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Abstract

Background: Randomised controlled trials (RCTs) enrolling patients with sepsis or acute respiratory distress
syndrome (ARDS) generate heterogeneous trial populations. Non-random variation in the treatment effect of an
intervention due to differences in the baseline risk of death between patients in a population represents one form
of heterogeneity of treatment effect (HTE). We assessed whether HTE in two sepsis and one ARDS RCTs could
explain indeterminate trial results and inform future trial design.

Methods: We assessed HTE for vasopressin, hydrocortisone and levosimendan in sepsis and simvastatin in ARDS
patients, on 28-day mortality, using the total Acute Physiology And Chronic Health Evaluation II (APACHE II) score as
the baseline risk measurement, comparing above (high) and below (low) the median score. Secondary risk measures
were the acute physiology component of APACHE II and predicted risk of mortality using the APACHE II score. HTE was
quantified both in additive (difference in risk difference (RD)) and multiplicative (ratio of relative risks (RR)) scales using
estimated treatment differences from a logistic regression model with treatment risk as the interaction term.

Results: The ratio of the odds of death in the highest APACHE II quartile was 4.9 to 7.4 times compared to the lowest
quartile, across the three trials. We did not observe HTE for vasopressin, hydrocortisone and levosimendan in the two
sepsis trials. In the HARP-2 trial, simvastatin reduced mortality in the low APACHE II group and increased mortality in
the high APACHE II group (difference in RD = 0.34 (0.12, 0.55) (p = 0.02); ratio of RR 3.57 (1.77, 7.17) (p < 0.001). The HTE
patterns were inconsistent across the secondary risk measures. The sensitivity analyses of HTE effects for vasopressin,
hydrocortisone and levosimendan were consistent with the main analyses and attenuated for simvastatin.

Conclusions: We assessed HTE in three recent ICU RCTs, using multivariable baseline risk of death models. There was
considerable within-trial variation in the baseline risk of death. We observed potential HTE for simvastatin in ARDS, but
no evidence of HTE for vasopressin, hydrocortisone or levosimendan in the two sepsis trials. Our findings could be
explained either by true lack of HTE (no benefit of vasopressin, hydrocortisone or levosimendan vs comparator for any
patient subgroups) or by lack of power to detect HTE. Our results require validation using similar trial databases.
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Background
Non-random variation in the treatment effect of an inter-
vention due to differences in the baseline risk of death
between patients in a population represents one form of
heterogeneity of treatment effect (HTE) [1, 2]. In critical
care settings, sepsis [3] and acute respiratory distress
syndrome (ARDS) [4] are acute illnesses with significant
clinical and biological heterogeneity [5–8]. Therefore, it is
possible that even in randomised controlled trials (RCTs)
which enrol patients that meet specific sepsis or ARDS
eligibility criteria, there may still be heterogeneity in the
trial populations. This heterogeneity occurs both within a
trial and between trials [9]. The resulting variation in risk
of outcomes may result in clinically important HTE in such
trial populations. This heterogeneity is one possible explan-
ation for indeterminate results in sepsis and ARDS RCT [9,
10]. We use the term indeterminate to illustrate that statis-
tically non-significant results of two-tailed tests suggest
uncertainty in results, as opposed to proof of no difference
between treatments, implied by the term negative [11].
Recently, Iwashyna and colleagues simulated RCTs using

observational cohort data and highlighted that the magni-
tude of HTE may be such that the average benefit (or
harm) from the tested treatment in critical care RCTs may
not be valid for an individual patient meeting the trial eligi-
bility criteria [10]. Therefore, exploring HTE with data from
completed RCTs where the intervention showed no effect
in the overall population, aside from explaining the RCT
results, could also inform future trial design and trial
efficiency by targeting a trial population defined by a
specific baseline measure associated either with the highest
treatment benefit or with treatment response (enrich-
ment) [9, 12].
In this context, we explored the presence of HTE for

