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Background: Intersectionality theoretical frameworks have been 
increasingly incorporated into quantitative research. A range of 
methods have been applied to describing outcomes and disparities 
across large numbers of intersections of social identities or positions, 
with limited evaluation.
Methods: Using data simulated to reflect plausible epidemiologic 
data scenarios, we evaluated methods for intercategorical intersec-
tional analysis of continuous outcomes, including cross-classifica-
tion, regression with interactions, multilevel analysis of individual 
heterogeneity (MAIHDA), and decision-tree methods (classification 
and regression trees [CART], conditional inference trees [CTree], 
random forest). The primary outcome was estimation accuracy of 
intersection-specific means. We applied each method to an illustra-
tive example using National Health and Nutrition Examination Study 
(NHANES) systolic blood pressure data.
Results: When studying high-dimensional intersections at smaller sam-
ple sizes, MAIHDA, CTree, and random forest produced more accu-
rate estimates. In large samples, all methods performed similarly except 
CART, which produced less accurate estimates. For variable selection, 
CART performed poorly across sample sizes, although random forest 
performed best. The NHANES example demonstrated that different 
methods resulted in meaningful differences in systolic blood pressure 
estimates, highlighting the importance of selecting appropriate methods.

Conclusions: This study evaluates some of a growing toolbox of meth-
ods for describing intersectional health outcomes and disparities. We 
identified more accurate methods for estimating outcomes for high-
dimensional intersections across different sample sizes. As estimation is 
rarely the only objective for epidemiologists, we highlight different out-
puts each method creates, and suggest the sequential pairing of methods 
as a strategy for overcoming certain technical challenges.
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Health equity; Social determinants of health; Biostatistics
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Descriptive studies are integral to epidemiology, to iden-
tify health inequities and inform further study. Methods 

advances in recent decades have focused heavily on analytic 
epidemiology and causal modeling.1,2 Methods for descriptive 
epidemiology have remained comparatively stagnant, often 
presented as “Table 1” means or percentages for a sample or 
population, or cross-tabulated across a small number of cate-
gories. An ongoing focus on health disparities—amplified by a 
need to assess larger numbers of intersections of social identi-
ties or positions and augmented by innovations in data analytic 
methods—suggests it is time to focus on advancing descriptive 
statistics, a foundational part of epidemiologic research.

Increasingly incorporated into quantitative health 
research,3 intersectionality is an analytic sensibility rooted 
in Black feminist theory that acknowledges that individuals’ 
locations at intersections of multiple social identities or posi-
tions (e.g., gender, race, class) result in unique lived experi-
ences of privilege and oppression.4,5 Six core tenets have been 
identified,6 and recognized as relevant for population health 
research7: social inequality, power, social context, relational-
ity, complexity, and social justice. Intersectional understand-
ings of relationality, social inequality, and power have the 
potential to transform descriptive statistical approaches in 
epidemiology, although all tenets may play roles in concep-
tualization and interpretation, and in shaping broader analytic 
research. Under intersectionality, the impact of social posi-
tions is not assumed to be independent; rather, the interplay 
of power embedded in social hierarchies results in each being 
shaped by the others, such that experiences (and health) at 
each intersection can be constituted in intersection-specific 
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ways. This reflects the core idea of relationality or intercon-
nectedness, specifically the relational idea of coformation, 
that coformed categories may no longer be divisible into their 
parts.8 Just as sociodemographic variables of interest in health 
equity research typically represent social positions bound up 
in historical and contextual power relations, their coformation 
is driven by social power. In quantitative research, intersec-
tionality undercuts the often errant assumption that effects 
of social identities or positions are not coformed and can be 
added together to estimate an outcome (as in main effects 
regression). For instance, we cannot assume to understand the 
health of Black immigrant men by summing average popula-
tion effects of being Black, an immigrant, and male.

