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abstract

 

Changing the angular separation between two visual stimuli attached to the wall of a recording cylin-
der causes the firing fields of place cells to move relative to each other, as though the representation of the floor
undergoes a topological distortion. The displacement of the firing field center of each cell is a vector whose
length is equal to the linear displacement and whose angle indicates the direction that the field center moves in
the environment. Based on the observation that neighboring fields move in similar ways, whereas widely separated
fields tend to move relative to each other, we develop an empirical vector-field model that accounts for the stated
effects of changing the card separation. We then go on to show that the same vector-field equation predicts addi-
tional aspects of the experimental results. In one example, we demonstrate that place cell firing fields undergo
distortions of shape after the card separation is changed, as though different parts of the same field are affected by
the stimulus constellation in the same fashion as fields at different locations. We conclude that the vector-field for-
malism reflects the organization of the place-cell representation of the environment for the current case, and
through suitable modification may be very useful for describing motions of firing patterns induced by a wide vari-
ety of stimulus manipulations.
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I N T R O D U C T I O N

 

The purpose of this paper is to present a quantitative
description of how the firing fields of hippocampal
place cells are affected by two kinds of stimulus manip-
ulations (Fenton et al., 2000). In one kind (“reconfigu-
rations”), we found that changing the angular distance
between a black card and a white card on the wall of a
cylinder caused fields to move relative to each other in
a systematic fashion, as though the representation of
the cylinder floor underwent a topological distortion.
These changes in the relative positions of firing fields
were accompanied by a position-independent decrease
in place cell firing rates, regardless of whether the
cards were closer or further apart by 25°. In the second
kind of manipulation (“removals”), we saw that delet-
ing either card left the representation of the cylinder
floor intact; fields did not move relative to each other
nor were their firing rates altered. Both reconfigura-
tions and removals were done after superimposing a
45° rotation of the manipulated cue configuration. In
every case, firing fields followed this additional 45° ro-
tation, indicating that stimulus control resided in the

two cards and not in background stimuli that are fixed
in the environment.

A full account of these results would be based on a
neural network model and would address a variety of
questions, including the origins of the firing fields in
the standard conditions, the lack of effect of card re-
movals on both the relative positions of fields and fir-

 

ing rates, and the ability of card reconfigurations to

 

induce both relative field position movements and
position-independent decreases of firing rate. The geo-
metric theory we present here is less ambitious; it is
concerned only with field movements and explains nei-
ther why fields exist in the first place nor why reconfig-
urations cause changes in firing rates.

 

This theory consists of an empirical vector-field equa-
tion that relates the movement of all field centroids to
weighted functions of the movements of both cards.
Field movement is therefore a smooth function of the ini-
tial position of the centroid in the cylinder. Thus, neigh-
boring fields are constrained to move in concert and no
allowance is made for individual fields to be coupled to
arbitrarily selected combinations of the available stimuli.
The model, like our data, is therefore in contrast to the
virtually complete independence of fields from each
other that was used to describe the effects of counter-
rotating distal and proximal cues (Shapiro et al., 1997;
Tanila et al., 1997; see also Brown and Skaggs, 1999).
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Vector-field Theory of Place Cell Field Motions

 

Beyond providing a concise summary of field move-
ments, the vector-field theory is valuable in several
ways. First, it serves as a benchmark against which the
field-movement predictions of any network theory can
be checked. Second, we will show that the vector-field
equation predicts additional features of our experi-
mental data that were not included in the equation. In
our view, the success of these predictions indicates that
the stimulus cards act in a smooth, continuous way on
the positional activity distributions of hippocampal
neurons located everywhere in the environment and
that the undistorted fields in the standard configura-
tion therefore serve to indicate location in space rather
than the conjunction of stimuli important for each cell.

 

M E T H O D S

 

Our goal is to write an empirical vector-field equation that de-
scribes how the center of a firing field anywhere in a cylindrical
apparatus moves when a white stimulus card and a black stimulus
card on the cylinder wall are both moved or one is deleted and
the other is moved. Thus, we want to calculate V, the displace-
ment vector for the field center (Eq. 1):

 

(1)

 

where 

 

X

 

 is the initial location of the field and 

 

V

 

B

 

 and 

 

V

 

W

 

 are vec-
tors that point from the initial to the altered locations of the
black and white cards (see Fig. 1 for notation).