vasopressin and hydrocortisone in the VANISH trial [13],
for levosimendan in the LeoPARDS trial [14] and for simva-
statin in the HARP-2 trial [15]. We hypothesised that the
individual patient’s baseline risk of death modifies the direc-
tion and magnitude of the treatment effects of vasopressin
[13], hydrocortisone [13], levosimendan [14] and simva-
statin [15] within these RCTs. A number of recent studies
support our hypothesis. The treatment effect of vasopressin
differed with severity of septic shock in a previous RCT
[16]. The treatment effect of hydrocortisone differed
between trials [17], with potential benefit seen in trials with
higher control group mortality [18–20]. The treatment ef-
fect of simvastatin differed between ARDS sub-phenotypes
[21] and potentially with illness severity in critically ill
patients [22].
Our overall aim was to assess whether the individual pa-

tient’s baseline risk of death modifies the treatment effect
of an intervention (HTE). The Acute Physiology And
Chronic Health Evaluation II (APACHE II) model has
been proposed as a potential model for HTE evaluation

[10, 23, 24]. We assessed HTE using the APACHE II score
[24] as the primary measure of baseline risk, and two sec-
ondary measures based on the APACHE II model: the
APACHE II physiology score (APS-APII), and the APA-
CHE II calculated risk of death as originally proposed by
Knauss and colleagues (R) [24]. The rationale for using
the APS-APII was that the total APACHE II score consists
of non-modifiable risk of death from age and comorbidity,
but the physiological derangement most likely mediates
the treatment effect to outcome relationship [25].
Variation in the absolute risk difference may occur even if
the relative effect of the treatment is the same, whilst the
relative risk associated with the treatment may also vary.
Therefore, we examined absolute and relative measures of
heterogeneity. We also investigated whether any HTE
could be driven by adverse events, as low-risk patients
may have similar exposure to treatment-related harms to
the high-risk patients, but not to the benefits, resulting in
a net harm signal [10]. Furthermore, irrespective of
whether the treatment effects of interventions varied or
remained constant over the range of baseline risk, HTE
may manifest due to differences in treatment-related
adverse events over the range of baseline risk.

Methods
Study approvals and RCT datasets
We obtained ethics approval for this study (18/LO/1079).
VANISH was a 2 × 2 factorial, double-blind, RCT in adult
patients with sepsis who required vasopressors, in 18 gen-
eral adult intensive care units (ICUs) in the United King-
dom (UK) [13]. In the VANISH trial [13], patients were
randomly allocated to vasopressin and hydrocortisone (n =
101), vasopressin and placebo (n = 104), norepinephrine
and hydrocortisone (n = 101) or norepinephrine and pla-
cebo (n = 103). Patients only received the second study
drug (hydrocortisone/placebo) if the maximum infusion of
the first study drug (vasopressin/norepinephrine) had been
reached. Therefore, in the hydrocortisone analysis, only
participants who received the study drug were included
(hydrocortisone n = 148, placebo n = 148); all remaining
analyses are intention-to-treat. The 28-day mortality was
63/204 (30.9%) of patients in the vasopressin group and
56/204 (27.5%) patients in the norepinephrine group (dif-
ference = 3.4% [95% CI, − 5.4–12.3%]) [13]. LeoPARDS was
a two-arm parallel group, double-blind, placebo-controlled
RCT in adult patients with sepsis who required vasopres-
sors, in 34 ICUs in the UK [13]. In LeoPARDS trial [14],
patients were randomised to receive either levosimendan
(n = 258) or placebo (n = 257) over 24 h in addition to
standard care. The 28-day mortality was 89/258 (34.5%) in
the levosimendan group and 79/256 (30.9%) in the placebo
group (difference = 3.6% [95% CI, − 4.5–11.7%]) [14].
HARP-2 was a two-arm parallel group, double-blind,
placebo-controlled RCT in adult patients within 48 h after
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the onset of ARDS in 40 ICUs in the UK and Ireland [15].
In the HARP-2 trial [15], patients were randomised to
receive either once-daily simvastatin or identical placebo
tablets enterally for up to 28 days. The 28-day mortality
was 57/259 (22.0%) in the simvastatin group and 75/280
(26.8%) in the placebo group (risk ratio = 0.8 [95% CI, 0.6
to 1.1]) [15].]