Intercategorical intersectional research approaches focus 
on experiences and outcomes across intersections,9 and thus 
are particularly applicable to epidemiologic studies aiming 
to describe health and identify disparities, including at infre-
quently studied intersections.10 Although epidemiologic con-
vention holds that heterogeneity of effects should be analyzed 
only with prior evidence or justification, intersectionality pro-
vides a theoretical rationale for switching this default, avoiding 
assumptions of homogeneity by estimating outcomes across 
intersections. Although the original convention is rooted in 
concerns regarding hypothesis testing and inflated total type 1 
error, our primary objective is, instead, valid outcome estimates 
for coformed intersectional population groups. Intersectional 
models lead to different outcome estimates compared with non-
intersectional models that assume effects are purely additive.11

When applying an intersectional framework to descrip-
tive studies, there are alternative approaches for data analysis 
beyond conventional methods of regression with interaction 
terms or simple cross-classification (reporting intersection-
specific unadjusted means). A systematic review of methods 
in quantitative intersectionality research identified multi-
level analysis of individual heterogeneity and discriminatory 

accuracy (MAIHDA) and decision trees as novel methods 
used to assess health across high-dimensional intersections 
formed from more than two or three social identities/posi-
tions.3 Although new, MAIHDA has been suggested as the 
“gold standard” for this purpose.12,13 Nonparametric decision-
tree methods use covariates to create groups with similar out-
comes by partitioning data according to a set of decision rules. 
They do not provide standard errors for group estimates, an 
inherit limitation for epidemiologic analyses. However, they 
allow many covariates and any level of interaction without 
prior specification, and can be used for variable selection, to 
identify a set of covariates best suited to predict an outcome.

This study evaluates three statistical and three decision-
tree methods for estimating health outcomes across a large 
number of intersections: regression with interaction terms, 
cross-classification, MAIHDA, classification and regres-
sion trees (CART), conditional inference trees (CTree), and 
random forest. This evaluation focuses on descriptive, non-
causal analyses with continuous outcomes. These methods, 
while not unique to intersectionality analyses, are able to 
independently estimate mean outcomes for coformed inter-
sections. We first present a simulation study evaluating esti-
mation accuracy of intersection-specific outcome means for 
all methods, and performance in variable selection for deci-
sion-tree methods. We then present an application of each 
method using National Health and Nutrition Examination 
Survey (NHANES) 2015 to 2018 data on systolic blood pres-
sure (SBP). Although there has been debate on whether all 
intersections are of sufficient value for study,10,14 our study 
will assume interest in estimating outcomes for all intersec-
tions formed across a set of social positions, as is common 
practice in intersectional analyses using population data. 
Notably, although our focus is intersectionality and health 
inequities, the results may also be useful in other epidemio-
logic contexts where outcome heterogeneity is assessed.

TABLE 1.  Distributions of Variables in Data Generation Models 1 and 2

Variable Analogous Social Position 

Model 1: Categorical Inputs Model 2: Mixed Inputs (Categorical And Continuous)

Type Distribution Type Distribution

X1 Income Categorical P(X1=0) = 0.25

P(X1=1) = 0.25

P(X1=2) = 0.25

P(X1=3) = 0.25 

Continuous (split in quartiles to 

create intersections for estimation)

Mean = 0, Variance = 1

X2 Racialization (person of color, 

non-POC) 

Binary P(X2=1) = 0.2 Binary P(X2=1) = 0.2 

X3 Sex/gender (male, female) Binary P(X3=1) = 0.5 Binary P(X3=1) = 0.5 

X4 Education (completed 

postsecondary, did not complete)

Binary P(X4=1 | X3=0) = 0.4

P(X4=1 | X3=1) = 0.7

Binary P(X4=1 | X3=0) = 0.4

P(X4=1 | X3=1) = 0.7

X5 Immigrant status (immigrant, 

nonimmigrant) 

Binary P(X5=1) = 0.25 Binary P(X5=1) = 0.25 

X6 Age Categorical P(X6=0) = 0.33 

P(X6=1) = 0.33

P(X6=2) = 0.33

Continuous (split in tertiles to create 

intersections for estimation)

Mean = 0, Variance = 1 
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SIMULATION STUDY

Simulation Methods
Simulation Process

We chose variable and sample size characteristics to 
reflect published research studying high-dimensional intersec-
tions.11,12,15 In data generation model 1, all input variables were 
categorical; model 2 included categorical and continuous vari-
ables (distributions of input variables are provided in Table 1). 
Formulas to generate the continuous outcome Y were as follows:

Model 1 (Categorical inputs):

Y = (if  X1 = 1) + (if  X1 = 2) + (if  X1 = 3) + X2 

 
1.1 1.2 1.3 2β β β β

      + X3 + X4 + X5 + (if  X1 = 2 & X2 = 1)

      + (if  
3 4 5 6

7

β β β β
β XX1 = 3& X2 = 1) + X3* X4 * X5

      + e(mean = 0, SD = 1)
8β

Model 2 (Mixed inputs):

Y = X1 + X2 + X3 + X4 + X5 

      + X1* X2 (if  X1 >
1 2 3 4 5

6

β β β β β
β 11& X2 = 1) 