We first treat rotations of field centers induced by moving a
card. During rotations of a single card (Muller and Kubie, 1987)
or equal rotations of both cards, fields act as though they are rig-
idly connected to a pivot at the apparatus center and that the
pivot is turned through the same angle by which the stimuli are
rotated. For instance, the rotational field movement that would
be induced by the black card is 

 

V

 

9

 

B

 

. The length of this vector is
given by Eq. 2:

 

(2)

 

where 

 

R

 

 is the radius of the cylinder and 

 

r

 

 is the distance of the
field from the cylinder center; the direction of the vector is such
that the angular movement of the field is equal to the angular
movement of the black card. Similarly, the rotational field move-
ment that would be induced by the white card is 

 

V

 

9

 

W

 

.
If the two cards always contributed equally to rotations of field

centers, the net rotational movement of the field center would
be the average of the vectors 

 

V

 

9

 

B

 

 and 

 

V

 

9

 

W

 

. We saw from reconfig-
uration experiments, however, that the contribution of the card
near a field was greater than the contribution of the other card.
We imagine, therefore, that the contribution of a card is inversely
proportional to the distance of the field from that card. The net
rotational movement, 

 

V

 

R

 

, is the weighted average of the rota-
tional field movements that would be separately induced by each
card and is given by:

 

(3)

 

where 

 

d

 

w

 

 is the distance from the field center to the white card
and 

 

d

 

b

 

 is the distance from the field center to the black card as
show in Fig. 1. Eq. 3 correctly predicts that equal rotations of the
two cards causes equal rotations of all field centers. Under the in-

V f X VB VW, ,( ) ,=

V ′B r R⁄( ) V B ,=

VR dwV ′B dbV ′W+( ) dw db+( )⁄ ,=

 

terpretation that deleting a card makes the distance from the
card to any field arbitrarily large, Eq. 3 also correctly predicts
that after removing one card all fields rotate equally with the re-
maining card. Moreover, it works well for fields near either card.
Interestingly, Eq. 3 describes how field centroids would move in
the case that each card controls an independent component of
the field and is considered briefly in the 

 

results

 

.
Although Eq. 3 performs acceptably near the cards, it incor-

rectly predicts the movements of fields between the two cards.
Thus, regardless of whether the cards are moved apart or to-
gether, Eq. 3 predicts that the net movement of such fields is to-
ward the cylinder center rather than nearly parallel to the motion
of the line that connects the card centers. To compensate for this
error, we define a translational vector for fields, 

 

V

 

T

 

, given by:

 

(4)

 

The direction of 

 

V

 

T

 

 is always parallel to the direction of motion
of the line that connects the two card centers. The two terms in
the denominator of Eq. 4 serve different purposes. The first
makes 

 

V

 

T

 

 zero if 

 

d

 

w

 

 or 

 

d

 

b

 

 becomes arbitrarily large when the cor-
responding card is removed. The constant 

 

c

 

1

 

 is very small so that
this term has no effect except during card removal. The second
term in the denominator reduces the effect of the translational
term as the distance to either card decreases, thereby preserving
the effects of the rotational term. The constant 

 

c

 

2

 

 allows the
amount of translation caused by card movements to be adjusted
independent of the amount of rotation caused by card move-
ments. The total motion of the fields, 

 

V

 

, is the sum of 

 

V

 

R

 

 and 

 

V

 

T

 

:

 

(5)

 

The patterns of field movements generated by Eq. 5 for apart
and together card manipulations are shown in Fig. 2 in the nor-
malized coordinate system (Fenton et al., 2000). In the same co-
ordinate system, the corresponding pictures for equal card rota-
tions and card removals would be just sets of zero-length vectors,
indicating no systematic field motion. By inspection of Figures 2,
6 A, and 7 A of Fenton et al. (2000), predictions of the vector-field
equation resemble the empirical patterns of field movements af-
ter reconfigurations. We therefore turn to a numerical analysis.

 

R E S U L T S

 

Predictions of a Simple Component Model for 
Field Centroid Movements

 

Changes in the size or aspect ratio of a recording box
can induce changes in the size and shape of firing
fields (Muller and Kubie, 1987; O’Keefe and Burgess,
1996). In some cases, lengthening the box can cause a
field with a single peak to develop two peaks or even to
come apart into two pieces as though the field had two
components, one associated with a wall and the other
with the opposite wall (O’Keefe and Burgess, 1996).
When the walls are separated by their standard dis-
tance, the two components superimpose, but their ex-
istence is revealed when the wall separation is changed.
Similar effects were seen for some fields in the double
rotation experiments of Shapiro et al. (1997).

Might card reconfigurations also split fields into two
components? We saw no such effect in firing rate maps,

VT VB VW+( ) c1dwdb c2 1 dw⁄ 1 db⁄+( )+[ ] .⁄=

V VR VT+ dwV ′B dbV ′W+( ) dw db+( )⁄
VB VW+( )

+
c1dwdb c2 1 dw⁄ 1 db⁄+( )+[ ]⁄ .

= =
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but the simplicity of the stimulus arrangement makes it
is easy to test the component hypothesis directly. We as-
sume that both putative components are in register
when the cards are in their standard positions. We also
assume, from card removals, that each component un-
dergoes a pure rotation caused by rotation of the rele-
vant card. By symmetry, the centroid of the composite
field must be halfway between the centroids of the two
components, so the composite centroid can experience
only radial, but not angular movements. In addition,
this radial movement can only be inward, regardless of
the angular position of the field, an effect clearly at
odds with our data.

