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Abstract

Background: Compelling data exist that show that normal levels of progranulin (PGRN) are required for successful CNS
aging. PGRN production is also modulated by inflammation and infection, but no data are available on the production and
role of PGRN during CNS HIV infection.

Methods: To determine the relationships between PGRN and HIV disease, neurocognition, and inflammation, we analyzed
107 matched CSF and plasma samples from CHARTER, a well-characterized HIV cohort. Levels of PGRN were determined by
ELISA and compared to levels of several inflammatory mediators (IFNc, IL-6, IL-10, IP-10, MCP-1, TNFa, IL-1b, IL-4 and IL-13),
as well as clinical, virologic and demographic parameters. The relationship between HIV infection and PGRN was also
examined in HIV-infected primary human microglial cultures.

Results: In plasma, PGRN levels correlated with the viral load (VL, p,0.001). In the CSF of subjects with undetectable VL,
lower PGRN was associated with neurocognitive impairment (p = 0.046). CSF PGRN correlated with CSF IP-10, TNFa and IL-
10, and plasma PGRN correlated with plasma IP-10. In vitro, microglial HIV infection increased PGRN production and PGRN
knockdown increased HIV replication, demonstrating that PGRN is an innate antiviral protein.

Conclusions: We propose that PGRN plays dual roles in people living with HIV disease. With active HIV replication, PGRN is
induced in infected macrophages and microglia and functions as an antiviral protein. In individuals without active viral
replication, decreased PGRN production contributes to neurocognitive dysfunction, probably through a diminution of its
neurotrophic functions. Our results have implications for the pathogenesis, biomarker studies and therapy for HIV diseases
including HIV-associated neurocognitive dysfunction (HAND).
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Introduction

Despite effective and widely available combination antiretrovi-

ral therapy (ART), HIV-associated neurocognitive disorder

(HAND) affects up to 50% of HIV infected individuals [1–3].

HAND ranges in severity from very mild (asymptomatic neuro-

cognitive impairment) to disabling (HIV-associated dementia

(HAD)). HAD is associated with active HIV replication in the

central nervous system (CNS) and neuropathological findings

consistent with HIV encephalitis (HIVE). HIVE diagnosis requires

the presence of multinucleated giant cells and microglial nodules

signifying productive HIV infection. In the combination ART era,

the prevalence of HAD/HIVE has decreased but the prevalence

of the milder forms of HAND has increased. There is no clear

understanding of the relationship between the virus and milder

clinical manifestations of HAND. The levels of virus in brain

poorly correlate with the degree of neurological impairment [4–6].

Moreover, cognitive deterioration can occur despite suppression of

viral replication and immune recovery induced by ART. These

changes could result from inadequate distribution of ART into the

CNS with resulting residual replication in the brain, chronic CNS

inflammatory and oxidative stress responses, or neurotoxic effects

of treatment [1,7–9]. Recent gene array studies also indicate that

the pathophysiology of HAND may differ depending on the

presence or absence of HIVE [10,11], suggesting that clinical

subtypes of HAND may exist based on detectable or undetectable

HIV in the CSF. We have termed these conditions type I

(detectable HIV in CSF) and type II (undetectable HIV in CSF)

HAND based on the assumption that the mechanisms of CNS

injury fundamentally differ in these two divergent environments.

Several studies have focused on identifying biomarkers to monitor

HIV immunopathogenesis in patients on ART, but none has yet

proved reliable for diagnostic or therapeutic purposes [12–14].

While the role of neurotoxic viral and host factors released from
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HIV-infected macrophages has been investigated, detailed under-

standing of key molecules and cellular pathways that modulate

HIV-macrophage (or microglia) interactions is lacking. Thus,

there is an imperative need to understand the pathogenesis of

HAND, especially the milder forms, and to identify new

biomarkers for HAND.

Progranulin (PGRN) is a highly unusual molecule that is

expressed by both neurons and microglia and has two seemingly

unrelated functions: it is both a neuronal growth factor and a

modulator of neuroinflammation [15–20]. PGRN gained much

attention with the discovery of haploinsufficiency resulting from

PGRN gene mutations leading to frontotemporal lobar degener-

ation, a fatal presenile dementing illness [21–23]. Several

additional gene mutations (single nucleotide polymorphisms,

SNP) that result in significant PGRN deficiency such as rs5848

have also been identified [24–26]. While neurons constitutively

express PGRN, microglial cells are the primary source of

regulatable PGRN in the brain [27–29]. Analysis of PGRN

expression in systemic organs also demonstrated that tissue

macrophages are the main expressors of PGRN with certain

epithelial cells also expressing PGRN but at much lower levels

[30–33]. PGRN expression in the two cell types is also differently

regulated. For example, proinflammatory mediators such as TLR

ligands and Th1 cytokines (IL-1/IFNc) suppress PGRN produc-

tion in (human) microglia but they upregulate PGRN in non-

myeloid cells such as astrocytes and fibroblasts [34–36]. These

results together support that PGRN is a neuronal growth factor

and an immune modulator with cell-type-dependent regulation

and function. The expression and function of PGRN are also

species-dependent, as evident by the very subtle CNS pathology in

homozygous knockout mice, in stark contrast to the fatal

phenotype associated with haploinsufficiency in humans [37].