      + X3* X4 * X5 + e(mean = 0, SD = 1)7β

X1 and X6 were both multicategorical or continuous in 
model 1 and model 2, respectively, and all other variables were 
binary. We simulated each model over 1,000 replications for 
four sample sizes (N = 2,000, 5,000, 50,000, 200,000). For 
each replication, effect sizes for X1 to X5 were selected from a 
truncated normal distribution (SD = 1) between 0.06 and 1.94, 
or –0.06 and –1.94. We determined minimum effect size by a 
power analysis (see eAppendix 1; http://links.lww.com/EDE/
B901 for details). X6 had no effect on the outcome.

Each simulated model resulted in 192 intersections, 
(4*2*2*2*2*3 = 192), for which outcome Y was esti-
mated by each method. Analyses were conducted using 
R software version 3.6.1 (R Foundation for Statistical 
Computing, Vienna, Austria).16 Full simulation code 
is available online (https://github.com/m-mahendran/
methods_for_intersectionality_simulation).

Description of Methods
Conventional Statistical Approaches

For a nonintersectional comparison, we included a 
main effects linear regression with variables X1 to X6. 
Cross-classification was the descriptive approach of taking 
the outcome mean for each intersection, with no statisti-
cal adjustments. The correctly specified regression model 
included all main effects and only the interactions from the 
true model, X1*X2 and X3*X4*X5 (including lower-level 
terms X3*X4, X4*X5, and X3*X5). This demonstrates a 
best-case nonrealistic scenario, where relevant interaction 
terms are known a priori. In contrast, the saturated regression 

model included all possible interaction terms. We emphasize 
that we included interaction terms to improve intersection-
specific estimation rather than to identify statistically sig-
nificant interactions.

MAIHDA
The MAIHDA working model can be represented as

    

 

y = + + e

Level 2 ~ N(0, ) 

Level 1 e

ij j 0j 0ij

0j
2

0

0ij

βγ µ

µ σ µ 
  ~ N(0, )2

e0σ

where i is each individual in intersection j, γj repre-
sents a vector of the intercept and main effect predictors, 
and β is a vector of the parameter values.12 Fixed effects are 
assigned to each social position, with no interaction terms, 
and random intercepts for each intersection (μ0j). The term 
(e0ij) is for individual-level error. All individuals in the same 
intersection were assigned the same random intercept, and 
the same fixed effects (variables X1 to X6). Published appli-
cations use Bayesian models with uninformative priors. 
Due to computational power and time restraints in running 
1,000 simulations for multiple scenarios, this simulation 
used frequentist analysis. A brief simulation in eAppendix1; 
http://links.lww.com/EDE/B901 demonstrates that Bayesian 
and frequentist models yield similar results, given the use 
of uninformative priors. Analysis was conducted using the 
R-package “lme4.”17

Decision trees
For CART, the variable used to split the data is selected 

by a predetermined criterion (here, reducing the sum of 
squares).18 Tenfold cross-validation was performed to select 
the complexity parameter with minimal cross-validation error. 
CTree selects covariates using univariate regression models, 
and then finds a variable split with the strongest association 
with the outcome, using an alpha of 0.05. For both methods, 
this process is repeated iteratively for each resulting subgroup, 
until a predetermined stopping criterion is satisfied. Default 
minimum node size was 20. For random forest, multiple 
decision trees are built from bootstrapped subsamples and 
aggregated to create predictions. The splitting criterion was 
response variance (node impurity), with a threshold improve-
ment value of 0.05. Models were built with 500 trees, tuned 
using the parameter mtry by a step factor of 1, and the default 
minimum node size was 5. The variable importance measure, 
which assesses variables for their quantitative relevance to 
the outcome, was based on reductions in impurity. Analyses 
for CART, CTree, and random forest were respectively run 
using R-packages “rpart”,19 “partykit”,20 and “tuneRanger”21 
(selected for its quick implementation and built-in tuning 
function).

http://links.lww.com/EDE/B901
http://links.lww.com/EDE/B901
https://github.com/m-mahendran/methods_for_intersectionality_simulation
https://github.com/m-mahendran/methods_for_intersectionality_simulation
http://links.lww.com/EDE/B901


Copyright © 2022 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

	 Epidemiology  •  Volume 33, Number 3, May 2022Mahendran et al.

398  |  www.epidem.com	 © 2022 The Author(s). Published by Wolters Kluwer Health, Inc.