In this simple component model, the weakening of
control with distance between the card and the field is
not included. We have, however, already implicitly con-
sidered a component model that includes the distance
effect, expressed by Eq. 3. Solutions to Eq. 3 are shown
as gray lines in Fig. 3, where it is seen that fits to the an-

 

gular centroid movements are not very bad, but fits to
the radial movements are unacceptable. It was the fail-
ure of Eq. 3 that led us to add the translational term.

From this analysis, we conclude reconfigurations do
not split fields into components that are controlled by
the two cue cards. It is important to note that this anal-
ysis militates against any model in which the two cards
separately trigger activity in the place cells. Thus, we ar-
gue that schemes in which control over firing resides at
some times with one card and at other times with the
second card are not accurate. Schemes of this sort in-
clude those in which the animal resets the coordinate
system relative to one card, and then uses only self-
motion information until another reset relative to the
other card.

 

Fit of the Vector Field Equation to Field Centroid Movements

 

The ability of Eq. 5 to reproduce field centroid move-
ments after the cue cards are moved apart is shown by
the black lines in Fig. 3 A, 1 and 2. The observed angu-
lar (Fig. 3 A, 1) and radial (2) displacement vector
components are the same as in Figure 6 B, 1 and 2, of
Fenton et al. (2000), but the sine waves used to orga-
nize the data in the previous paper have been replaced
by solutions to Eq. 5 (black lines). These solutions are
for 

 

c

 

2

 

 

 

5 

 

83.2 and for a constant value of the radial posi-
tion; namely, the circle that divides the cylinder into a
central disk and outer annulus of equal area. Solutions
at other radial positions (not shown) vary in shape, but
each substantially reproduces the pattern of data.

A correlational analysis indicates a satisfactory fit of
Eq. 5 to the angular and radial displacements caused by
apart card movements. We first calculated the correla-
tion between two measures of the angular movement of
field centers in apart sessions; namely, the observed
movement compared with standard sessions and the
movement expected from the vector-field equation
given field center positions in the previous standard
session. According to a 

 

t

 

 test, the probability that the
correlation of 0.774 with 45 

 

df

 

 occurred by chance was
1.78 

 

3

 

 10

 

2

 

10

 

. The correlation of 0.721 with 45 

 

df

 

 be-
tween observed and predicted radial movements associ-
ated has a probability of 1.08 

 

3

 

 10

 

2

 

8

 

. Thus, the theory
accounts for 60% of the variance in angular field move-
ment and 52% of the variance in radial field movement
caused by moving the cards apart without any correc-
tion for random movements of field centers between
pairs of standard sessions (Fenton et al., 2000).

The ability of Eq. 5 to account for field centroid
movements when the cards are moved together is
shown by the black lines in Fig. 3 B, 1 and 2. Once
again, the solutions are for 

 

c

 

2

 

 

 

5 

 

83.2 and for the circle
that divides the cylinder into a central disk and an an-
nulus of equal area. A correlational analysis confirms
that the fit is very good for the angular component of

Figure 1. Diagrammatic definitions of quantities in Eq. 5. (A)
The open and filled circles on the circumference of the cylinder
represent, respectively, the centers of white and black cards in their
standard positions. X is the position of a field centroid. dw and db

are, respectively, the distance from the field centroid to the centers
of the white and black cards. B, 1 (2), shows the positions of the
card centers after moving the cards 258 apart (258 together). The
vector V9w (V9b) shows the purely rotational movement of the field
centroid that would occur if the field position were controlled ex-
clusively by the white (black) card. Note that the resultant of the
vectors V9w and V9b is small and points inward towards the cylinder
center regardless of whether the cards are moved apart or to-
gether. Thus, any model that predicts the field movement to be the
vector sum of the rotations of the stimulus movements is incorrect.
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Figure 2. The arrows represent
solutions of the vector-field equa-
tion associated with 258 apart
and 258 together movements of
the cue cards. The lengths and
directions of the arrows vary with
the initial position of the field
centroid in the cylinder. Varia-
tions in length can be visualized
by the noncollinear positions of
arrowheads that arise from verti-
cally aligned vector tails.

Figure 3. Solutions of Eqs. 5 (black line) and 3 (gray line) superimposed on the angular (A, 1 and B, 1) and radial components (A, 2
and B, 2) of observed displacement vectors for apart (A) and together (B) card manipulations. The fit of the Eq. 5 to the radial compo-
nent of the displacement vectors caused by together card movements could be improved by changing c2 in Eq. 5.
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centroid displacement (r 5 0.936, df 5 62; P 5 1.00 3
10229), but not so good for radial movements (r 5
0.296; df 5 62; P 5 0.017). The theory therefore ac-
counts for 88% of the variance in angular field move-
ment, but only 9% of the variance in radial field move-
ment. We think that the overall performance of the
theory is very good, but the relatively poor ability to
predict the radial movement appears to be a real dis-
crepancy that is seen again when we attempt to predict
the relative amount of field movement parallel to and
perpendicular to the line that connects the centers of
the cue cards.

