silico to the point of cell

division as determined by a rise and then postmitotic drop in

Hoechst staining. This enabled us to restrict fluorescent repor-

ter measurements to individual cell generations. We previously

calculated that 15 or more cells per experiment were required

for robust transcription rate estimates (Woodcock et al. 2013)

and therefore randomly selected 30–35 fluorescent onset

curves for each reporter construct.

Extraction of Single-Cell Fluorescence Time-Course Data

Segmentation based on the nuclear stain (Hoechst) was per-

formed using standard routines built into KineticScan V2.2.0.1

(BUILD 27) software (Thermo Scientific) and data were

exported to a Microsoft Access database. For subsequent

tracking we extracted cell positions and fluorescence intensi-

ties using custom plugins for ImageJ software (http://rsb.info.

nih.gov/ij) employing Jackcess, a java library for reading from

and writing to Access databases (http://jackcess.sourceforge.

net/). We have developed novel routines for cell tracking writ-

ten in C based on a statistical scoring algorithm which

accounts for dense cell cultures at 10� or 20� resolution

and significant movement, that is, translocation of more

than a cell diameter between subsequent frames.

Confidence scores are computed taking into account dis-

tances to neighboring cells, extent of cell movement, and

alternative cell-to-cell assignments. We have been able to au-

tomatically define up to two cell divisions in one time-course

by using variations in Hoechst staining intensity between cells

and a characteristic drop in Hoechst intensity after cell division.

The software is described in Downey et al. (2011). Single-cell

trajectories for all Msx1 promoter containing reporters are

shown in supplementary figure S1, Supplementary Material

online.

Computational Genomics

We implemented a computational approach analogous to the

one described in Picot et al. (2010) to identify conserved

regions.

Hierarchical Model of Transcriptional Dynamics

The model is described in detail in Woodcock et al. (2013).

This method incorporates both intrinsic and extrinsic noise into

the estimation (Finkenstadt et al. 2013) and has been used to

enable estimation of transcription rates when the plasmid

copy number is unknown (Woodcock et al. 2013). It consists

of two layers: The single-cell layer and the population layer.

The single-cell layer takes the form of a pair of stochastic dif-

ferential equations describing how the mRNA and protein

level change in time, and an equation which describes the

measurement process. These equations are
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dMðtÞ ¼ ctðtÞ � dMMðtÞð Þdt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ctðtÞ � dMMðtÞ

p
dW ðtÞ;

dPðtÞ ¼ aMðtÞ � dPPðtÞð Þdt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aMðtÞ � dPPðtÞ

p
dW ðtÞ;

FðtÞ ¼ kPðtÞ þ "s2 ;

where c is the copy number; �(t) is the transcription rate at

time t; dM and dP are the mRNA and protein degradation

rates, respectively; a is the translation rate; k is the measured

fluorescence per protein; and "s2 is normally distributed mea-

surement noise, with variance �2. M(t), P(t) and F(t) are, re-

spectively, the mRNA, protein and fluorescence levels at time t

and dW(t) denotes a Weiner process. In this model, �(t) can

take one of two values depending if the gene is actively tran-

scribing, namely �0 when transcription is only occurring at a

basal level and �1 in the active state. We also need to estimate

the time when transcription changes between these states,

which we refer to as the switch time, T. These equations cap-

ture the difficulty in estimating transcription rate when the

copy number is unknown, as their respective parameters

only appear as a product and so they would not normally

be identifiable in a conventional estimation procedure. This

is because the estimated values could trade-off against

one another, meaning there would be an infinite number

of possible combinations of �(t) and c that would be

equally valid.

In conventional parameter estimation methods, each es-

timate for each cell in the sample would be undertaken sep-

arately and the results then amalgamated and analyzed as a

group. In our estimation scheme, we follow Finkenstadt et al.

(2013) and make the assumption that each individual rate,

and therefore each parameter, comes from a distribution

over the population. Collectively, these distributions are

referred to as the population layer. These are then estimated

concurrently with the parameters for all of the time series

simultaneously. To do this, we employ a Markov chain

Monte Carlo (MCMC) estimation procedure which is high-

lighted in figure 2. This involves iteratively updating the

parameter and distribution estimates by evaluating their abil-

ity to describe the data using a likelihood function derived

from the single-cell layer and the probability density func-

tions comprising the population layer. As such, the parame-

ter estimates feed into the population distribution estimates,

which themselves feed into the parameter estimates and so

on. This cyclical information transfer allows a parameter es-

timate to “borrow strength” from the other estimates of the

same parameter, leading to a more robust estimation

(Finkenstadt et al. 2013).