Statistics
The primary analysis examined HTE for 28-day mortality
with APACHE II score as the measure of baseline risk,
comparing treatment effect in patients above (high) and
below (low) the overall median score of 25. As secondary
analyses, we examined two other baseline risk measures,
APS-APII and R. Distributions of these baseline risk
measures and mortality were described with histograms,
and the discriminatory performance was assessed using the
area under the receiver operating characteristic curve
(AUC). We estimated the extreme quartile odds ratio
(EQuOR, the ratio of the odds of death in the highest vs.
lowest quartile for risk) as an estimate of how the risk of
death varies between patients in the same trial [26]. Forest
plots illustrated the absolute risk difference (RD) and rela-
tive risk (RR) for 28-day mortality by treatment group
comparing high and low APACHE II groups. HTE was
quantified on both the absolute and relative scales via addi-
tive and multiplicative interactions respectively. The differ-
ence in the RD and associated 95% confidence interval (CI)
was estimated assuming a linear model for the probability
of death, with treatment, a binary indicator for APACHE II
subgroup, and the interaction between them as covariates,
using robust standard errors. The ratio of the RR and 95%
CI was estimated assuming a log-binomial model with the
same covariates. We then investigated heterogeneity of
harms using forest plots by APACHE II subgroup similar
to the primary analysis. Interactions were not estimated for
heterogeneity of harms due to the low number of events.
For the HARP-2 trial, only the primary baseline risk meas-
ure of the total APACHE II score was available.

Sensitivity analyses
Four sensitivity analyses for the main baseline risk measure
(APACHE II score) were performed. First, we used hospital
mortality as the outcome instead of at 28 days, as APACHE
II score was originally devised as a prediction tool for
hospital mortality. Second, we investigated the potential
impact of missing data on the results. In the VANISH trial,
there were 47 patients who had at least one element of the
acute physiology score missing, and 61 patients in the
LeoPARDS trial. In the main analysis, normal scores were
assumed for these elements, as for the main trial [13, 14].
In the HARP-2 trial, 66 patients had missing total APA-
CHE II scores and were omitted from the main analysis
but displayed in the forest plot. Missingness occurred

pre-randomisation and hence is independent of the treat-
ment effect but may affect the precision of the results. In
the sensitivity analysis, we assumed patients with missing
data were (i) equally likely to be in the high-risk group as
those with complete data, (ii) 10% more likely and (iii) 10%
less likely. APACHE II category was imputed 20 times
under these assumptions, and the difference in RD and
ratio of RR computed as for the main analysis, combining
results across imputations using Rubin’s rules. A third
sensitivity analysis was performed by recalibrating the
APACHE II risk prediction using the whole RCT cohort, as
internally developed risk models using both treatment arms
are preferred to models developed on the control popula-
tion, as highlighted by Burke et al. [27]. A logistic regres-
sion model for 28-day mortality was constructed with the
following covariates: APACHE II points from each acute
physiology component, age points, chronic health points,
post-emergency surgery and diagnostic category weight.
The resulting prediction was used as a measure of baseline
risk, assessing HTE as in the main analysis. To avoid spuri-
ous associations from categorisation of APACHE II score
[28], we performed a fourth sensitivity analysis, by treating
APACHE II as a continuous variable in a logistic regression
model. Relative HTE was quantified by the interaction
between APACHE II score and treatment, expressed as a
ratio of odds ratios. Additive HTE was illustrated by
plotting the estimated absolute difference in mortality
between treatment groups across the range of APACHE II.

Results
Baseline risk of 28-day mortality
The 28-day mortality, between the intervention and control
arms, in the VANISH, LeoPARDS and HARP-2 trials was
not significantly different (Table 1). The illness severity
(using the total APACHE II score) was lower in the
HARP-2 trial, compared to those in the VANISH and
LeoPARDS trials (Fig. 1). The EQuOR highlighted signifi-
cant heterogeneity of risk of death in all three RCTs for all
three risk measures.