Differences of Field Movements Induced by Moving the Cards 
Apart and Together

As seen in Fig. 2, the vector-field equation makes two
specific predictions concerning the movements of
fields after apart and together card manipulations.
First, movements parallel to the horizontal diameter
(Fig. 4) should be in opposite directions and, second,
there should be no average movement in the vertical
direction. In addition, numerical solutions of Eq. 5 in-
dicate that the magnitude of the movement in the hori-
zontal direction should be slightly greater for apart ses-
sions than together sessions. The source of this differ-
ence is in the translational term of Eq. 5. The mean
horizontal displacement from the translational term
for the initial field positions of the theoretical vectors
in Fig. 2 is 24.16 cm for apart sessions and 13.80 cm
for together sessions. Since the mean contribution of
the rotational term of Eq. 5 is equal in magnitude (1.10
cm) for apart and together sessions and of the same
sign as for the translational term, the total expected
horizontal displacement is 25.95 cm for apart sessions
and 5.59 cm for together sessions.

The observed horizontal and vertical centroid dis-
placements for apart and together sessions are summa-
rized in Fig. 4. In agreement with theory, the average
vertical displacements of field centroids for apart
(0.147 cm) and together (0.387 cm) sessions were not
reliably different from each other [t 5 0.38; df 5 109;
P(t $ 0.38) 5 0.71], nor was either reliably different
from zero. Also, as expected, the mean horizontal cen-
troid displacement was negative for apart sessions
(24.84 cm) and positive for together sessions (11.80
cm), and the magnitude of the horizontal displace-
ment for apart sessions was greater than the magnitude
of the horizontal displacement for together sessions [t 5
4.82; df 5 109; P(t $ 4.82) 5 4.6 3 1026]. Thus, the dif-
ference in horizontal displacement is in the expected
direction, but is much larger than predicted by theory.
The origin of this discrepancy is the small average hori-
zontal displacement caused by together card move-
ments. We showed this by determining, for each ob-
served horizontal displacement, the corresponding

predicted displacement. We then did paired t tests be-
tween observed and expected horizontal displacements
for apart and together sessions. For apart sessions, the
average difference between observation and expecta-
tion was 0.55, so that the observations were somewhat
smaller than expected. This discrepancy was not, how-
ever, statistically reliable [paired t 5 1.14; df 5 46; P(t $
1.14) 5 0.26]. In contrast, the average difference be-
tween the observed and expected horizontal displace-
ments for together sessions was 23.77 cm, so that the
observed displacements were considerably smaller than
expected [paired t 5 5.67; df 5 63; P(t $ 5.67) 5 3.6 3
1029]. Similar paired t calculations for the vertical dis-

Figure 4. Predictions for the Cartesian components of the dis-
placement vectors of field centroids. (Inset) Definitions of the ver-
tical and horizontal directions for field movements. The solid
black line connects the card centers in the standard condition, the
dashed black line connects the card centers after the 258 apart ma-
nipulation and the dashed white line connects the card centers af-
ter the 258 together manipulation. As expected from trigonometry,
the line between the two cards moves a somewhat greater distance
after the apart manipulation. According to the vector-field equa-
tion, there should be no net vertical movements of field centroids
with either apart or together manipulations, in agreement with the
data shown on the right of the bar graph. Also, according to Eq. 5,
there should be net horizontal movements of field centroids in op-
posite directions after apart and together manipulations and the
magnitude of the movement should be greater for the apart ma-
nipulation. All of these predictions are confirmed quantitatively,
but the magnitude of the horizontal movement after the 258 to-
gether manipulation is smaller than expected.
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placements show that the average difference between
observation and expectation is not reliably different for
either apart or together card movements.

In summary, the directions and magnitudes of the
horizontal and vertical field centroid displacements
caused by apart and together card manipulations are in
good agreement with theory. The only discrepancy is
the smaller than expected average horizontal move-
ment seen after together manipulations, an effect we
are currently unable to explain. One way of handling
this discrepancy would be to separately analyze apart
and together sessions, allowing us to choose a larger
value of the constant c2 in Eq. 5 for together sessions. In
the absence of a reason to expect different horizontal
movements and for parsimony, however, we used only a
single form of Eq. 5. In this regard, we note that the ac-
curacy of additional predictions from the vector-field
equation (see below) might have been improved by
treating apart and together manipulations separately. It
turns out, however, that we can make accurate predic-
tions of changes in firing field shapes and positional fir-
ing patterns of hippocampal theta cells (interneurons)
without complicating the theory. We believe that these
predictions are not sensitive to the relatively small field
displacements caused by together manipulations. This
insensitivity arises because the additional analyses are
made after field centroid displacements are subtracted
by superimposing the centroid in a manipulated ses-
sion onto the centroid for a standard session.