It is this principle that we exploit to tease apart the copy

number and transcription rate. Crucially, if we assume a dis-

tribution over the transcription rate as well as a distribution

over the copy number then this constrains the estimates of c

and �(t) to be similar to those of the rest of the population;

the degree of similarity is encapsulated in the population

distributions. There are still an infinite number of possible

combinations, but because of the population layer we can

now assign a probability to these and so as the MCMC pro-

cedure iteratively updates the parameter estimates, they will

begin to coalesce into their respective distributions. As this

continues, the distributions become tighter and so the

number of viable combinations diminishes. Eventually the

estimates converge on the parameter values which best ex-

plain the data, while accounting for the similarity constraints

imposed by their respective distributions.

One caveat in this approach is that the transcription rate

and copy number values the MCMC method will estimate will

be somewhat arbitrary as there is no way of discerning the

correct absolute value for either parameter. However, as there

is no reason to think that the distribution of plasmid copies

entering the cell would be different between the different

constructs, we can assume the same copy number distribution

for each of the constructs. This means that if we estimate the

distributions and parameter estimates for the entire data set at

the same time, all of the transcription rates in each of the

constructs will be estimated relative to the same copy

number distribution. This will still not allow us to estimate

the absolute transcription rate values, but they are estimated

proportional to the same copy number distribution and so can

be compared with each other.

Results

Msx1 Promoter and Comparative CRM Identification

We recently developed and validated a new measurement

and mathematical modeling pipeline to estimate copy

number-independent single-cell transcription rates using tran-

siently transfected fluorescent reporter time courses (Downey

et al. 2011; Woodcock et al. 2013). We now extend this pipe-

line to analyze the function of individual CRMs and promoters

in controlling variability and robustness in Msx1 expression in

real time in C2C12 mesenchymal cells. The Msx1 gene has a

relatively simple cis-regulatory organization as a 5-kb DNA

genomic fragment located immediately upstream of mouse

Msx1 can fully replicate endogenous Msx1 expression in trans-

genic mice (MacKenzie et al. 1997). Using computational

genomics, we identified four putative CRMs within this

region, similar to the blocks of sequence conservation discov-

ered by Miller et al. (2007), that are conserved in position and

sequence between mouse and fugu (fig. 1A). Furthermore,

we identified only one copy of Msx1 in teleosts with a

complete complement of CRMs homologous to those in

mammals despite a separate round of whole-genome dupli-

cations within actinopterygians (see supplementary text,

Supplementary Material online). Among these CRMs, mouse

CRMB and D have previously been identified as limb bud and

branchial arch enhancers (MacKenzie et al. 1997), whereas

CRMA and C are uncharacterized. The mouse Msx1 minimal
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FIG. 1.—Msx1 CRM and promoter identification. (A) Genomic organization of potential CRMs and promoters for mouse, human, chicken, and fugu

Msx1 based on sequence conservation. The fugu Msx1 ortholog displays a similar configuration to that of other vertebrates. Colored boxes indicate putative

regulatory regions, numbers represent percent sequence similarity to mouse. (B) Experimental and computational pipeline for fugu Msx1 basal promoter

identification. A conserved transcription factor promoter binding site configuration is displayed. (C) Single- and hybrid-species Msx1 CRM-promoter reporter

Vance et al. GBE

2766 Genome Biol. Evol. 7(9):2762–2778. doi:10.1093/gbe/evv179 Advance Access publication September 4, 2015

(continued)



promoter has previously been defined in transgenic mice and

C2C12 cells in culture (Takahashi et al. 1997) and we used a

custom discovery tool (Granier et al. 2011; Jeziorska et al.

2012) (see also supplementary text, Supplementary Material

online) to identify the orthologous promoter region in fugu on

the basis of a conserved transcription factor binding site con-

figuration (fig. 1B).