Outcomes
Primary Objective: Evaluation of Intersection-Specific 
Estimation Accuracy

Ground truth was defined as the outcome mean within 
each intersection. Accuracy was then evaluated by mean 
squared error (MSE),

MSE =
1

n
(Y -Y ) ,i ii=1

n 2
ˆ∑

where n was 192 (reflecting the 192 intersections), Ŷi
 

was the estimated mean for intersection i, and Yi  was the true 
population mean for intersection i, taken from the data gener-
ation formulas. As cross-classification and MAIHDA cannot 
produce estimates for intersections with no respondents, MSE 
calculations for these methods excluded up to 13 intersections 
at N = 2,000, and up to 3 at N = 5,000. Note that accuracy 
was calculated at the population level (for each intersection), 
rather than the individual level, so that each intersection was 
equally weighted. In the context of intersectionality and health 
equity, this emphasized methodologic fairness by avoiding 
default prioritation of accuracy for numerically larger inter-
sections, as multiply marginalized intersections are often less 
populated.

Secondary Objective: Identification of Individual 
Social Identity/Position Variable Relevance

We define variable selection for descriptive intersectional 
research as a tool to refine a set of social positions to include 
in analysis, by identifying the variables most quantitatively 
relevant to the outcome, a goal that differs from hypothesis 
testing. For CART and CTree, we assessed variable selection 
by the percentage of simulation replicates where each variable 
was used as a splitting variable. An ideal method would split 
on X1 to X5 100% of the time, and never on X6, to correctly 
identify the presence or absence of their simulated effects. We 
also presented the mean number of leaves or subgroups in the 
tree. We assessed variable selection for random forest using 
the average variable importance measure, as models produce 
no single splitting pattern; ideally X6 would have the lowest 
mean variable importance measure values. Variable selection 
was not assessed for single-level regression and MAIHDA, as 
they do not produce singular measures of variable relevance.

Simulation Results
Estimation Accuracy

Accuracy is summarized in Figure 1, via. boxplots pre-
senting the distribution of the estimation MSE over 1,000 
simulations. Nonintersectional main effects regression had 
poorer estimation accuracy compared with the majority of 
the intersectional methods, especially at larger sample sizes. 
Among intersectional methods, for smaller sample sizes, the 
least accurate estimators were CART, regression (saturated 
model), and cross-classification, and the best performers were 

MAIHDA, correctly specified regression, and random forest. 
At larger sample sizes, CART had the highest estimation error, 
although all other intersectional methods produced an MSE 
near zero. One exception is that for models with mixed inputs 
at N ≥ 50,000, the single-level regression methods performed 
slightly worse than other non-CART intersectional methods.

Individual Social Identity/Position Variable 
Relevance

Variable selection results are presented in Table  2 for 
CART and CTree, and Table 3 for random forest. CART split 
less frequently on X1 to X5 than CTree, but CTree was more 
likely to split on X6 than CART, this increasing with increas-
ing sample size. Although CTree split on all relevant variables 
the majority of the time at N = 2,000, the number of leaves 
indicated that not all relevant subgroups were identified. For 
variables X1 to X5 there were 64 possible unique subgroups, 
and CTree identified an average of only 24 at N = 2,000. For 
random forest, X6 consistently had the lowest variable impor-
tance measure in the categorical inputs scenario. However, for 
the mixed inputs model at N = 2,000, variables X2 to X6 had 
similar importance values; which variable was least important 
was difficult to distinguish.

EXAMPLE NHANES ANALYSIS—SYSTOLIC 
BLOOD PRESSURE

As an illustrative example of how results differ across 
methods, we present a descriptive analysis using 2015–2018 
NHANES data to identify health disparities in SBP, an impor-
tant risk factor for cardiovascular disease.22 Differences in SBP 
across US population groups are well documented,23 allowing 
comparison between results and expectations. Our example 
also demonstrates how methods can be used sequentially for 
data-driven variable selection and intersection estimation. In 
practice, intersectional approaches would incorporate existing 
theoretical or community knowledge into variable selection, 
and applications of such a data-driven sequential approach 
may be limited. Our evaluation will focus on methods perfor-
mance, but our discussion will elaborate on balancing quanti-
tative methods with theoretical considerations.

Example Analysis Methods
Data

NHANES uses a complex multistage probability sam-
ple of the US population.24 Ethical review was not required as 
data are publicly available. SBP (mm Hg) was calculated by 
averaging up to three measures. Eight social position variables 
were used to potentially form the intersections (Table 4). After 
removal of missing data, sample size was N = 9,124.

