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Absent in melanoma 1-like (AIM1L) serves as a novel candidate for overall 
survival in hepatocellular carcinoma
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ABSTRACT
Identifying biomarkers for hepatocellular carcinoma (HCC) survival is of great importance for the 
early detection, monitoring, and predicting for prognosis. This study aimed to investigate the 
candidate biomarkers for predicting overall survival (OS) in HCC patients. Using RTCGAToolbox, 
top 50 upregulated differential expressed genes (DEGs) were identified. The least absolute 
shrinkage and selection operator (LASSO) and Cox models were used to select powerful candidate 
genes, and log rank method was used to address the survivor functions of potential biomarkers. 
Selected by LASSO model, ANLN, TTK, AIM1L and person neoplasm cancer status might be 
candidate parameters associated with OS in HCC patients. After adjusting person neoplasm cancer 
status, ANLN and TTK levels in Cox model, AIM1L was identified as a risk factor for predicting OS in 
HCC patients (HR = 1.5, P = 0.037). Validated in The Cancer Genome Atlas (TCGA), International 
Cancer Genome Consortium (ICGC) and Gene Expression Omnibus (GEO) series, AIM1L was 
significantly overexpressed in tumor tissues compared to nontumor tissues (all P < 0.0001). HCC 
patients with high AIM1L in tumor tissues had significantly unfavorable OS compared to those 
with low AIM1L in TCGA, ICGC, Gene Expression Profiling Interactive Analysis (GEPIA) and Kaplan- 
Meier Plotter datasets (all P < 0.05). Conclusively, AIM1L is upregulated in tumor samples and 
serves as a novel candidate for predicting unfavorable OS in HCC patients.
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1 Introduction

Hepatocellular carcinoma (HCC) is one of the 
most frequently occurring human malignancies 
and the second leading cause of cancer-related 
deaths [1]. During the past few decades, the inci-
dence of HCC continued to increase, and it will be 
estimated to rise over the next 10 to 20 years [2–4]. 
Even recent advances in the first-line systemic 
treatment of showed effective results for HCC 
patients, the overall prognosis of this population 
is still dull [5–7]. The liver cancers including HCC 
related mortality has marked increased by more 
than 2% annually since 2007 [2]. To identify 
potential biomarkers for HCC survival should be 
of great importance for the early detection, mon-
itoring, and predicting for prognosis, which is also 
helpful for the understanding the pathological 
characteristics in HCC patients.

Several genetic candidates have been used in 
HCC surveillance, diagnosis, prognosis, and treat-
ment responses [8–10]. With the development of 
high-throughput technologies and gene chips, and 
next-generation sequencing, the genomic pattern 
of HCC has been determined which greatly 
improved our understanding of genetic and epige-
netic changes and their interaction in the HCC 
aggressiveness [8,11–14]. All these approaches 
have become fast approaches to identify differen-
tially expressed genes (DEGs) and functional path-
ways, and led to a dramatic increase in the 
accessibility of molecular insights at multiple bio-
logical levels involved in the HCC development 
[13,15–18]. Recently, these bioinformatics data 
repositories have rapidly evolved into an essential 
aid for molecular hepatology [15]. The availability 
of genome sequencing data from liver tumors pro-
vides us with valuable resources, which is vital to 
help us to facilitate the identification of promising 
biomarkers or therapeutic targets for HCC popu-
lation [14].

In our study, the top 50 upregulated DEGs 
between tumor and nontumor samples in HCC 
patients were identified using RTCGAToolbox 
package in The Cancer Genome Atlas (TCGA) 
dataset [19]. The least absolute shrinkage and 
selection operator (LASSO) model and Cox pro-
portional hazards regression model were used to 

investigate and validate the potential candidates 
[20]. The aim of this study is to screen promising 
candidates for predicting overall survival (OS) in 
HCC patients with integrative bioinformatic 
approaches.

2 Materials and methods

2.1 Data source

Using the ‘getFirehoseData’ function in the 
RTCGAToolbox package [19], gene expression 
data calculated by RNAseq from HCC patients 
were downloaded from the Firehose project when 
dataset was set as ‘LIHC’, runDate was set as 
‘20,160,128’, and RNAseqGene means ‘TRUE’. To 
assess the DEGs between the normal and tumor 
samples in HCC patients in the TCGA dataset, the 
‘getDiffExpressedGenes’ function was addressed 
with criteria P value < 0.05, adjusted P value < 
0.05 and logFC ≥ 2. Top 50 upregulated DEGs was 
obtained for heatmap performance when 
‘hmTopUpN’ equals to 50 and ‘hmTopDownN’ 
equals to 0.