Quantitative Validation of a Reporter Assay for Studying
Msx1 Promoter–CRM Communication

Msx1 spatiotemporal expression is highly conserved

across vertebrates. However, branchial arches develop

faster and morphogenetic fields are much smaller in tel-

eosts than in mouse. This similarity and difference pro-

vide an attractive biological rationale for a quantitative

functional comparison of homologous promoter and

CRMs from mouse and fugu Msx1. To do this, we first

tested our experimental system using flow cytometry to

compare the activity of transfected mouse and fugu pro-

moters with endogenous MSX1 protein levels in mouse

C2C12 mesenchymal cells, an established cell line to

study Msx1 transcriptional control and its associated reg-

ulatory functions (Takahashi et al. 1997; Shetty et al.

1999; Lee et al. 2004; Wang et al. 2011; Wang and

Abate-Shen 2012). This revealed that mouse basal

Msx1 promoter activity is higher compared with that of

the homologous fugu promoter region (fig. 1D). We then

treated cells with LiCl to activate the wnt signaling path-

way, as Msx1 is a known wnt target (Willert et al. 2002;

Miller et al. 2007), and observed a 1.6-fold mean in-

crease in endogenous MSX1 (fig. 1E) and a concomitant

increase of 1.6-fold for the transfected fugu and 1.8-fold

for the mouse promoter constructs (fig. 1D) in response

to LiCl. This is within the expected range of responses to

Wnt signaling described previously generically as well as

for Msx1 (Willert et al. 2002; Goentoro and Kirschner

2009) suggesting that transient transfection does not

bias the quantitative output significantly in our system.

Furthermore, the conservation of quantitative responses

among orthologous Msx1 promoters to the same input

confirms our selection of the correct fugu Msx1 promoter

region.

Estimation of Real-Time Single-Cell Transcription Rates
Using Live Cell Imaging and Mathematical Modeling

To estimate copy number-independent transcription rates, we

transiently transfected C2C12 cells with reporter constructs

containing both inter- and same-species CRM and promoter

Msx1 components (fig. 1C) and performed live cell imaging to

generate fluorescent onset curves for approximately 30–35

randomly picked cells for each construct (supplementary fig.

S1, Supplementary Material online). We used a nuclear local-

ized Venus fluorescent protein reporter in an effort to restrict

measurement errors caused by cell size- or shape-dependent

variations. We truncated the trajectories of the time courses

when the maximum fluorescence was reached as our previous

work showed that reporter signal is diluted and distributed

equally into daughter cells after cell division (Downey et al.

2011). This enabled us to restrict fluorescent measurements to

a single-cell cycle (fig. 1F) and minimize inaccuracies in tran-

scription rate estimations caused by nuclear envelope break-

down and segregation of reporter plasmids after division.

We estimated the parameters of our hierarchical model of

transcriptional dynamics for single cells across all constructs

using our previously described methodology developed in

Woodcock et al. (2013). This inference scheme allows the

estimation of all the rates in a population of cells simulta-

neously, which enables population information to be used in

the single-cell inference and vice versa. Cyclical information

transfer between the population and single cell levels guides

the inference toward combinations of rates which are consis-

tent with the rest of the population, allowing us to distinguish

between the contribution of plasmid copy number and tran-

scription rate to overall expression levels in a population of

cells containing variable plasmid copy number (fig. 2A).

Although we do not identify absolute values for the per-

copy transcription rate, we are able to estimate the ratio of

the per-copy transcription rate between different constructs

and cells. Moreover, we have shown using synthetic data that

the value of the plasmid copy number has no effect on the

ability of the algorithm to correctly estimate transcription rates

(Woodcock et al. 2013). The model can thus explain, for ex-

ample, divergent fluorescent trajectories between two cells of

the same experiment (fig. 2B, left) as a result of copy number

(fig. 2B, center) rather than transcription rates (fig. 2B, right).