Analysis Methods
We first used the three decision-tree methods for vari-

able selection. For random forest, in addition to the impu-
rity-based variable importance measures, we calculated 
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permutation-based variable importance measures and impor-
tance p values,25 to provide a more interpretable measure 
for decision-making. For the purposes of our analysis, we 
then selected the four variables with the highest impurity-
based variable importance measure to form intersections. We 
applied each method (excluding correctly specified regression 
as ground truth is unknown) to estimate mean SBP for each 
intersection. Method-specific outputs are provided in eAppen-
dix 2; http://links.lww.com/EDE/B901.

Example Analysis Results
Variable selection results are summarized in Table  4. 

Similar to our simulation, CART was a more conservative 
estimator of variable relevance than CTree. We then used age, 
race, gender, and education to form 60 intersections.

Results in Figure  2A–C present the estimated 
unweighted mean SBP for each of the 60 intersections, by 
each method. Although effects were similar between some 
intersections, for other intersections the main effects analysis 

FIGURE 1.  A,B, Boxplots of the MSE of intersection estimations for four different sample sizes (graph excludes outliers): (A) 
Categorical inputs and (B) Mixed inputs. Methods include three single-level regression models, the MAIHDA, cross-classification, 
and three tree-based methods: CART, CTree, and random forest. CART, classification and regression trees; CTree, conditional 
inference trees; MAIHDA, multilevel analysis of individual heterogeneity and discriminatory accuracy; MSE, mean squared error.

http://links.lww.com/EDE/B901
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under- or overestimated effects compared with the intersec-
tional methods. Outcome estimates also varied across inter-
sectional methods. For example, for Black adults age 40–59 
with a high-school education or less, choice in method resulted 
in an approximately 10 mm Hg difference in predicted SBP, 
a clinically significant difference.22 For cross-classification, 
MAIHDA, random forest, and regression, the highest SBP 
group was consistent: Black females age 60+ with a high-
school education or less.

CART analysis resulted in four final subgroups split by 
age and gender, although CTree produced 15 subgroups split 
by all four variables. For CART the highest SBP subgroup 

was all participants age 60+, and for CTree all Black partici-
pants age 60+. Because decision trees can create subgroups 
by splitting continuous variables, we present in eAppendix 
2; http://links.lww.com/EDE/B901 CART and CTree mod-
els using a continuous rather than categorical age variable, 
with final subgroups increasing to five for CART, and 26 for 
CTree.

DISCUSSION
This study aims to support the adoption of intersec-

tionality frameworks in descriptive epidemiologic research 
by assessing method performance for descriptive intercat-
egorical intersectionality across large numbers of intersec-
tions. We present our resulting recommendations (Table  5) 
with several caveats: (1) Recommendations regard estimation 
performance, not which methods best match other intersec-
tional objectives. (2) Although our use of methods aimed to 
follow common conventions, different parameters or options 
may change results sufficiently to alter recommendations. (3) 
“Variable relevance” refers to quantitative rather than social 
relevance. Finally, (4) Limitations regarding “small” sample 
sizes will apply less strictly when studying fewer intersec-
tions. Our simulation intentionally pushed limits to assess 
performance; we do not endorse some analyses, for example, 
a saturated regression model assessing 192 intersections at  
N = 2,000 (for a mean intersection size of 10.4), as reasonable 
expectations. Our NHANES analysis demonstrated a more 
realistic example assessing outcomes for 60 intersections at 
N = 9,000.

Although analytic aims vary, intersectionality research-
ers generally want accurate intersection-specific outcome 

TABLE 2.  CART and CTree Splitting Percentages (% of Replications Variable Is Split on in Tree) and Average Number of Leaves

 CART CTree

N = 2,000 N = 5,000 N = 50,000 N = 200,000 N = 2,000 N = 5,000 N = 50,000 N = 200,000

Categorical 

inputs

×1 (%) 96.3 96.2 96.7 96.7 100 100 100 100

×2 (%) 55.4 53.5 51.1 50.3 98.6 100 100 100

×3 (%) 79.5 79.2 76.3 77.5 99.3 100 100 100

×4 (%) 81.9 79.7 77 78.1 99.4 99.9 100 100

×5 (%) 78.3 77.9 73.2 74.2 99.4 100 100 100

×6 (%) 0 0 0 0 41.8 64.1 91 94.5

Average leaves  

(2.5th, 97.5th percentile)