Furthermore, while in mice and mouse macrophages PGRN

appears to function as a down modulator of cytokine production

and neuroinflammation [20,38,39] (with some notable exceptions,

see for instance [40]), in human macrophages and microglia,

PGRN functions as a cytokine stimulator [35,41]. Our previous

study employing PGRN siRNA showed that in human microglia,

PGRN plays a stimulator role for LPS-mediated TNFa and IP-10

production [35]. In no instances was PGRN found to be cytokine-

suppressive in human microglia.

While these findings together point to the importance of

maintaining PGRN levels for neuronal function and survival, the

expression of PGRN has not been examined in HAND.

Furthermore, no information is available on the expression or

function of PGRN in the context of HIV disease even though

PGRN expression is intricately linked to and regulated by

inflammatory and infectious processes. The main in vivo objective

of the current study was to measure PGRN in 107 matched CSF

and plasma samples from a well-characterized cohort of people

living with HIV disease and compare them to VL in plasma and

CSF as well as to neurocognitive performance. The in vitro

objective was to investigate the impact of HIV on PGRN

production in microglia and the effects of PGRN on HIV

replication. The results of the combined in vivo and in vitro

experiments indeed provide strong evidence supporting a role

for PGRN in the pathogenesis of HIV infection and HAND.

Materials and Methods

CHARTER Subjects
Matching CSF and plasma specimens were collected from 107

adults enrolled in the cross-sectional component of the CHAR-

TER (CNS HIV AntiRetroviral Therapy Effects Research) cohort,

a six-center, U.S. -based project funded by the National Institutes

of Health. The project was approved by the institutional review

board (IRB) of every participating institution (Johns Hopkins

University, Mt. Sinai School of Medicine, University of California,

San Diego, University of Texas Medical Branch-Galveston,

University of Washington, Washington University). Informed

written consent was obtained from all participants involved in

the study.

Table 1. Demographic and clinical characteristics.

Characteristics Subjects (N = 107)

Age, years – Mean 6 SD 43.768.7

Gender, Men – N (%) 93(86.9%)

Race, White – N (%) 59(55.1%)

AIDS – N (%) 68(63.6%)

ART use – N (%) 84(78.5%)

NC impairment – N (%) 58(54.2%)

Plasma HIV VL undetectable – N (%) 53(49.5%)

CSF HIV VL undetectable – N (%) 79(73.8%)

Current CD4+ T-cell count ,200 cells/mL N (%) 22(20.8%)

Subjects taking ART Subjects (n = 84)

Plasma HIV VL undetectable – N (%) 53(63.1%)

CSF HIV VL undetectable – N (%) 74(88.1%)

Current CD4+ T cell count (cells/mL) – median (IQR)a 396(190–582)

Subjects not taking ART Subject (n = 23)

Plasma HIV VL (copies/mL) – median (IQR)a 18200(1890–37600)

CSF HIV VL (copies/mL) –median (IQR)a 1670(103.3–5590)

Current CD4+ T cell count (cells/mL) – median (IQR)a 493(328–552)

IQRa: interquartile range.
doi:10.1371/journal.pone.0098184.t001
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The clinical and demographic data are shown in Table 1. The

mean 6 SD age was 43.768.7 years, 93 (86.9%) were male, 59

(55.1%) were white, 68 (63.6%) had AIDS diagnosis, 84 (78.5%)

were taking ART, 58 (54.2%) had neurocognitive impairment.

Fifty-three (49.5%) had undetectable plasma VL and 22 (20.8%)

had current CD4+ T-cell counts ,200/mL. Individuals with

abnormal serum glucose, HCV seropositivity, or current substance

use (based on urine drug screening) were excluded from the study.

Of the subjects taking ART (n= 84), 53 (63.1%) had undetectable

plasma VL and 74 (88.1%) had undetectable CSF VL. The

median current CD4+ T-cell count was 396 (190–582). Of the

subjects not taking ART (n= 23), median (interquartile range

(IQR)) values for plasma and CSF VL were 18200 (1890–37600)

and 1670 (103.3–5590), respectively. The median current CD4+
T-cell count was 493 (328–552) in the subgroup with no ART.