FIG. 1.—Continued

constructs. (D) Mouse Msx1 basal promoter has a higher activity than the orthologous fugu region. (E) Endogenous MSX1 and both the mouse and fugu

Msx1 promoter reporters (shown in D) respond similarly at the quantitative level to the same exogenous stimulus. After transfection C2C12 cells were grown

for 20h and then incubated for a further 24 h with or without 40 mM LiCl. Flow cytometry was used to measure endogenous MSX1 protein and reporter

fluorescence in 10,000 cells. Average Msx1 promoter reporter fluorescence was background corrected, then normalized to the activity of a cotransfected

CMV-mCherry reporter construct in each cell. (F) Simultaneous acquisition of fluorescent reporter and Hoechst intensity time course measurements. The

SV40 Pro-vGFP reporter construct was transfected into Hoechst labeled C2C12 cells. Images were acquired at 30-min intervals after transfection and

fluorescent and Hoechst intensities were extracted. Cell divisions were automatically recognized using the Hoechst channel allowing for reporter onset curves

to be restricted to a single cell cycle.
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For this reason, we can analyze the contributions of individual

promoters and CRMs by comparing entire transcription rate

distributions across all experiments. Our transient transfection

approach therefore complements studies using integrated re-

porters in stable cell lines where the genomic location of re-

porter integration is known to affect the timing and size of

transcriptional bursts (Becskei et al. 2005; Raj et al. 2006;

Skupsky et al. 2010).

Basal Promoters Display Dynamic Intra- and Intercellular
Transcription Rate Ranges

Studies in yeast and bacteria have shown that basal promoters

are important determinants of the inverse relationship be-

tween mean expression and noise (Tirosh and Barkai 2008;

Hornung et al. 2012; Carey et al. 2013). We therefore ana-

lyzed the real-time activity of the orthologous mouse and fugu

Msx1 promoters at single-cell resolution to test whether this

FIG. 2.—Estimation of copy number-independent transcription rates using a hierarchical model of transcriptional dynamics. (A) We simultaneously

estimated probability density functions (pdfs) of the copy number, c, and transcription rate �1 in arbitrary units (AU) for each single-cell time course. M(0) is

initial mRNA value, P(0) is the initial protein value, T is the switch time, and a and b are the parameters of the hierarchical distributions. (B) The fluorescence

profiles of two randomly picked cells of a given experiment differ significantly (left panel). Stippled lines indicate the switch times for each individual cell. This

represents the time point where transcription switches from the basal rate to the active rate. Although the calculated pdf for copy number differs between

these cells (middle), the pdfs of transcription rates are very similar (right). The hierarchical estimation procedure is used to confirm the form and robustness of

these “stack” plots and shows how likely a given transcription rate (in AU) is within single cells across experiments. These pdfs permit an unbiased, copy

number-independent transcription rate assessment across all single cells in all experiments. In the ensuing figures, the probability densities of the stack plots

showing transcription rate distributions are encoded as color intensities of heat maps along the Y-axis.
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relationship also holds true for metazoans. To examine both

the rate distributions within a given cell and the population-

wide distributions of average single-cell transcription rates, we

displayed the calculated transcription rate distributions for

each cell along the y-axis and sorted each individual cell

along the x-axis according to ascending average transcription

rates for all graphs. This revealed single-cell transcription

rate distributions with promoter-specific ranges and showed

that the corresponding range of switch times derived from the

posterior distribution narrows with increased transcription rate

(fig. 3A–C). This suggests that the progression from the

basal to the active state occurs more rapidly in those cells

with a high transcription rate. The data also showed that

the basal mouse Msx1 promoter has a 2.3-fold higher

mean single-cell transcription rate compared with the ortho-

logous fugu sequence (table 1). This is consistent with the

population average measurements in figure 1D determined

using flow cytometry, further validating our single cell

approach.

We assembled all basal promoter construct single-cell

rates to investigate the relationship between mean transcrip-

tion rate and noise. This demonstrated that the range of

transcription rates inside each single cell (measured as SD)

increases in correlation with the average rate (fig. 3D and E).

However, the average intracellular transcription rate

increases faster than the corresponding SD of rates inside

each cell resulting in a decrease in the coefficient of variation

(CV) per single cell with increasing average rate. Intracellular

variation in transcription rates would in our context be

understood as 1/CV (the signal-to-noise ratio [SNR] in control

theory) of single-cell transcription rate distributions imply-

ing that promoters on their own already display an (aver-

age-rate dependent) robustness behavior, consistent with

previous analyses examining the relationship between

mean rate and noise in yeast and bacteria (Tirosh and

Barkai 2008; Hornung et al. 2012; Carey et al. 2013). One

trivial explanation could be that more transfected templates

in a given cell would, when averaged over time across a

single cell, lead to an overall higher level of reporter fluores-

cence and underlying transcription rate. Importantly, we

showed that this is not the case here as the estimated

template copy numbers of the cells in figure 3F (y-axis)

do not correlate with increased average transcription rates

(fig. 3D).