9 (5, 13) 9 (5, 13) 8 (4, 12) 9 (5, 13) 24 (12, 36) 34 (19, 49) 56 (39,68) 62 (50,70)

Mixed 

inputs

×1 (%)  93  92.5  91.3  92.3  99.6  99.9  100  100

×2 (%) 56 54 49.7 52.8 98.2 99.7 100 100

×3 (%) 66.5 67.7 63.5 64.4 96.4 99.7 100 100

×4 (%) 67.5 69.8 64.3 62.7 98.3 99.6 100 100

×5 (%) 56.9 57.2 54.6 53.3 98 99.9 100 100

×6 (%) 0 0 0 0 34.6 55 92.5 98.8

 Average leaves  

(2.5th, 97.5th percentile)

10 (5, 14) 10 (5, 14) 9 (5, 14) 10 (5, 14) 34 (12, 59) 56 (19, 95) 162 (47, 276) 279 (88, 449)

CART indicates classification and regression tree; CTree, conditional inference tree.

TABLE 3.  Average VIM From Random Forests Fitted  
to Categorical and Mixed Input Models at N = 2,000  
and N = 200,000

  N = 2,000 N = 200,000

Categorical inputs ×1 616 57,416

×2 231 19,919

×3 651 65,800

×4 698 64,650

×5 339 31,567

×6 72 85

Mixed inputs ×1 2,731 239,953

×2 308 31.906

×3 642 63,981

×4 635 63,664

×5 325 32,870

×6 552 9,558

VIM indicates variable importance measures.

http://links.lww.com/EDE/B901
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estimates, with disaggregation of data where substantial 
heterogeneity exists. The nonintersectional main effects 
approach was a misspecified model, resulting in inaccurate 
intersection-specific estimates and no improvement with 
increasing sample size. All intersectional methods evaluated 
other than CART were suitable for large-sample estimation. 
At smaller sample sizes, random forest, MAIHDA, and CTree 
were more accurate estimators compared with conventional 
saturated regression or cross-classification. As an ensemble 
method, random forest is more stable and less prone to over-
fitting than regression or single-tree methods.26–28 MAIHDA 
has weighted residuals to reduce effects of outliers within 
small intersections.12 Note that main effects must remain in 
MAIHDA fitted models, even if not interpreted, to maintain 
the full effect of these weighted residuals.29 Finally, satu-
rated regression models performed slightly worse for the 
continuous inputs model, due to the nonlinear interaction in 
our data generation process which was unspecified in the fit-
ted models. When exploring intersectional effects, nonlinear 
effects are not often considered in regression models, but 
could for example be incorporated using generalized addi-
tive models.30

Although CART has been the most frequently applied 
decision-tree method in intersectionality research,31 it per-
formed poorly across all sample sizes; its lack of improve-
ment with increasing sample size has been previously noted.32 
CART’s splitting criterion prematurely limits tree depth, and 
resulting estimates represent averages for still-heterogenous 
groups, thus not meeting the objective of identifying all inter-
sections with prominent differences. In comparison, the CTree 
model will continue splitting, creating more accurate final 
estimates.

In our simulation, CART underidentified relevant 
variables during variable selection, while CTree had a high 
false-positive rate. Tuning CTree with the alpha parameter 
may reduce false positives by creating a higher significance 

threshold for splitting. For random forest, the variable impor-
tance measure was difficult to interpret for low values. A 
potential solution would be an adjusted variable importance 
measure,25 which creates interpretable P values and adjusts for 
a known bias favoring continuous variables.33 The NHANES 
analysis demonstrated how the quantitative variable selection 
process produces results similar to expected findings, such as 
the prominence of age, gender, and race as major predictors 
of SBP.23

Importantly, purely data-driven variable selection 
risks creating intersections that are not socially relevant as 
intervention points or equity stratifiers. Variable selection in 
practice will often be based in theoretical knowledge of how 
structures of social power may affect outcomes. If a priori 
relevance of intersections is unclear, data-driven variable 
selection techniques can optionally support exploration of 
potential unknown heterogeneities or provide decision sup-
port in paring down infeasibly long lists of potential vari-
ables. For such uses, decision trees create a variable selection 
process that accounts for possible interaction effects between 
variables.