VANISH trial HTE assessment
The 28-day mortality increased in the vasopressin and in
the norepinephrine group, with increasing baseline risk
measures (Fig. 1). For the primary analysis with APACHE
II score as baseline risk of death measure, there was no evi-
dence of HTE for vasopressin in either absolute terms (risk
difference for low APACHE II 0.02 (− 0.09, 0.13) and high
APACHE II 0.05 (− 0.08, 0.19); difference in risk difference
0.04 (− 0.14, 0.21)) or relative terms (relative risk for low
APACHE II 1.09 (0.64, 1.86) and high APACHE II 1.15
(0.08, 1.64); ratio of relative risk 1.05 (0.55, 2.00)) (Fig. 2).
For the secondary risk measures, the estimates of HTE for
vasopressin were larger with wider CI for APS-APII (Fig. 3)
and smaller in magnitude for R (Fig. 4).
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For the primary analysis with APACHE II score as
baseline risk of death measure, there was no evidence of
HTE for hydrocortisone in either absolute terms (risk
difference for low APACHE II 0.02 (− 0.12, 0.17) and
high APACHE II 0.06 (− 0.10, 0.21); difference in risk
difference 0.03 (− 0.18, 0.25) or relative terms (relative
risk for low APACHE II 1.11 (0.62, 1.99) and high
APACHE II 1.15 (0.79, 1.67); ratio of relative risk
1.04 (0.52, 2.08)). For the secondary risk measures,
the estimates of HTE for hydrocortisone were similar
for APS-APII (Fig. 3) and larger in magnitude for R
(Fig. 4).

LeoPARDS trial HTE assessment
The 28-day mortality increased in the levosimendan and
in the placebo group, with increasing baseline risk mea-
sures (Fig. 1). For the primary analysis with APACHE II
score as baseline risk of death measure, there was no
evidence of HTE for levosimendan in either absolute
terms (risk difference for low APACHE II 0.05 (− 0.04,
0.15) and high APACHE II 0.04 (− 0.08, 0.16); difference
in risk difference − 0.02 (− 0.17 to 0.14)) or relative
terms (relative risk for low APACHE II 1.34 (0.78, 2.31)
and high APACHE II 1.09 (0.84, 1.41); ratio of relative
risk 0.81 (0.44 to 1.48)) (Fig. 2). For the secondary risk
measures, the estimates of HTE for levosimendan were
larger for APS-APII (Fig. 3) and in the opposite direc-
tion for R (Fig. 4).

HARP-2 trial HTE assessment
The 28-day mortality increased in the simvastatin group
and in the standard care group, with increasing baseline
risk measures (Fig. 1). For the primary analysis with
APACHE II score as baseline risk of death measure, we
observed HTE for simvastatin in absolute terms (risk
difference for low APACHE II − 0.15 (− 0.22, − 0.07) and
high APACHE II 0.19 (− 0.01, 0.39); difference in risk
difference 0.34 (0.12, 0.55) (p = 0.02)) and in relative
terms (relative risk for low APACHE II 0.45 (0.28,
0.72) and high APACHE II 1.61 (0.95, 2.71); ratio of
relative risk 3.57 (1.77 to 7.17)). Simvastatin reduced
mortality in the low APACHE II group and increased
mortality in the high APACHE II group (Fig. 2). As
raw data APACHE II score data were not available,
we have not reported any secondary risk measures for
the HARP-2 trial.

Serious adverse events and baseline risk
We plotted the proportions of serious adverse events
by low and high APACHE II groups in each trial, to
explore whether the pattern of adverse event distribu-
tion could explain any HTE in mortality. In all three
RCTs, both in the intervention and control trial arms,
there was no pattern in serious adverse events that
could explain HTE in mortality (Additional file 1:
Figure S1).

Table 1 Trial level summary characteristics

Shaded regions in the HARP-2 trial represent lack of raw data to derive APS-APII score or R
IQR interquartile range, AUC area under the receiver operating characteristic curve, EQuOR extreme quartile odds ratio, (S)AE (serious) adverse events, APACHE II
Acute Physiology And Chronic Health Evaluation II, APS-APII Acute Physiology Score from APACHE II, R risk of death calculated from APACHE II
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Fig. 2 Forest plots for the risk difference and risk ratio comparing 28-day mortality in treatment and control, by trial and APACHE II low and high groups

Fig. 1 Histogram showing distribution of APACHE II score by 28-day mortality and trial
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Sensitivity analyses
Results from sensitivity analyses were consistent with
the main analyses for the VANISH and LeoPARDS trials
(Additional file 1: Table S1, Table S2, Figure S2, Figure
S3 and Figure S4). HTE effects were attenuated in the
sensitivity analyses for the HARP-2 trial under different
assumptions for the missing data (e.g. ratio of relative risk
was 2.86 (1.47, 5.57) when we assumed that patients with
missing APACHE II data were more likely to be high risk;
all other results were less attenuated Additional file 1:
Table S1). Differences were also smaller when hospital
mortality was used as the outcome (difference in risk dif-
ference 0.25 (0.03, 0.48); ratio of RR 2.34 (1.31, 4.18), Add-
itional file 1: Figure S1) and when HTE was assessed
across the continuous range of APACHE II score (ratio of
odds ratio for a 5-point increase in APACHE II 1.33 (0.93,
1.90) Additional file 1: Table S2 and Figure S4).