Changes of Field Shapes Caused by Card Reconfigurations

Up to now, we have considered only movements of fir-
ing field centroids caused by changing the angular dis-
tance between the cards. A key finding is that the direc-
tion and magnitude of these centroid movements de-
pends on the initial centroid location, so that the
representation of the environment seems to be topolog-
ically distorted. Firing fields are not points, but occupy
significant fractions of the apparatus surface. Moreover,
the linear dimensions of firing fields are substantial frac-
tions of the diameter of the cylinder. Imagine, for exam-
ple, a circular field whose diameter is, say, one third the
diameter of the cylinder. Imagine also two other fields
whose centroids happened to lie on the opposite ends
of the diameter of the circular field. In general, the dis-
tance between the centroids of the two other fields
would change after the cards were reconfigured.

Does this “tidal” effect apply only to field centroids,
or does it operate on an entire field to distort its shape?
In other words, do card reconfigurations cause the
field to move as a rigid object or does the vector field
operate in a smooth, continuous way to stretch the fir-
ing field in a predictable fashion? Observing this sort of
deformation would be a powerful indication that the
vector-field description is valid.

To test whether card reconfigurations deform the
positional firing in a way predicted by the vector-field
equation, we calculated in two ways the similarity (de-
fined below) of fields recorded in a standard session
and in a card reconfiguration session. In the first
method, we calculated the similarity when the field
in the standard session was moved relative to the re-
configured field as a rigid object, so that neither its
shape nor its firing rate contours were altered. In the
second method, the field in the standard session was
moved according to the vector-field equation, distort-
ing its positional firing pattern. Based on the ability
of the vector-field equation to account for the move-
ments of field centroids, we expected that applying the
equation to each point in the field would yield a
higher similarity.

In line with earlier work, we define similarity as the z
transform of the pixel-by-pixel correlation coefficient
(r) for a pair of positional firing rate patterns (Bostock
et al., 1991). To begin, one rate pattern is superim-
posed on the other and a paired list is made of the
time-averaged firing rates in a pixel; a pixel is included
in the list only if its rate was greater than zero in at least
one session. The initial superimposition is made by
moving the centroid of the standard field onto the cen-
troid of the reconfigured field. The similarity is com-
puted, and then recomputed, as the standard field is
moved in a square pattern over a nine by nine pixel re-
gion centered on the initial position. The similarity of
the pair of positional firing patterns is taken as the
maximum of all 81 values.

The statistical analysis of similarity values was done by
combining apart and together sessions in the following
way. Cells recorded in only an apart (13) or a together
(32) session were included. For cells recorded in both
apart and together sessions (27), a random choice was
made to select either type. In the end, the sample con-
sisted of 29 apart and 43 together sessions. Apart and
together sessions were combined because similarity av-
erages were nearly equal for both session types.

When the firing field in the standard was rigidly su-
perimposed on the field in the reconfigured session,
the average similarity was 1.14 (r 5 0.781; r 2 5 0.61). In
contrast, when the vector transformation was first ap-
plied to the field in the standard session, the average
similarity increased to 1.30 (r 5 0.844; r 2 5 0.71); this
analysis is summarized in the bar graphs of Fig. 5. A
paired t value for the rigid and vector transform simi-
larities showed that the vector values were reliably
higher [t 5 5.79; df 5 71; P(t . 5 5.79) 5 2.1 3 1027].

The significantly higher similarity after vector trans-
formation indicates that Eq. 5 mimics the observed ef-
fects of card reconfigurations, but does not indicate the
accuracy of the prediction. To address this question, we
calculated for each cell the similarity between a pair of
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standard sessions. Since the similarity of firing fields in
identical conditions is limited by accuracy of tracking,
discrimination of action potentials and nonideal posi-
tional firing (Fenton and Muller, 1998) using pairs of
standard sessions establishes a reasonable upper bound
for similarity. Thus, if the vector-field transform does
only a fair job of accounting for the distortion induced
by reconfiguration, the previously computed value of
1.30 should be lower than the similarity for pairs of stan-
dard sessions. We find, however, that the mean similarity
for pairs of standard sessions of 1.31 (r 5 0.843; r 2 5
0.71) is almost exactly equal to the vector-field trans-
formed similarity [paired t 5 0.11; df 5 71; P(t $ 0.11)
5 0.91] (see Fig. 5). Thus, applying the vector-field
transform to a standard session produces a distorted pat-
tern that resembles the reconfigured pattern as closely
as two standard sessions resemble each other. Thus,
within experimental error, the vector-field equation

does a virtually perfect job in accounting for the effects
of moving the cards closer together or further apart.