Our analysis revealed four different dynamic promoter

behaviors within single cells (fig. 3G). Cells can acquire

either a high or a low average rate very quickly (identified

by a low SD and narrow spread of switch times), the range

of rates can be traversed slowly (with high SD) or there might

be more than one transcription rate optimum per cell, hinting

at a variety of preferred promoter states.

Msx1 CRMs Modulate Single-Cell Promoter Transcription
Rate Distributions in a Graded Manner

It has been proposed that CRMs use either a rheostatic or

binary mode of action to modulate fixed promoter rates (for

a review see Jeziorska et al. [2009]). However, single time

point population measurements are unable to distinguish be-

tween these two models. To generate a more detailed under-

standing of CRM function, we assayed both for the ability of

Msx1 CRMs to modulate real-time promoter rate distributions

in single cells, and also for conservation and divergence of

function between mouse and fugu CRMs. As Msx1 CRMD

and CRMB are known to function as classical enhancers

both in vivo and in C2C12 cells (MacKenzie et al. 1997;

Woodcock et al. 2013), we compared the transcription rates

of CRMD and CRMB containing reporters with the respective

promoter-alone constructs within a population of cells. We

first noted that fugu and mouse CRMD and CRMB increase

mean promoter single-cell transcription rates when analyzed

across a population of cells (table 1). The transcription rate

distributions of CRMD and CRMB (in red) show that both

fugu and mouse CRMD (fig. 4A) and CRMB (fig. 4B) shift

the respective basal promoter rate distributions (in blue) up-

wards: more cells within a population display a higher average

rate. Closer inspection of the transcription rate distributions in

figure 4A, however, also suggests that mouse CRMD (red) has

the capacity to function as either an activator or a repressor of

the SV40 promoter in single cells depending on basal pro-

moter rates (blue). The population of cells with a lower

mean promoter transcription rate is repressed by mouse

CRMD, whereas the population with a higher mean transcrip-

tion rate is activated. This leads to a bimodal rate distribution

at single-cell resolution, an effect that is not discovered when

only population average measurements are used.

We next examined the single-cell transcription rate distri-

butions of constructs containing the previously uncharacter-

ized CRMC and CRMA regions. Despite a low sequence

conservation (56% between fugu and mouse) CRMC in-

creases the proportion of cells with a higher mean rate, irre-

spective of the species origin of CRMC or promoter (fig. 5A

and table 1). However, CRMA, which is highly conserved be-

tween fugu and mouse (71%), unexpectedly displays an evo-

lutionary divergence of function as fugu CRMA enhances

promoter transcription rates whereas mouse CRMA silences

under our identical cellular and experimental conditions. In

fact, adding mouse CRMA to SV40 yields a rate distribution

below that of the basal SV40 promoter alone (fig. 5B), sug-

gesting that sequence evolution within CRMA in the lineage

toward mammals has changed its functionality. Surprisingly,

the intracellular ranges of rates acquired through adding

CRMC and CRMA are consistently narrower than those of

the basal promoters, CRMB or CRMD constructs across the

CRMs and Robustness in Msx1 GBE
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FIG. 3.—Basal promoters display intra-and intercellular transcription rate ranges. Transcription rate and switch time pdfs for the fugu Msx1 promoter (A),

mouse Msx1 promoter (B), the SV40 promoter (C), and all cells carrying basal promoter constructs (D). Transcription rates, plotted as heat maps at single-cell

resolution, are shown in blue. Each column represents a single cell, sorted by average intracellular transcription rate on the y-axis (in comparable AUs), the

color intensity in the heat map indicates the probability of a particular rate. For each single cell, the switch times (in green) are centered around the median

switch time to allow comparisons across cells irrespective of the absolute activation time. This display format also applies to figures 4–7. (E) The width of the
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entire spectrum of average rates (fig. 5 vs. fig. 4). This is sug-

gestive of a novel CRM intracellular filter function that reduces

intracellular variability in transcription rates (compare red and

blue in fig. 5A and B vs. fig. 4A and B). The use of the posterior

probability as a measure of transcriptional variability is dis-

cussed in the supplementary text, Supplementary Material

online and adds further strength to this result.