Neurocognitive Assessment
All participants completed a comprehensive neurocognitive test

battery that assessed seven cognitive domains commonly affected

by HIV disease (speed of information processing, learning and

memory, executive functions, language, working memory, and

motor) [1,42,43]. The best available normative standards were

used and corrected for the effects of age, education, gender and

ethnicity. Test scores were converted to demographically corrected

standard scores (T-scores) using available computer programs. To

classify presence and severity of neurocognitive impairment, a

published objective algorithm that has been shown to yield

excellent interrater reliability in previous multisite studies [44] was

applied. This algorithm conforms to the Frascati criteria for

diagnosing HAND [3], which requires presence of at least mild

impairment in at least two cognitive domains.

Table 2. Factors associated with CSF PGRNa.

Factors Mean6SD P-value

Gender Male (n = 93) 1.6760.61 ns

Female (n = 14) 1.4960.54

Race Black (n = 34) 1.5060.76 ns

Other (n = 14) 1.7260.55

White (n = 59) 1.7260.50

AIDS No (n = 39) 1.7660.71 ns

Yes (n = 68) 1.5960.52

ART Use No (n = 23) 1.7760.81 ns

Yes (n = 84) 1.6260.53

Neurocognitive status Impaired (n = 58) 1.5960.64 ns

Normal (n = 49) 1.7260.54

CSF HIV VL Non-detectable (n = 79) 1.5460.56 ,0.001

Detectable (n = 28) 1.9760.59

Current CD4+ T-cell count ,200 (n = 22) 1.6460.61 ns

.=200 (n = 84) 1.6560.60

aCSF PGRN was square-root transformed,
ns: not significant.
doi:10.1371/journal.pone.0098184.t002

Table 3. Correlation of CSF PGRN and other factors.

All subjects (n =107) Subjects with Undetectable CSF VL (n =79) Subjects with detectable CSF VL (n=28)

r p-value r p-value r p-value

Age 0.15 ns 0.12 ns 0.48 0.05

Current CD4+ count 20.21 0.034 20.13 ns 20.10 ns

CSF HIV N/A N/A N/A N/A 0.33 ns

IL-6 0.08 ns 0.05 ns 0.13 ns

IL-10 0.25 0.009 0.09 ns 0.48 0.01

IP-10 0.37 ,0.001 0.12 ns 0.69 ,0.001

MCP-1 0.18 ns 20.06 ns 20.28 ns

TNFa 0.42 ,0.001 0.26 0.05 0.46 ,0.001

r: Spearman correlation coefficient, ns: not significant.
N/A: analysis is not applicable due to measurable VL in only 28 subjects.
doi:10.1371/journal.pone.0098184.t003
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PGRN and other Biomarker Quantifications
Concentrations of inflammatory mediators were determined in

the plasma and CSF samples of all 107 subjects. A multiplex bead

array quantified concentrations of IFNc, IL-1b, IL-4, IL-6, IL-10,
IL-13, IL-17, TNFa, CCL2/MCP-1, and CXCL10/IP-10 (EMD

Millipore, Billerica, MA). PGRN ELISA was performed using

human antibody DuoSet (DY2420, R&D Systems, Minneapolis,

MN). All samples were diluted until the final concentrations were

within the linear range of detection for the assay. All samples were

tested in duplicates and concentrations interpolated from a

standard curve constructed by 4-parameter fitting of internal

standards. HIV RNA was measured by reverse transcriptase-

polymerase chain reaction with a lower limit of quantitation (LLQ)

of 50 copies/mL (Amplicor, Roche Diagnostics).

Data Analysis for the Human Study
Inflammatory mediators whose levels were below the detection

limit of the assay in.90% of samples were excluded from analysis.

These were IL-1b, IL-4 and IL-13 for plasma and IL-1b, IL-4, IL-
13, IFNc and IL-17 for CSF. Undetectable HIV VL designates

HIV RNA levels below 50 copies/ml, the lower limit of

quantification (Amplicor). PGRN concentration values were log-

transformed for plasma samples and square root transformed for

CSF samples to normalize the data. Initial analysis of associations

of age, gender, race, AIDS diagnosis, ART use, neurocognitive

status, current CD4+ T cell count, and inflammatory mediators

with plasma and CSF PGRN concentrations were examined using

t-tests for categorical variables and Spearman correlation coeffi-

cients for continuous variables. Linear regression models or

analysis of covariances (ANCOVA) were used to examine

associations of PGRN with neurocognitive status adjusted for

demographics, HIV VL, and inflammatory mediators. Variables

with a p-value#0.2 in initial analysis were included in multivariate

analysis. Statistical analyses were performed using SAS (version

9.1, SAS Institute, Cary, NC) software.

Primary Human Microglial Culture
Microglial cultures were prepared from human fetal abortuses

(16–20 weeks gestational ages) as previously described [45] with

minor modifications. All human tissue collection was approved by

the Albert Einstein College of Medicine IRB (#: 1994-019).