Card Reconfigurations Induce Predictable Changes in the 
Firing Patterns of Hippocampal Interneurons

In addition to pyramidal cells, recordings are often
made from interneurons encountered in the CA1 re-
gion of the hippocampus. In our experience, these
cells are usually found in stratum oriens or superficial
stratum pyramidale. On the assumption that we detect
cell bodies but not dendrites, these cells are likely to be
basket cells (Andersen et al., 1964) or axo-axonic chan-
delier cells (Freund and Buzsaki, 1996). The properties
of these putative interneurons differ from those of py-
ramidal cells in several ways. Theta cell waveforms are
briefer; the wide-band filtered spike duration of theta
cells is less than z350 ms, but greater than z350 ms for
pyramidal cells. Second, the theta cells do not fire the
complex spikes (high frequency action potential bursts
with decreasing amplitude) that are characteristic of
pyramidal cells. Third, the position-independent aver-
age firing rate of theta cells is usually .10 spikes/s,
much higher than the 1.0 spikes/s for place cells
(Ranck, 1973; Fox and Ranck, 1975; Markus et al.
1994). Theta cell firing is also strongly modulated by
the state of the hippocampal electroencephalogram
(EEG); it generally doubles when the EEG switches
from large, irregular activity to theta.

In addition to differences in electrophysiological and
temporal firing properties, theta cells show different
positional firing properties than pyramidal cells. Most
strikingly, since theta cell discharge never shows the
long silent intervals characteristic of place cells, theta
cells discharge everywhere in the available space. Nev-
ertheless, there are clear, cell-specific variations in posi-
tional firing patterns, even for simultaneously recorded
theta cells; the firing in higher rate regions is 2–2.53
higher than in low-rate regions. On this basis, and be-
cause the sizes and shapes of high rate regions resem-
ble place cell firing fields, Kubie et al. (1990) inferred
that the positional firing patterns of theta cells in part
reflect direct, powerful connections from place cells.

With this background, we asked whether the effects of
card reconfigurations could be detected in the posi-
tional firing patterns of theta cells. By inspection, these
firing patterns were distorted in the fashions expected
from the movements of firing field centroids; two exam-
ples are given in Fig. 6. We therefore calculated the simi-
larity of a standard session and a reconfigured session
for each cell in two ways, by rigidly shifting the pattern
in the standard session and by applying the vector-field
transformation before shifting. In either case, the stan-
dard session pattern was moved relative to the reconfig-
ured pattern and the correlation between the patterns
calculated at each step. As before, the similarity was the z

Figure 5. Demonstration that distortions of firing field shapes
are predicted by Eq. 5. The gray bars show the mean similarity
score for standard and reconfigured session pairs derived in two
ways; the error bars show SEMs. In the first, the field from the stan-
dard session was rigidly superimposed on the field as explained in
the text. The mean similarity of 1.14 (SEM 5 0.043) was reliably
lower than the mean similarity of 1.30 (SEM 5 0.0395) when the
field from the standard session was first transformed according to
the vector-field equation. To determine how well the vector-field
transformation of the standard session reproduced the reconfig-
ured session, the similarity between standard session pairs after
rigid translation was also calculated. The mean similarity for pairs
of standard sessions of 1.31 (SEM 5 0.380) was no higher than for
pairs of vector-field transformations of standard and reconfigured
sessions, implying that reconfiguration causes distortions of firing
patterns and that those distortions are accurately reproduced by
the vector-field equation.
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transform of the maximum correlation. We calculated
both similarities for 13 theta cells, six recorded during
apart sessions and seven during together sessions.

The average similarity after rigid movement of the
firing pattern in the standard session onto the reconfig-
ured pattern was 0.583. This is reliably lower than the
average similarity of 0.643 seen after applying the vec-
tor-field transform to the pattern in the standard ses-
sion [paired t 5 2.39; df 5 12; P(t $ 2.39) 5 0.034].

Thus, the vector-field transform improved the similar-
ity. In the case of theta cells, however, the improvement
was less than optimal. To show this, we calculated simi-
larities for pair of standard sessions. The mean of 0.719
was significantly higher than for the rigid movement of
one standard session onto the reconfigured session
[paired t 5 3.13; df 5 12; P(t $ 3.13) 5 0.0087], but
not significantly different from the similarities based
on the vector transformation [paired t 5 1.32; df 5 12;
P(t $ 1.32) 5 0.21]. Despite the lack of statistical signif-
icance, however, we think that the accuracy of the vec-
tor-field transform is lower for theta cells than place
cells. The somewhat poorer predictions may be due to
the relatively strong dependence of theta cell activity
on behavior as well as on position (Kubie et al., 1990).

In addition to combining the apart and together ses-
sions for theta cells, they can be treated separately to see
whether the average direction and magnitude of pattern
movements are similar to the movements of firing field
centroids. To this end, we used the shift of position nec-
essary to maximize the similarity to estimate firing pat-
tern movements. For apart sessions, the mean horizon-
tal shift (Fig. 1 A) was 24.62 cm, in excellent agreement
with the average horizontal movement of 24.84 cm for
centroids of place-cell fields during apart sessions. Dur-
ing together sessions, the average horizontal movement
of theta cell firing patterns moved 11.49 cm, again in
excellent agreement with the corresponding value for
place cells of 1.84 cm. Thus, the effects of apart and to-
gether sessions on theta cells show strong parallels to
the effects on place cells. An interesting exception is the
lack of change of theta cell firing rate after reconfigura-
tions despite the decrease of place-cell activity.