Differential Contributions of Promoters and CRMs to
Transcription Rate Distributions in Real Time

To perform a statistical analysis on the results as the basis for

uncovering general promoter and CRM functional properties,

we sorted the transcription rate distributions for all 573 single

cells by ascending transcription rate means. This demonstrated

that although the range of rates increases with the mean rate

inside single cells, the mean grows faster, leading to a CV

reduction and therefore an increase in the SNR (=1/CV)

(fig. 6A and B). The results also display a significant contraction

of the range of switch time values with increasing single-cell

transcription rate means, suggesting that the more rapid tran-

sition at higher transcription rates is a global phenomenon

(fig. 6A). We next color-coded single-cell rate distributions

depending on the different promoters used to determine

the contributions of promoters to the overall transcription

rate distribution (fig. 6C). This showed that the rate distribu-

tions are separable and reflect those of the underlying basal

promoter-alone constructs (fig. 6D).

To investigate the regulatory roles of CRMs, we plotted the

averages of all single-cell transcription rates in a log scale as a

cumulative distribution function across the population and dis-

covered that a Kolmogorov–Smirnov test finds log-normality

for each CRM (purple lines in fig. 7A). CRMs lead to a shift in

the basal promoter population mean or variance in log space

(black in fig. 7A). Enhancer CRMs (such as CRMB, C, and D)

increase, whereas silencers (CRMA) decrease the basal pro-

moter population mean rate (black stippled line in fig. 7A)

with each individual CRM modulating the mean with differing

strength. CRMB, C, and D cause more cells within a population

(at f> 0.5) to acquire a higher average transcription rate

(fig. 7A and B). The continuous nature of such dynamic features

would not be visible if only population averages were measured

and could be mistaken for ultrasensitive behavior (Hu et al.

2008). Our results therefore show that Msx1 CRMs function

in a graded, nonlinear manner to transform basal promoter rate

ranges at single-cell resolution.

Identification of Conserved CRMs that Function to
Reduce Intracellular Variability in Transcription Rates

Our real-time single-cell transcription rate estimations allowed

us to investigate the role of CRMs in controlling variability and

robustness in Msx1 expression. The results showed that the

intracellular transcription rate ranges for CRMA and CRMC

containing constructs are consistently narrower than those

of the basal promoters and CRMB or CRMD containing

constructs across the entire range of average rates (fig. 7C

compared with B). Despite the fact that CRMA can be

either activating (fig. 5B, fugu CRMA) or silencing (fig. 5B,

mouse CRMA), CRMA’s intracellular transcription rates

(blue) are largely contained within (pink) the basal promoter

(red) single-cell rates and occupy its lower half in the overall

cell population. The same is true for CRMC (green), where the

FIG. 3.—Continued

intracellular rate spectrum (measured as SD) increases with the average rate, but the CV (=SD/mean rate of each single cell) decreases. The corresponding line

of best fit is shown in red. (F) The estimated DNA template copy numbers (pink) for all cells in (D) with mean transcription rates sorted in ascending order

illustrate that there is no relationship between transcription rate and copy number seen as a result of our estimation process of these variables. (G) We

observe four different classes of promoter transcription rate behaviors within single-cell time courses. The top row shows a representative rate distribution

arising from each of the four classes and the bottom row shows the corresponding time series.

Table 1

Population Level Statistics Showing Mean and Stdev of Single Cell

Mean Transcription Rate

Mean Stdev

Basal Promoters

Fugu Msx1 Pro 2.35 1.73

Mm Msx1 Pro 5.38 3.64

SV40 Pro 11.65 9.23

MouseCRM-MousePRO

MmMsx1PRO 5.38 3.64

MmCRMA 4.53 3.65

MmCRMB 7.67 6.28

MmCRMC 11.38 9.4

MmCRMD 9.56 8.36

FuguCRM-MousePRO

MmMsx1PRO 5.38 3.64

FuguCRMA 9.68 9.35

FuguCRMB 8.49 8.02

FuguCRMC 6.17 5.32

FuguCRMD 14.02 10.7

FuguCRM-FuguPRO

FuguMsx1PRO 2.35 1.73

FuguCRMA 3.04 2.29

FuguCRMB 2.61 2.02

FuguCRMC 6.17 2.48

FuguCRMD 5.12 4.5

MouseCRM-SV40PRO

SV40PRO 11.65 9.23

MmCRMA 2.72 2.08

MmCRMB 17.64 16.64

MmCRMC 13.85 12.41

MmCRMD 12.17 10.18
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FIG. 4.—Classical Msx1 enhancers increase the number of cells with a higher mean transcription rate in a graded manner. Basal promoter transcription