Informed written consent was obtained from all participants

involved in the study. Primary mixed CNS cultures were prepared

by enzymatic and mechanical dissociation of the cerebral tissue

followed by filtration through nylon meshes of 230- and 130-mm
pore sizes. Single cell suspension was plated at 1–106106 cells per

ml in DMEM (Cellgro, now ThermoFisher Scientific) supple-

mented with 10% FBS (Gemini Bio-products, Woodland, CA),

penicillin (100 U/ml), streptomycin (100 mg/ml) and amphoteri-

cin B (0.25 mg/ml) (complete medium) for 2 weeks, and then

microglial cells were collected by aspiration of the culture medium.

Monolayers of microglia were prepared in 60-mm tissue culture

dishes at 16106 cells per 5 ml medium (for Q-PCR) or in 96-well

tissue culture plates at 46104 per 0.1 ml medium (for ELISA).

Four to eighteen hours later, cultures were washed to remove non-

adherent cells (neurons and astrocytes). Microglial cultures were

highly pure consisting of .98% Iba-1+ cells.

HIV Infection
Microglial cultures were infected with single-cycle competent,

vesicular stomatitis virus (VSVg) env pseudotyped HIV [46] or

natural virus HIVADA. VSVg env HIV was produced by

cotransfecting 293T cells with pHIVNL4.3 (Nef-intact, Vpr-intact,

Env-deficient, gift of Dr. Maurizio Federico [47]) and pVSVg env.

Cells were infected with approximately 40 ng/ml p24 viral input

that resulted in 25% to 50% cell infections at three days post

inoculation [46,48]. HIVADA was generated by transfecting 293T

cells with pHIVADA obtained from Dr. Mario Stevenson, as

previously described [49]. The HIVADA virus infects microglia

through R5 env-CCR5 mediated fusion mechanism with HIV p24

production peaking at 14–21 days post inoculation [50,51]. Input

virus was washed out after 16 hours post-inoculation and then

fresh medium was added back. Culture supernatants were

collected with complete change of medium at 2 D, 4 D, 7 D

and 14 D. In experiments with azidothymidine (AZT), a reverse

transcriptase inhibitor, AZT was added back with each medium

change.

PGRN Knockdown by siRNA
Microglia were transfected with 20 nM control non-targeting

small-interfering RNA (siRNA) or human PGRN-specific siRNA

(Dharmacon, Chicago, IL) with transit-TKO transfection reagents

from Mirus (Madison, WI) following the manufacturer’s instruc-

tions and as previously described [35]. After incubation with

siRNA for 2 to 4 days, cells were washed and then incubated with

VSVg env HIV for 16 hours. Virus was then washed off the cells

and fresh medium was added back. The cultures were further

incubated for indicated time periods in complete medium.

Knockdown efficiency was determined by PGRN ELISA or

western blot.

PGRN ELISA
The levels of PGRN in microglial culture supernatants were

determined by ELISA as described for the human clinical

specimens above and as previously described [35]. Microglial

Table 4. Multivariate linear regression analysis of factors associated with CSF PGRN.

Characteristics All subjects (n = 107) Subjects with undetectable CSF VL (n = 79) Subjects with detectable CSF VL (n = 28)

ab-coefficient (SE) p-value ab-coefficient (SE) p-value ab-coefficient (SE) p-value

Neurocognitive impairment 20.174 (0.103) 0.095 20.253 (0.124) 0.046 0.048 (0.192) 0.805

Age, per year 0.013 (0.006) 0.034 0.013 (0.008) 0.094 0.015 (0.012) 0.203

Detectable CSF VL 0.281 (0.130) 0.033 N/A N/A N/A N/A

TNFa 0.076 (0.021) ,0.001 0.075 (0.028) 0.009 0.080 (0.032) 0.020

ab-coefficient less than zero indicate an inverse association between the characteristic and PGRN.
N/A: not applicable.
doi:10.1371/journal.pone.0098184.t004
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culture samples were diluted with fresh medium until the values

fell within the linear range of the standard.

Western blot
Western blot analysis was performed as previously described

[35,52] with minor modifications. Briefly, cultured cells in 60 mm

dishes were scraped into lysis buffer (PBS plus protease inhibitors

from Sigma). Thirty micrograms of protein was separated by 10%

SDS-PAGE and then transferred to polyvinylidene difluoride

membrane (Bio-Rad). The blots were blocked in PBS-0.1%

Tween-20 containing 5% nonfat milk and then incubated with

antibodies at 4uC for 16 h. Primary antibodies were rabbit anti-

human PGRN (Invitrogen 40–3400 at 1:100) or goat anti-human

PGRN (R&D Systems AF2420 at 1:1000) and goat anti-HIV p24

(Abcam, ab53841 at 1:1000). b-actin (Sigma-Aldrich, A2228) was

used as the loading control. The secondary antibodies were HRP-

conjugated anti rabbit or anti-goat IgG (Pierce/Thermo Scientific,

at 1:1,000) applied for 1 h at RT. Signals were developed using

West Pico or Femto chemiluminescent reagents (Pierce/Thermo

Scientific). Densitometry was performed using the NIH ImageJ

software.