D I S C U S S I O N

We showed that a single vector-field equation accounts
for the movements of firing field centers caused by
three kinds of stimulus manipulations; namely, rigid ro-
tations of both cards, card removals, and card reconfig-
urations. We further showed that the vector-field equa-
tion predicts three additional effects of card reconfigu-
rations. (a) Field movements parallel to the motion of
the line that joins the cards should be greater for apart
than together reconfigurations. (b) If the vector-field
affects entire firing fields and not just the center, firing
fields should stretch according to the same rule that de-
scribes motions of field centroids. This prediction was
confirmed by showing that superimposing a standard
field onto a reconfigured field was more accurate when
done with the vector-field equation than when done
with rigid translation. (c) Assuming that theta cells
(hippocampal interneurons in stratum oriens and stra-
tum radiatum) receive convergent location-specific in-
put from place cells (Kubie et al., 1990), the positional

Figure 6. Distortion of the positional firing patterns of CA1 in-
terneurons (theta cells) caused by moving the cards apart (A) or
together (B) by 258. (A) Note that the region of intense firing near
the white card in the standard session moves with the card after
the cards are moved apart by 258 and that the intense region near
the cylinder center moves in the direction of movement of the line
joining the field centers. (B) After a together manipulation, a
small region of intense activity near the counterclockwise edge of
the white card moves with the white card and the intense region to
the right of the cylinder center moves along with the line connect-
ing the two cards.
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firing patterns of theta cells should be distorted by card
reconfigurations. This effect was observed and quanti-
tatively predicted by the vector-field equation.

Why should a formulation as minimal as the vector-
field model perform so nicely? In our view, it reflects
the nature of the hippocampal representation of our
simplified environment. There are really two issues
concerning the nature of the representation. First, it
may be true that hippocampal pyramidal cells can en-
code nonspatial aspects of the environment under
more complex circumstances, but, in the pellet-chasing
task, the hippocampal pyramidal cells act in many ways
as nearly ideal place cells, at least in the spatial domain
(Muller, 1996; Eichenbaum et al., 1999; and see Fenton
and Muller, 1998, for a discussion of imperfections of
place-cell firing in the temporal domain). Thus, in the
pellet-chasing task, the firing rate of each place cell de-
creases with distance from the field centroid and does
not vary with head orientation (Muller et al., 1994).
These properties of place cells in the pellet-chasing
task make it natural to consider a vector-field approach.
We note, however, that the existence of more a compli-
cated representation in which pyramidal cell firing re-
flects behavior as well as position does not preclude a
viable vector-field model; all that is necessary is for the
positional distribution of behavior to change in a way
similar to changes of ideally location-specific activity.

The second aspect of the representation in line with
the vector-field approach is more controversial: we
think that the mathematical language of the vector-
field equation, with its assumption of local smoothness
and its inclusion of both stimuli as controllers for fields
everywhere in the environment, reflects the underlying
nature of the representation. In short, we think the
data and model imply that the place-cell representation
is truly map-like, so that place-cell discharge takes place
in a framework that incorporates features of two- (and
possibly three-) dimensional space.

This view differs from the combinatorial (or relational)
theory proposed by Eichenbaum and colleagues (see, for
example, Eichenbaum, 1996; Eichenbaum et al., 1999) in
that place cells are not triggered by an arbitrary selection
of stimuli. Our theory differs from the combinatorial
model in an even more fundamental way: we think that
neighboring firing fields cannot move independent of
each other after gentle stimulus manipulations that in-
duce neither partial nor complete remappings. It is a key
prediction of our model that firing field movements
must appear to be rigid in a small enough region of the
apparatus. Thus, within experimental error, we never ex-
pect to see two fields with coincident centers move apart
from each other to follow differential movements of two
stimuli. Specifically, our model predicts that the average
movement of two such fields will be zero across multiple
standard and reconfigured session pairs.

Another difference between our model and the com-
binatorial model was alluded to in the preceding paper
(Fenton et al., 2000); the angular and radial compo-
nents of field centroid displacements have a spatial or-
ganization; they vary systematically with the initial an-
gular position of the field centroid in the cylinder. The
observed smooth variations of centroid displacements
is a natural concomitant of the vector-field approach,
but requires an extra and arbitrary assumption in the
combinatorial approach.

Two other lines of evidence in favor of the vector-
field model arise from the distortions of field shape for
place cells and overall positional firing pattern distribu-
tion for theta cells. Both the existence and precise na-
ture of such “tidal” effects are predicted by the vector-
field equation. In contrast, there is no basis from the
strictly qualitative combinatorial theory to predict that
such effects should exist, and, if so, what form they
might take. Incorporating stretching of fields into the
combinatorial theory is possible only by specifying the
exact nature of the relationships among the triggering
stimuli for each place cell. If it turns out necessary to
propose that the relationships are the same for all cells
or that the relationships vary systematically with posi-
tion, the combinatorial model will come to resemble
the vector-field theory.