rate probabilities are in blue, whereas those of constructs carrying the CRMD (A) and CRMB (B) are plotted in red. Overlap in pink indicates rates where
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overlap (yellow) is confined to the upper bound of the intra-

cellular rate distribution of the basal promoter in 80% of sin-

gle-cell profiles. This action of cutting out the higher or lower

ranges of the intracellular basal promoter rate range repre-

sents a novel functionality of CRMs that operates to reduce

variability in intracellular transcription rates, irrespective of

each cell’s average rate (depicted graphically in fig. 7D).

Furthermore, distribution of standard deviations for single-

cell transcription rate estimates indicates that variations in

intracellular transcription rates are reduced for all CRM

containing constructs compared with the promoter-alone

(fig. 7E). This reduction is most pronounced for CRMA and

CRMC constructs confirming the capacity of Msx1 CRMs to

reduce intracellular variability in transcription rates. The results

therefore suggest that Msx1 CRMs can function as important

regulators of robustness in the control of gene expression in

addition to modulating transcription rates.

Discussion

Random fluctuations in gene expression can be either bene-

ficial or deleterious for a number of fundamental biological

processes and can be subject to regulatory control. For exam-

ple, noise in the expression of key dose-dependent genes

must be filtered out to ensure robust cellular function

(Newman et al. 2006; Batada and Hurst 2007; Lehner

2008). In this study, we used mathematical modeling to esti-

mate transcription rates for 573 single-cell reporter time

courses and analyzed the function of CRMs and promoters

in controlling variability and robustness in Msx1 expression at

single-cell resolution.

We assessed the contribution of Msx1 CRMs to the well-

described gene expression level–noise relationship. We found

that both the fugu and mouse Msx1 basal promoters and the

heterologous SV40 control promoter displayed a wide range

of rates. The shapes of these rate distributions were deter-

mined by the species origins of the component used (fig. 6C

and D). We observed a basal promoter-based robustness con-

trol that is dependent upon the average rate: The higher the

average rate within a given cell, the lower the CV and the

higher the SNR (fig. 3E). This observation held true for all CRM

containing constructs (fig. 6B) demonstrating that the noise–

mean rate relationship is indeed solely promoter-controlled in

vertebrates. These results imply that distal CRMs do not affect

the noise–mean expression relationship and are consistent

with studies in yeast implicating promoter sequence and nu-

cleosome occupancy at the transcriptional start site in expres-

sion noise control (Tirosh and Barkai 2008; Hornung et al.

2012; Carey et al. 2013). In addition to this, recent work in

worms has demonstrated promoter-based robustness control

in spatial expression and suggested that promoter sequence

and length can qualitatively affect promoter robustness

(Barriere et al. 2011). Our findings expand on this by analyzing

the temporal characteristics of promoter function.

We also investigated the mode of CRM action at single-cell

resolution and found conservation of CRM function despite

low overall DNA sequence similarity, an observation congru-

ent with the billboard model of CRM function (Arnosti and

Kulkarni 2005), as well as divergence of function among

highly similar sequences. We discovered that both Msx1 en-

hancer and silencer CRMs transform basal promoter rate dis-

tributions in a CRM-specific but nonlinear fashion across a

population (fig. 7A). This suggests that Msx1 CRMs act to

modulate fluctuating promoter rate distributions (fig. 7E),

and not a single fixed rate as suggested from single time

point measurements, in a graded manner. We also show

that cell-to-cell variability in transcription rate averages across

a population is log-normally distributed (fig. 7A), whereas the

estimated rates inside a single cell are not, suggesting under-

lying multiplicative effects acting upon a fundamentally sto-

chastic process within a population in accordance with current

thermodynamic models of combinatorial transcription factor

binding (Janssens et al. 2006; Segal et al. 2008; Gertz et al.

2009). Although intercellular variability of transcription rate

averages is dominated by promoter and species-specific fea-

tures (figures 6 and 7), different CRMs affect inter- and intra-

cellular rates independently (fig. 7B vs. 7C). This leads to mean

and variance shifts in the log-scale (for CRMB, C, and D) across

a population and/or to variance reduction (CRMA, C) in the

intracellular transcription rate distributions (fig. 7A, E).