As decision trees lack variance estimation—a major 
limitation for estimation of population-level outcomes—a 
two-step process of variable selection followed by estima-
tion using regression, cross-classification, or MAIHDA 
allows for the creation of outputs that typical epidemiologic 
research favors. As illustrated in our NHANES analysis, 
one could use random forest for data-driven identification of 
important variables to be encoded in a subsequent MAIHDA 
analysis. Alternately, one could use CTree to identify poten-
tial interactions to fit in a regression model within a sample 
too small to power a saturated-model regression. A limita-
tion of two-step processes is that final variance estimates 
will not account for the selection process, and further work 
may be needed to incorporate methods of postselection 
inference.34

TABLE 4.  NHANES VIM Results for CART, CTree, and Random Forest

 CART CTree Random Forest

 Splitting Variable 
(Yes/No)

Splitting Variable 
(Yes/No)

Impurity-based 
VIM

Permutation-based 
VIM

Permutation-based 
VIM, P value

Age (20–39, 40–59, 60+ years) Yes Yes 477,183.3 111.4 0.010

Gender (male, female) Yes Yes 38,325.7 10.5 0.010

Race/ethnicity (Hispanic, non-Hispanic White, 

Black, Asian, other) 

No Yes 52,847.6 13.6 0.020

Education (high-school education or less, at least 

some college education) 

No Yes 25,974.0 4.4 0.010

Marital status (married, not married) No Yes 16,299.8 2.2 0.010

Health insurance (insured, not insured) No Yes 14,982.7 3.5 0.010

Immigrant (born in the United States, immigrant) No Yes 12,195.0 6.0 0.792

Income (above federal poverty line, below) No No 12,368.3 1.5 0.188

CART indicates results for classification and regression trees; CTree, conditional inference trees; VIM, variable importance measure.
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FIGURE 2.  A–C, Estimated mean systolic blood pressure (mm Hg) by intersection. Methods include two single-level regression 
models, MAIHDA, cross-classification, and three tree-based methods: CART, CTree, and random forest. CART, classification and 
regression trees; CTree, conditional inference trees; MAIHDA, multilevel analysis of individual heterogeneity and discriminatory 
accuracy.
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A general consideration in the uses we describe is that 
focus on group means—the “tyranny of averages”—risks 
stigmatizing particular groups by classifying them as “high 
risk” while ignoring within-group heterogeneity.35 In the 
simulation study, analyses included all explanatory variables. 
In real-word analyses, there would be unmodeled individual- 
and structural-level effects impacting the outcome. MAIHDA 
analyses produce measures of discriminatory accuracy, the 
percent of outcome variation due to the intersections.36 For 
example, the final 60 intersections in the NHANES analysis 
produced a discriminatory accuracy of 22.06% (calculations 

in eAppendix 3; http://links.lww.com/EDE/B901), indicat-
ing substantial within-intersection variation. Calculations of 
intersectional discriminatory accuracy can be used in non-
MAIHDA analyses as well to highlight heterogeneity of expe-
riences within intersections and contextualize final results.

We note other capabilities and outputs of the selected 
methods in Table 6. For example, while single-level regres-
sion and MAIHDA produce no variable relevance measures, 
large effects of a variable in lower-order or interaction terms 
(in saturated regression) or in main effects or random inter-
cepts (in MAIHDA) may suggest a variable as relevant. Effect 

TABLE 5.  Recommendations for Methods When Assessing Continuous Outcomes

 Recommended Uses
Recommended With 
Potential Alterations Not Generally Recommended Not Applicable

Cross-classification Estimation at large-sample 

sizesa

 Estimation at small sample sizesa Variable selection

Regression (saturated 

model)

Estimation at large-sample 

sizesa

 Estimation at small sample sizesa Variable selection (partial 

information)

MAIHDAb Estimation at all sizes   Variable selection (partial 

information)

CARTc   Estimation at all sample sizes

Variable selection 

 

CTreed Estimation at all sample 

sizes

 Variable selection (may be improved with 

cross-validation for alpha) 

 

Random forest Estimation at all sample 

sizes

Variable selection: with 

adjusted VIMe

  

aDefining sample size as “large” or “small” is relative to the number of intersections of interest. In our scenario with 192 intersections of interest, we considered smaller sample 
sizes to be N = 2,000 to 5,000 and larger sample sizes as N = 50,000 and greater. A smaller number of intersections under study would allow for smaller sample sizes.

bMultilevel analysis of individual heterogeneity and discriminatory accuracy.
cClassification and regression trees.
dConditional inference trees.
eVariable importance measure.