Data Analysis for Tissue Culture Studies
Differences in HIV infection-induced PGRN production were

compared using ANOVA followed by Bonferroni post-hoc

comparisons. Pooled data from siRNA experiments were analyzed

by paired t-test. All statistics were performed using the GraphPad

Prism 5.0 software.

Table 5. Factors associated with plasma PGRNa.

Factors Mean 6 SD P-value

Gender Male (n = 93) 4.6860.65 ns

Female (n = 14) 4.6360.40

Race Black (n = 34) 4.6160.66 ns

Other (n = 14) 4.8260.47

White (n = 59) 4.6860.64

AIDS No (n = 39) 4.6360.74 ns

Yes (n = 68) 4.7060.55

ART Use No (n = 23) 4.8160.77 ns

Yes (n = 84) 4.6360.58

Neurocognitive status Impaired (n = 58) 4.6760.64 ns

Normal (n = 49) 4.6760.62

CSF HIV VL Non-detectable (n = 53) 4.5060.53 0.003

Detectable (n = 54) 4.8460.67

Current CD4+ T-cell count ,200 (n = 22) 5.0460.49 0.002

.= 200 (n = 84) 4.5860.63

aPlasma PGRN was log transformed,
ns: not significant.
doi:10.1371/journal.pone.0098184.t005

Table 6. Correlation of plasma PGRN and other factors.

All subjects (n = 107) Subjects with undetectable plasma VL (n = 53) Subjects with detectable plasma VL (n = 54)

r p-value r p-value r p-value

Age 0.00 ns 0.00 ns 0.09 ns

Current CD4+ count 20.50 ,0.001 20.38 0.005 20.58 ,0.001

Plasma HIV VL N/A N/A N/A N/A 0.47 ,0.001

IFN-c 0.05 ns 0.02 ns 20.02 ns

IL-6 0.14 ns 0.01 ns 0.26 ns

IL-10 0.17 ns 0.03 ns 0.23 ns

IL-17 0.05 ns 0.00 ns 0.06 ns

IP-10 0.49 ,0.001 0.29 0.037 0.59 ,0.001

MCP-1 0.16 ns 0.22 ns 0.10 ns

TNFa 0.15 ns 20.05 ns 0.22 ns

r: Spearman correlation coefficient, ns: not significant.
N/A: not applicable.
doi:10.1371/journal.pone.0098184.t006
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Results

[1] Analyses of Csf Progranulin (Table 2–4)
Factors associated with CSF PGRN. Mean (6 SD) PGRN

levels were 129.7 (68.3) ng/ml in plasma and 3.08 (60.19) ng/ml

in CSF, consistent with the reported ranges of PGRN levels in the

body fluids [53–57]. We determined associations between PGRN

concentrations and demographic and disease characteristics

[42,43]. The CSF data analyses are shown in Table 2. CSF

PGRN levels (square-root transformed values) were significantly

higher in the subgroup with detectable CSF VL (n= 28) than in

the subgroup with undetectable VL (n= 79) (1.9760.59 vs.

1.5460.56, p,0.001). Gender, race, AIDS, ART use, neurocog-

nitive status, and current CD4+ T-cell counts were not signifi-

cantly associated with CSF PGRN (Table 2).

Correlation analyses of CSF PGRN and other

inflammatory mediators and VL. We next examined wheth-

er the levels of PGRN correlated with levels of other inflammatory

mediators in the CSF (n = 107). CSF PGRN levels positively

correlated with IL-10 (r = 0.25, p = 0.009), IP-10 (r = 0.37, p,

0.001) and TNFa (r = 0.42, p,0.001), and inversely correlated

with current CD4+ T-cell counts (r =20.21, p= 0.034). No

correlations were found with IL-6, MCP-1 or age (Table 3, left

column).

Stratifying the analysis by CSF VLs identified that these

correlations were stronger in those with detectable VLs. In the

HIV detectable group (n= 28), a stronger correlation between

CSF PGRN and IP-10 (r = 0.69, p,0.001), IL-10 (r = 0.48,

p = 0.01) and TNFa (r = 0.46, p,0.001) was found than in the

HIV undetectable group (n= 79) (Table 3, middle and right

columns). There was also a positive correlation between age and

CSF PGRN in subjects with detectable CSF VL (p= 0.05). There

was no significant correlation between CSF VL and CSF PGRN

levels in the 28 subjects with detectable CSF VL. In the HIV

undetectable group, a significant correlation was found only with

TNFa (r = 0.26, p = 0.05).

Multivariate analyses. Multivariate linear regression anal-

ysis of factors associated with CSF PGRN is shown in Table 4.

There was a trend toward lower CSF PGRN in individuals with

neurocognitive impairment (b=20.174, p= 0.095) after adjusting

for CSF VL, age and TNFa in all subjects (left column). Higher

CSF PGRN was associated with older age (b=0.013, p = 0.034),

detectable CSF VL (b=0.281, p= 0.033) and higher TNFa
(b=0.076, p,0.001) (left column).