Previous single molecule studies have shown that transcrip-

tional events are discrete and occur in bursts, interspersed by

pauses whose length is proportional to the inverse of the tran-

scription rate (Davenport et al. 2000; Galburt et al. 2009;

Hodges et al. 2009). Although the stability of the fluorescent

reporter used in our study limited our ability to detect tran-

scriptional bursts, we speculate that distal CRMs may function

as individual operating units to regulate either burst size (the

number of mRNA molecules produced per burst) or frequency

(the rate at which a promoter changes from an inactive to an

active state) as shown for promoter proximal transcription

factor binding sites (Suter et al. 2011; Hornung et al. 2012;

Carey et al. 2013). Indeed, studies in yeast have demonstrated

that transcriptional variability can be decoupled from mean

expression by differential regulation of either burst frequency

or strength (Murphy et al. 2010; To and Maheshri 2010).

Future comparative analyses, using destabilized reporters,

are thus needed to understand the molecular causes for

these dynamic CRM and promoter functions.

FIG. 4.—Continued

enhancer action does not differ from the basal promoter alone. Note that even under the action of these classical enhancers transcription rate distributions

are wide within single cells and many show more than one optimal set of rates, irrespective of copy number. The entire rate distribution (and not a single rate)

is modified by enhancer action.
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FIG. 5.—Evolutionary conservation and divergence of Msx1 CRMC and CRMA function. (A) The previously uncharacterized, CRMC from fugu and

mouse, acts as an enhancer upon various promoters. The intracellular rate ranges are narrow compared with the basal promoter. (B) Sequence conservation

Vance et al. GBE
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In contrast to promoter-based robustness control that is

becoming stronger with higher average transcriptional rates

within a population, CRM-mediated reduction in intracellular

variability covers the entire spectrum of rates within a popu-

lation (fig. 7C and D). This indicates that CRMs can function as

important regulators of gene expression robustness to ensure

that the expression of key developmental transcription factors

is precisely controlled. A comparison between fugu and

mouse CRMA reveals a change in its function from enhancer

to repressor under the same conditions (fig. 5). Despite this

change, the filter function of CRMA remains shared across

mouse and fugu (fig. 7C), suggesting that this is inherited

from a common ancestor whereas other rate modulating ac-

tivities of the same CRMs have evolved separately. Such evo-

lutionary decoupling of rate modulating CRM activities from

transcriptional robustness control could provide a mechanism

for individual genes to be expressed faster (or slower) than

others without affecting their accuracy. We expect that tran-

scription rate filtering is just one in a large class of dynamic

functionalities of vertebrate CRMs that remain to be discov-

ered using quantitative single-cell transcription rate

measurements.

FIG. 5.—Continued

does not guarantee functional conservation. Fugu CRMA acts as an enhancer upon the fugu and mouse promoters, whereas mouse CRMA acts as a silencer

of the mouse and SV40 promoters. However, despite this evolutionary change in function revealed here, the intracellular SD of transcription rates is very

narrow for CRMA and C compared with the basal promoter and CRMB and CRMD containing constructs. Notably, mouse CRMA conveys pure repression

upon the SV40 promoter with an extremely narrow intracellular rate distribution.

FIG. 6.—Differential contributions of promoters and CRMs to single-cell transcription rates. Aligning by average rate and color coding all 573 single-cell

profiles according to either the promoters or CRMs used allows us to quantify complex promoter dynamics at single-cell resolution. (A) The corresponding

range of switch times derived from the posterior distribution narrows with increased transcription rate. (B) Intracellular SD of estimated rates increases with

mean rate (upper graph). At the same time the mean rate increases more quickly than the width of the intracellular rate spectra, leading to a decrease of the

intracellular CV (lower graph). (C) When color-coded by promoter type, different transcription rate ranges are observed within a given population. Purple is

overlap of red and blue; white is overlap of red, green, and blue. Their respective order follows that of the basal promoter rate spectra without CRMs.

(D) Promoters set specific transcription rate distributions across a population and within each cell.
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Supplementary text, figure S1, and table S1 are available at

Genome Biology and Evolution online (http://www.gbe.
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