Discussion
We assessed whether HTE could contribute to the in-
determinate results in three recent ICU RCTs, using
multivariable baseline risk of death models, which in-
cluded well-established risk factors for acute mortality
for sepsis and ARDS as covariates. There was consid-
erable within-trial variation in the baseline risk of
death in all three RCTs. We did not observe HTE for
vasopressin, hydrocortisone and levosimendan in the
two sepsis trials, though there was evidence of differ-
ential treatment effect in the HARP-2 trial for ARDS
with low risk of death sub-population benefitting the
most. We observed that detection of HTE in RCTs
may be influenced by the baseline risk model specifi-
cation, as illustrated by differences in HTE effects
seen with different models reported using the LeoP-
ARDS trial data.

Fig. 3 Forest plots for the risk difference and risk ratio comparing 28-day mortality in treatment and control, by trial and APS-AP-II low and
high groups

Fig. 4 Forest plots for the risk difference and risk ratio comparing 28-day mortality in treatment and control, by trial and R low and high groups
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Explanation of key findings
There are a number of possible reasons why we did not
observe HTE consistently in all our analyses. All three tri-
als we assessed have many features of explanatory trials
[29], which by their design limit HTE in comparison to
pragmatic trials, such as through narrower eligibility cri-
teria, intensity of follow-up and non-mortality primary
outcomes. Therefore, demonstrable HTE is less likely in
these trials, though its evaluation remains important. Our
findings may be true in that HTE may be less marked in
sepsis and ARDS as mortality may be driven by
non-modifiable risk factors such as older age and presence
of comorbid conditions, alongside illness attributable risk,
generating many “minimal contributory causes” of mortal-
ity [30], when compared to illnesses such as retroviral dis-
ease [31]. It could be that the effects of treatments we
assessed on mortality are both small and with limited vari-
ability across baseline risk of death resulting in minimal
HTE. Another explanation for not observing HTE may be
that there is no true treatment effect difference between
subgroups enriched on prognosis with APACHE II score.
Given the sample size in the trials assessed, we may only
have power to detect large interaction effects, which re-
quires either a large treatment effect in one or more sub-
groups, opposing treatment effects between subgroups or
differential adverse event risk between subgroups.

Comparison to published literature
A key comparison to consider is the contrasting results
with RCT simulations by Iwashyna and colleagues [10].
Their simulations assumed that the trial participants’ odds
of 30-day mortality will be influenced by the severity of
acute respiratory failure, comorbid conditions, the treat-
ment’s reduction in mortality from the primary illness and
the treatment’s fatal adverse effect rates. Furthermore, Iwa-
shyna and colleagues assumed constant relative treatment
effects, constant harms and mortality patterns predicted by
their simulation model. We used 28-day mortality, for our
primary analysis. We considered baseline risk of death as a
function of acute illness severity using the total APACHE II
score, which is in line with the conceptual arguments put
forward by Kent and colleagues [1] that HTE emerges from
the risk of outcome (28-day mortality in our study), the risk
of treatment-related harm and direct treatment-effect
modification. Importantly, the data in our trials do not fol-
low the constant relative treatment effects, constant harms
and therefore the mortality patterns described by Iwashyna
and colleagues [10].
Recently, Semler and colleagues reported a pragmatic,

cluster-randomised, multiple-crossover trial of saline
versus balance crystalloids in critically ill patients, with no
difference in primary outcome of major adverse kidney
events within 30 days (MAKE30), a composite of in-hos-
pital death, new receipt of renal-replacement therapy and

persistent renal dysfunction [32], but reported presence of
HTE for this outcome with a multivariable model specific-
ally calibrated for this outcome [33]. In contrast, our ana-
lytic strategy ascertained whether the observed treatment
effect differed by the pre-randomisation baseline risk of
death multivariable model (APACHE II score), which
helped us to compare multiple treatments in critically ill
patients with sepsis or ARDS.