In the subgroup of 79 subjects with undetectable CSF VL,

neurocognitive impairment was associated with lower CSF PGRN

levels (b=20.253, p = 0.046) (Table 4, middle column). Higher

TNFa was associated with higher CSF PGRN (b=0.075,

p = 0.009). Age was not associated with CSF PGRN (b=0.013,

p = 0.094). In 28 subjects with detectable CSF VL, higher TNFa
was associated with higher CSF PGRN (b=0.080, p= 0.020)

(Table 4, right column). Neurocognitive impairment and age were

not associated with CSF PGRN in this group.

[2] Analyses of Plasma Progranulin (Table 5–7)
Plasma PGRN levels (log transformed values) were significantly

higher in subjects with detectable plasma VLs (n = 54) than in

those with undetectable plasma VLs (n= 53) (4.8460.67 vs.

4.5060.53, p = 0.003) (Table 5). Higher plasma PGRN levels were

also associated with current CD4+ T-cell counts below 200/mL
(5.0460.49 vs. 4.5860.63, p = 0.002). Gender, race, AIDS status,

ART use, and neurocognitive status were not associated with

plasma PGRN (Table 5).

Correlates of plasma PGRN. Higher plasma PGRN levels

correlated with lower current CD4+ T-cell counts (r =20.50, p,

0.001) and higher IP-10 (r = 0.49, p,0.001) (Table 6, left column).

There was no correlation between plasma PGRN and age, plasma

IFNc, IL-6, IL-10, IL-17, MCP-1 or TNFa. The correlations with
either IP-10 (r = 0.59, p,0.001) or CD4+ T-cell counts (r =20.58,

p,0.001) strengthened in the detectable HIV subgroup (n= 54)

(right column). There was also a correlation between plasma VL

and plasma PGRN levels in subjects with detectable VL (r = 0.47,

p,0.001) (right column). In subjects with undetectable plasma VL

(n= 53) (middle column), the correlations with IP-10 and CD4+ T-

cell counts still existed, though much weaker than in subjects with

detectable plasma VL.

Multivariate analyses. Multivariate modeling identified

that higher plasma PGRN levels were associated with lower

current CD4+ T-cell count (b=20.433, p = 0.001), and detect-

able plasma VL (b=0.231, p= 0.031) (Table 7, left column).

Neurocognitive impairment (b=20.021, p = 0.838) was not

associated with plasma PGRN. A significant interaction between

detectable plasma VL and IP-10 was present, indicating that the

relationship between plasma IP-10 and plasma PGRN were

modified by detectable plasma VL. To adjust for this effect

modification, subjects with detectable plasma VL and undetect-

able plasma VL were analyzed separately (Table 7, middle and

right columns).

Table 7. Multivariate linear regression analysis of factors associated with plasma PGRN.

Characteristics All subjects (n = 107)
Subjects with undetectable plasma VL
(n = 53) Subjects with detectable plasma VL (n = 54)

ab-coefficient (SE) p-value ab-coefficient (SE) p-value ab-coefficient (SE) p-value

Neurocognitive impairment 20.012 (0.102) 0.838 20.094 (0.139) 0.504 20.132 (0.146) 0.368

Current CD4+ count .200 20.433 (0.126) 0.001 20.436 (0.172) 0.001 20.439 (0.185) 0.021

Detectable plasma VL 0.231 (0.105) 0.031 N/A N/A N/A N/A

IP-10b 0.105 (0.096) 0.280 0.104 (0.094) 0.278 0.363 (0.065) ,0.001

Detectable plasma VL*IP-10c 0.250 (0.115) 0.032 N/A N/A N/A N/A

ab-coefficients less than zero indicate an inverse association between the characteristic and PGRN.
bIP-10 was subtracted from mean= 1603.4 and divided by SD= 1371.4 to reduce collinearity between IP-10 and detectable plasma VL.
cInteraction between IP-10 and detectable plasma VL.
N/A: not applicable.
doi:10.1371/journal.pone.0098184.t007
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In 53 subjects with undetectable plasma VL, current CD4+ T-

cell count .200 was associated with lower plasma PGRN (b=2

0.436, p = 0.001). Neurocognitive impairment and IP-10 were not

associated with plasma PGRN in this group. In 54 subjects with

detectable plasma VL, current CD4+ T-cell count .200 was

associated with lower plasma PGRN (b=20.439, p = 0.021).

Higher IP-10 was associated with higher plasma PGRN only in

this subgroup (b=0.363, p,0.0001). Neurocognitive impairment

was also not associated with plasma PGRN in this group. These data

suggest that, in plasma, IP-10, PGRN, and VL are closely related.