In addition to differences from the combinatorial
theory, our approach also diverges in several ways from
the work of O’Keefe and Burgess (1996). First, O’Keefe
and Burgess (1996) focused on the shape of the appara-
tus, to the exclusion of “marker” stimuli. Our two-card
experiments are a new line of evidence that nonstruc-
tural aspects of the stimulus environment can be major
determinants of firing field activity (see also Sharp et
al., 1990; Bostock et al., 1991; Kentros et al., 1998). This
is not, however, a fundamental issue; the feature-based
theory of O’Keefe and Burgess (1996) can be modified
to include marker stimuli as well as walls.

A more important issue is the decision by O’Keefe
and Burgess (1996) to identify specific walls of their
rectangular (and square) apparatuses as the key fea-
tures for individual place cells. This approach has the
advantage that it provides a direct account of the shape
of firing fields as well as of their transformations with
changes in the aspect ratio of the rectangle. In this re-
gard, the wall-feature theory resembles strongly the
combinatorial theory, although the tendency of nearby
walls to exert strong control has a spatial flavor
(O’Keefe, 1999). Thus, the wall-feature theory seems to
present a quantitative challenge to our views. In reality,
however, vector-field theory is not designed to explain
the current form of either the wall-feature theory or
the aspect-ratio data on which it is based. The key diffi-
culty is that the magnitude of the shape changes used
by O’Keefe and Burgess (1996) were large enough that
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they induced in some cells major changes in firing pat-
tern shape or suppression of firing fields. In agreement
with earlier experiments on doubling the size of an ap-
paratus (Muller and Kubie, 1987), O’Keefe and Bur-
gess (1996) found that the fields of some cells were
strongly altered in one or more rectangular appara-
tuses, putting the data outside of our discourse. We pre-
dict, however, that repeating the O’Keefe and Burgess
(1996) experiment with smaller (e.g., 20–30%, instead
of 100%) changes of wall length would leave all fields
recognizable and therefore provide a test of the viabil-
ity of a modified vector-field approach.

The issue of further testing the vector-field theory
raises the additional problem that the form of the the-
ory presented here is extremely specific; it is useful only
for two stimuli and for two stimuli inside a cylinder.
One direction for future research is to test whether the
effects of other stimulus manipulations (e.g., changing
the aspect ratio of a rectangle or modifying the cylinder
into an elliptically shaped chamber) are also amenable
to a vector-field approach. If field centroids move as
though the representation of the apparatus floor is
again being topologically stretched, it will be important
to try to develop more general forms of the vector-field
equation. In turn, such a generalization should permit
the design of additional experiments to test the model
even more rigorously.

Two other extensions of the two-card experiment and
its mathematical description are worth considering.
First, the two-card experiment serves as a useful (but by
no means unique) method of exploring information
processing within the hippocampus and its related
structures (Sharp, 1999). Thus, it would be extremely
interesting to see how reconfigurations would alter the
directional firing properties of head-direction cells
(Taube et al., 1990; Taube, 1994) and of cells in entorhi-
nal cortex, the dentate gyrus, the subiculum proper, and
other parts of the subicular complex. Second, the two-
card experiment provides a way of testing whether
place cells are in at least some circumstances causally
involved in guiding navigational behavior. Specifically,
if a rat were trained to find a hidden goal at a certain
location in the presence of two cue cards, we expect
that the vector-field equation would predict the ani-
mal’s new choice of goal location after the cards are re-
configured.

The final point we raise concerns the nature of the
neural network that is responsible for place-cell activity
and that may be used to guide navigational behavior. In
our experiments, every place cell was affected by both
stimulus cards if both were present, and removing ei-
ther card left fields unchanged and under the full con-
trol of the remaining card. We therefore chose to de-
velop a numerical theory that emphasizes the global
control of all cells by each identified stimulus. Our

choice of such a model reflects our belief that the place-
cell population represents a large scale, unitary con-
struct, the environment, rather than an agglomeration
of separate, smaller-scale features of the environment
such as pairwise relationships between objects (O’Keefe
and Conway, 1978; Hetherington and Shapiro, 1997;
but see Shapiro et al., 1997; Wood et al., 1999). In part,
this view is based on the notion that place cells (espe-
cially CA3 place cells) interact with each other and are
not a set of independent feature detectors (Muller et
al., 1991, 1996; Blum and Abbott, 1996; Mehta et al.,
1997; Samsonovich and McNaughton, 1997). It is our
contention that connections among place cells will
prove to be the essential feature that allows the place-
cell ensemble to be used in navigation. We speculate
that the mutual excitation of place cells may have to be
taken into account to explain the position-independent
decreases of the firing rates we observed; decreases in
the stimulus drive on the place cells may not allow quan-
titative solutions in a neural network theory.
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