TABLE 6.  Summary of Method Outputs and Capabilities

 
Regression 

(Saturated Model)
Cross-

Classification MAIHDAa CARTb CTreec

Random 
Forest

Outcome estimation by intersection X X X X X X

Variance estimates for intersections X X X    

Effect size estimates comparing outcome across intersections X d X    

Identification of social identity/position variables relevant to the outcomef e  e X X X

Identification of social identity/position category subgroups relevant to the 

outcomef

e  e X X  

Identification of interactions of social identity/position variables relevant to 

the outcomec

X   X X  

Ability to use continuous social identity/position variables without prior 

categorization 

X   X X X

Visual subgroup identification through tree diagrams    X X  

Ability to control for confounding X  X X X X

aMultilevel analysis of individual heterogeneity and discriminatory accuracy.
bClassification and regression trees.
cConditional inference trees.
dCan be estimated using a linear regression
eNo singular measure is produced that indicates overall relevance, but there is some information contained (see Discussion).
fRelevance is variably defined and quantified.

http://links.lww.com/EDE/B901
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estimates from the two methods do have different interpreta-
tions37,38; however, these differences do not impact the utility 
of either method for estimation of intersection-level outcomes. 
Methods may have pragmatic as well as theoretical limita-
tions. For example, decision-tree methods are data-adaptive 
and not theory-based; trees may oversplit, especially on con-
tinuous variables, and create subgroups that are too granular, 
or do not meaningfully map onto communities. Additional 
work is required to evaluate outputs in Table 6 for their theo-
retical match with intersectionality frameworks. We present 
in eAppendix 3; http://links.lww.com/EDE/B901 additional 
readings related to MAIHDA and decision trees.

Interpretation of final intersection-specific estimates 
should call on additional tenets of intersectionality such 
as social context. Intersectional positions reflect numerous 
contextual and structural factors, such as discrimination and 
healthcare accessibility, and interpretations should remain 
rooted in structural and interindividual concepts of social 
power. Moreover, critical consideration of how results may 
be affected by measurement or sampling biases is required. 
Although large population datasets offer an accessible way to 
map health disparities, the provided measures of social posi-
tions may not match a researcher’s question. Our NHANES 
analysis used measures that were not truly mutually exclusive 
(e.g., Black race and Hispanic ethnicity), or did not address 
multidimensionality (e.g., sex and gender), potentially limit-
ing interpretability and utility. Finally, as our conceptualiza-
tion of estimation in this study was for descriptive analysis, 
we did not address confounding. The regression-based and 
decision-tree methods can accommodate confounders,39 but 
causal approaches are beyond the scope of this study.

We have focused on estimation rather than hypothesis 
testing. Intersectionality scholars have made clear that inter-
sectionality in research is an approach, rather than a testable 
hypothesis.40 Unlike additive models, methods that can incor-
porate interaction effects (i.e., some methods in this study) can 
more accurately produce estimates for intersections. Testing for 
a large number of interactions introduces the risk of identifying 
spurious interactions, which is a secondary reason our recom-
mendations focus on accuracy of intersection-specific estima-
tion, rather than statistical interaction. Accurately identifying 
intersectional population groups with favorable and unfavor-
able health outcomes is important to targeted research and 
policy and to identifying areas where existing single-identity 
or -position approaches to public health or healthcare access 
may produce inequity, and this is true regardless of whether or 
not those levels can be attributed to statistical interaction.

As simulation results are partially a result of the data 
generating process, results for continuous outcomes do not 
necessarily hold for binary or categorical outcomes, requir-
ing further evaluation. We additionally welcome alternative 
ways of applying these methods that may improve perfor-
mance, such as use of penalized regression methods to incor-
porate higher order terms and improve estimation accuracy.41 

This study is not meant to limit the methods deemed suitable 
for intersectional research, but to act as a starting point for 
researchers searching for a more varied toolchest of quantita-
tive methods.

We note that methods themselves do not make a study 
intersectional. Similarly, the approach presented is only one 
specific application of intersectionality. Methods in this study 
can incorporate intersectionality in other ways, for example, 
by including process-related variables such as discrimination 
to understand driving factors producing inequities. We urge 
researchers to be attentive to the core tenets of intersection-
ality in structuring research questions, choosing variables, 
interpreting results in the context of social power, and engag-
ing with communities.6,7,40 We consider this a starting point in 
a process of comparative evaluation of quantitative methods 
across a much broader range of intersectional research ques-
tions and data scenarios, including descriptive studies with 
categorical outcomes, consideration of match between theory 
and methods, causal intersectional methods, and greater atten-
tion to sampling, measurement, and research process, all to 
ultimately advance health equity through research.
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