[3] In vitro Studies of HIV-induced PGRN Production and
Function in Human Microglia (Figures 1 and 2)

HIV infection induces PGRN in human microglia. Based

on clinical data that indicate strong association between PGRN

expression and HIV infection [30] (and current study), we directly

examined whether HIV modulates PGRN expression in our well-

characterized human microglial culture system [50,52]. Microglia

were infected with HIVADA or VSVg env-pseudotyped HIV and

PGRN levels were determined by ELISA and western blot analysis

as previously described [47,58]. The effect of azidothymidine

(AZT), a reverse transcriptase inhibitor, was examined to

determine whether active viral replication was required for PGRN

Figure 1. HIV infection induces PGRN production in microglia. Primary human microglial cells were inoculated with VSVg env HIV or HIVADA
and PGRN in culture supernatants were determined by ELISA as described in the Materials and Methods. Control cultures were treated with VSVg env
protein or mock infected. (A) Results with VSVg env HIV are shown. Culture supernatants were collected at 2 D and 4 D with complete change of
medium (mean6 SD from triplicate cultures) (B) Microglia were incubated with AZT (10 mg/ml) or vehicle for 1 h, then exposed to VSVg env HIV as in
A. PGRN was measured at 7 D and 14 D with complete change of medium. Data shown are accumulation between 7D–14D (mean 6 SD, n = 3). (C)
HIVADA (HIV env bearing virus) was used to determine PGRN production as described in the Materials and Methods. Data shown are PGRN
accumulation in culture supernatants between 7D–14D (mean 6 SD, n= 3) (D) Microglial cultures infected with VSVg env HIV in B showing cell
viability, gag p24 expression, and complete suppression of p24 by AZT treatment. **P,0.01, ***P,0.001 by ANOVA followed by Bonferroni
correction.
doi:10.1371/journal.pone.0098184.g001
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modulation. These experiments showed that exposure to either

type of HIV (HIV env- or VSVg env-bearing) induced PGRN in a

time-dependent manner and that AZT abolished HIV-mediated

PGRN induction in both cultures (Figure 1). These results show that

PGRN is induced in microglia by HIV infection and that this requires

productive infection.

PGRN inhibits HIV replication in microglia. PGRN is

mainly a product of innate immune cells and, while its

antimicrobial capacity has been suggested, this has not been

directly examined. We therefore examined whether microglial

PGRN affects the level of HIV replication. Microglial cells were

first transfected with PGRN siRNA or control (Ctr) siRNA for 2–4

days and then inoculated with VSVg env HIV for an additional 4

days. Western blot analysis was performed to determine the

amount of HIVgag (p24) and PGRN expression in each culture.

Representative western blot and pooled densitometry data are

shown in Figure 2A and B, respectively. siRNA-induced PGRN

knockdown was highly efficient in microglia. Furthermore, in

PGRN siRNA-treated cultures, HIVgag expression was signifi-

cantly increased, indicating that PGRN has an HIV-suppressive

role in these cultures. These results demonstrate that PGRN functions as

an endogenous inhibitor of HIV replication in human microglia. Together, these

results show, for the first time, that PGRN is an innate anti-HIV protein.

Discussion

Despite emerging evidence for the role of PGRN in antimicro-

bial immune function, studies that directly examined this role in

infectious diseases are rare [20,37,59]. The observation that

PGRN is primarily a product of cells of the innate immune system

(neutrophils, monocytes and macrophages) further suggests this

role [20,35,40]. Previous studies have found that CNS clearance of

Listeria monocytogenes is delayed in PGRN knockout mice [20].

PGRN expression was induced in gastric epithelial cells infected

with Helicobacter pylori in a manner requiring direct contact with live

bacteria. H. pylori-infected subjects also have increased serum

PGRN levels [60,61]. These results together suggest that increased

PGRN expression is a natural response of gastric epithelial cells to

bacterial infection.

To our knowledge, ours is the first study that demonstrated the

role of PGRN in viral infection. PGRN was induced by HIV

infection of microglia in a manner dependent on active viral

replication. Furthermore, siRNA studies revealed that PGRN

functions as an innate anti-HIV factor in infected cells. These

in vitro findings are supported by the human biomarker study

which showed a strong correlation between plasma PGRN levels

and plasma VL. Together, these results provide first direct

evidence that PGRN is an innate antiviral molecule produced

by infected host cells, assigning a new role for this multifunctional

factor. Our results also provide a biological basis for our previous

observation that PGRN (mRNA and protein) are increased in

HIVE [30].

Another significant finding in this study is the association

between reduced CSF PGRN levels and neurocognitive impair-

ment in subjects with undetectable VL. These results suggest that

PGRN has dual mechanisms of regulation in HIV-infected

individuals. With viral replication, PGRN production is actively

induced in infected cells and acts as an innate antiviral molecule.