Strengths and weakness
We explored heterogeneity in absolute and in relative
treatment effects, in sepsis and ARDS, for four different
treatments and using three different measures of base-
line risk. The primary baseline risk measure, APACHE
II, is an established, validated predictor of mortality in
this population. Two variations on this measure were in-
vestigated to check the consistency of the results, along
with several sensitivity analyses. We used a composite
risk score (APACHE II) for its superior performance for
baseline risk estimation, as highlighted by Kent and col-
leagues [1] and a recommendation for future studies on
HTE assessment [10]. There were insufficient numbers
to examine HTE across smaller groups (e.g. quartiles).
None of the RCTs included in this study had 28-day
mortality as the primary outcome; it is possible that we
were underpowered to detect HTE. The primary out-
comes were not suitable for HTE analysis as they were
continuous rather than binary and without an appropri-
ate baseline measure, though the existing HTE frame-
work could be adapted for some continuous outcomes,
such as change from baseline organ dysfunction.

Implications of research
Aside from the ARDS or sepsis illness characteristics, it is
likely that biological mechanisms determining differences
in treatment effect will vary with the intervention tested.
Therefore, using a generic physiology-based multivariable
model such as APACHE II with biomarkers that provide
both prognostic and predictive enrichment or intervention-
specific predictive enrichment coupled may be a better
approach to defining a study population. For example, an
ARDS sub-population with greater inflammation and
higher mortality was more likely to benefit from simvastatin
[21, 34], and aside from severity of septic shock, the treat-
ment effect of vasopressin was associated with biological
differences within the trial population [16, 35]. Similarly,
biomarkers derived from whole blood transcriptomics
could help enrich septic shock patients for corticosteroid
therapy [36–38]. It is plausible that when HTE is assessed
for an intervention using data from a single trial, we are un-
likely to detect it unless HTE effects are large. This gener-
ates an argument to assess HTE using trials of the similar
treatment-condition combination or of the same condition
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and broader group of treatments with similar enough
mechanism of treatment effect, or consider intervention-
specific multivariable models. As suggested by Iwashyna
and colleagues, perhaps HTE assessment should form part
of a priori analyses plans in future clinical trials. As HTE is
about the variation in effectiveness, standardising the base-
line risk measure between RCTs, including HTE assess-
ment as a priori analyses, ensuring that the outcome used
in HTE analyses is patient-centered (such as mortality) and
incorporating the proposals within the Core Outcome
Measures in Effectiveness Trials guidelines will enable pool-
ing of HTE analysis across future trials [39].

Conclusions
We assessed HTE in three recent ICU RCTs, using mul-
tivariable baseline risk of death models. There was con-
siderable within-trial variation in the baseline risk of
death. We observed potential HTE for simvastatin in
ARDS, but no evidence of HTE for vasopressin, hydro-
cortisone or levosimendan in the two sepsis trials. Our
findings could be explained either by true lack of HTE
(no benefit of vasopressin, hydrocortisone or levosimen-
dan vs comparator for any patient subgroups) or by lack
of power to detect HTE. Our results require validation
using similar trial databases.

Additional file

Additional file 1: Table S1. Results from multiple imputation analysis;
for patients with missing APACHE II, we assumed the proportion in the
high-risk category (APACHE II ≥ 25) was either the same as the trial partic-
ipants with complete data, 10% higher or 10% lower. Table S2.
Treatment-risk interaction using continuous APACHE II from logistic re-
gression analysis of 28-day mortality. Figure S1. Forest plots for the risk
difference and risk ratio comparing related serious adverse events in
treatment and control, by trial and APACHE II subgroup. Figure S2. For-
est plots for the risk difference and risk ratio comparing hospital mortality
in treatment and control, by trial and APACHE II subgroup. Figure S3.
Forest plots for the risk difference and risk ratio comparing related serious
adverse events in treatment and control, by trial and APACHE II sub-
group. Figure S4. HTE assessment for APACHE II score as a continuous
variable. Figures show the estimated treatment effect with 95% confi-
dence interval bands from regression models for 28-day mortality includ-
ing a treatment × APACHE II score interaction for Figure S4A: VANISH
Vasopressin; Figure S4B: VANISH Hydrocortisone; Figure S4C: LeoPARDS
and Figure S4D: HARP-2. (DOCX 577 kb)
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