In individuals with viral suppression, the stimulus for PGRN

production no longer exists. In these individuals, various

environmental and genetic factors can lead to reduced PGRN

production [21,24,30,35] (also see below). The loss of PGRN’s

neuroprotective properties could then increase vulnerability to

neuronal injury and neurocognitive impairment.

One of the clearly defined mechanisms for growth factor

depletion is the proinflammatory environment. For example, the

production of several neurotrophic factors (PGRN, IGF-1 and

BDNF) is reciprocally regulated by the Th1/M1 and Th2/M2

cytokines [62–65]. Specifically, strong proinflammatory activators

such as LPS suppress growth factor production in macrophages

and microglia. Reduction in CSF PGRN may thus reflect chronic

immune activation and neuroinflammation that has been recog-

nized as a risk factor for neurocognitive complications during

suppressive ART. The degree of CSF PGRN depletion (,23% on

average) in cognitively impaired (vs. unimpaired) individuals

within the HIV-undetectable subgroup is likely biologically

significant, given that normal CSF PGRN concentrations are

much lower than those of plasma (,1/40) and that normal aging

and cognition is critically dependent on the normal concentrations

of PGRN, as shown by fatal neurodegeneration in humans caused

by genetic 50% deficiency. We propose that longitudinal

determinations of CSF PGRN may be useful as a prognostic

marker of HAND. If our findings are confirmed, then investiga-

tions of PGRN replacement therapy for HAND may have merit.

Figure 2. PGRN is an endogenous anti-HIV factor. Microglial PGRN was knocked down using RNAi 2–4 days prior to VSVg env HIV exposure as
described in the Materials and Methods. Control cultures were treated with control, irrelevant siRNA (Ctr). The amounts of HIV (p24) and PGRN
expression were determined by western blot analyses. (A) A representative western blot showing suppression of PGRN and increase of p24 following
PGRN siRNA treatment. (B) Pooled densitometry data from four independent experiments showing significant inhibition of PGRN and increase of HIV
(gag p24 express) in microglial cells treated with PGRN siRNA (vs. control siRNA). **P,0.01, ***P,0.001 by paired t-test.
doi:10.1371/journal.pone.0098184.g002
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Our study also shows in vitro-in vivo concordance between

PGRN and TNFa and IP-10 reflecting our published data from

cultured microglia [35]. In vitro, TNFa was the most persistently

and profoundly affected cytokine by PGRN knockdown among

many tested, suggesting their co-regulation following LPS stimu-

lation. IP-10 was the second most significantly co-regulated

cytokine. Although the inducing signal(s) for these cytokines in vivo

are unknown, our human data strengthen the notion that PGRN is

a molecule closely related to TNFa and IP-10 as well as IL-10

(especially in the CSF). For example, of the nine soluble proteins

measured, our analyses showed significant correlations between

CSF PGRN and TNFa, IP-10 and IL-10. CSF VL also showed a

positive correlation with TNFa and IL-10 with trends for IP-10

and PGRN. Analysis of the plasma showed similar findings.

Correlation between plasma PGRN and IP-10 was strongest in

subjects with detectable plasma VLs, indicating the effect of active

HIV replication.

Given the opposing roles the M1 and M2 mediators play in

macrophage PGRN production, we initially asked whether PGRN

levels correlate with those of M1 and M2 cytokines in plasma or

CSF. While our data do not clearly support the role of M1 and M2

cytokines in PGRN production, the association with IL-10

implicates the Th2/M2 response. Previous studies identified that

IL-10 is upregulated in multiple cell types during HIV infection

[66] and that Th2 rather than Th1 cytokine profiles were

generally associated with progressive HIV infection [67–69]. Our

conclusions about Th2 and Th1 profiles are limited by the absence

from our panel of IL-2, the prototype Th1 cytokine produced by T

cells. However, the association between PGRN and CD4+ T-cell

counts indirectly supports a link with IL-2 (fewer CD4+ T-cells,

less IL-2 and more PGRN). We speculate that PGRN production

and the dominant effect of PGRN differs based on whether HIV is

replicating or suppressed. This may reflect in part the cytokine

environment associated with productive and non-productive HIV

infection, with the Th2/M2 dominant environment promoting

PGRN and the Th1/M1 dominant environment suppressing

PGRN production. Our hypothesis based on available data and

literature is shown in Figure 3.

Further studies are needed to determine whether longitudinal

CSF PGRN determinations are useful as a prognostic marker for

HAND in the CSF VL undetectable subgroup. Whether common

PGRN genetic variations associated with significant PGRN

deficiency [24–26] predispose individuals to HAND should also

be determined. Furthermore, given multiple neuronal growth

factors are produced by microglia and macrophages in the CNS

with similar immunologic regulatory mechanisms, future studies

should determine whether multiple growth factor deficiencies

underlie neurocognitive impairment in HAND. Additional studies

support the idea of growth factor deficiency in HAND, as well

[13,70]. Immune therapies that promote growth factor production

or direct growth factor replacement therapies can also be

considered.
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