2.2 Patients

The clinical and gene expression data with 
Z scores of Liver Hepatocellular Carcinoma 
(LIHC, TCGA, PanCancer Atlas) dataset was 
obtained from cBioPortal for cancer genomics 
[21,22]. After restricting tumor pathological type 
as HCC and matching gene expression levels with 
clinical data, 366 HCC patients were included in 
this study. Clinico-pathological characteristics 
including age, gender, American Joint Committee 
on Cancer (AJCC) staging, new tumor even after 
initial treatment, pathological TNM stages, person 
neoplasm cancer status, race, radiation therapy, 
and weight were available. Every participant pro-
vided verified informed consent, as declared in the 
original dataset.

In the International Cancer Genome 
Consortium (ICGC, https://daco.icgc.org/) data-
base, liver cancer project LIRI-JP with HCC sub-
type was included in this study [23]. 260 HCC 
donors were available. After matching the gene 
expression data and survival information, and 
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removing subjects with OS less than 20 days, 235 
cases were included in the final analysis.

2.3 Gene expression analysis

Raw.CEL files of the microarray datasets in Gene 
Expression Omnibus (GEO, https://www.ncbi.nlm. 
nih.gov/geo/) were downloaded and normalized by 
quantile method of Robust Multichip Analysis 
from the R affy package [24]. k-Nearest Neighbor 
method by impute function was used to impute 
the missing gene expression data [25]. Gene 
expression levels between the normal and tumor 
samples were calculated by the Limma pack-
age [26].

In the TCGA dataset, mRNA normalized counts 
data of LIHC derived from RNAseq Htseq plat-
form were downloaded from Genomic Data 
Commons Data Portal (https://cancergenome.nih. 
gov/). The edgeR package in R program were used 
to identify gene expression levels between tumor 
and nontumor tissues [27,28].

In the ICGC dataset, mRNA normalized counts 
data of 237 tumor samples and 197 normal liver 
samples in LIRI-JP project, which was derived 
from Illumina HiSeq platform, were downloaded 
from ICGC data portal (https://dcc.icgc.org/)[23].

2.4 LASSO model establishment

LASSO regression model was used to determine 
the most powerful prognostic markers for OS in 
HCC patients [20]. In the TCGA dataset, para-
meters including age, gender, tumor status, AJCC 
staging, weight, radiation therapy, race, pathologi-
cal status, and top 50 upregulated DEGs were 
included in the LASSO model. ‘glmnet’ and ‘sur-
vival’ packages were used for LASSO model estab-
lishment with family equals to ‘cox’ and alpha 
equals to 1. The model was validated with 5-fold 
cross-validation. Both ‘lambda.1se’ and ‘lambda. 
min’ were used to assess the coefficient of para-
meters [29].

2.5 Functional enrichment of candidate genes

Protein-protein interaction (PPI) analysis of the can-
didate genes were addressed in STRING [30] and 
STITCH databases [31]. Top 100 similar genes of the 

candidate genes were respectively searched from 
LIHC tumor, LIHC normal and Genotype-Tissue 
Expression (GTEx) liver datasets in GEPIA database 
[32]. All these AIM1L-related genes were screened 
by edgeR package with |log FC| > 1, and adjusted 
P value < 0.05 [27,28], differentially expressed genes 
were enrolled in the Gene Set Enrichment Analysis 
(GSEA) [33]. Investigate gene sets module in the 
Molecular Signatures Database (MSigDB) v7.4 in 
GSEA were used for Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway, Reactome, and 
Gene Ontology (GO) enrichment [34,35]. Top ten 
genesets were included with a false discovery rate 
(FDR) q-value less than 0.05.

2.6 Statistical analysis

Differences of gene levels between the individual 
groups were analyzed using student t test or 
Mann–Whitney U test based on data types. 
Parameters enrolled in LASSO model were included 
in Cox proportional hazards regression model. 
Results were reported as hazard ratios (HR) with 
95% confidence interval (95% CI). Log rank method 
was used to address the survivor functions of candi-
date genes for OS in HCC patients. The Kaplan 
Meier plotter [36] and Gene Expression Profiling 
Interactive Analysis (GEPIA) [32] online services 
were also used to confirm the survival relationship. 
Stata software version 16.0 (STATA Corp., Texas, 
USA) was used. A two-tailed P < 0.05 were consid-
ered significance for all tests.

3 Results

The LASSO model showed that TTK, ANLN, 
AIM1L and person neoplasm cancer status should 
be underlying candidates of OS in HCC. Using 
integrated bioinformatic methods, we found that 
AIM1L was at a low level in normal livers and 
significantly overexpressed in HCC tumor tissues. 
Cox regression model and Kaplan-Meier analysis 
in multiple datasets indicated that high levels of 
AIM1L in tumors contributed to unfavorable OS 
in HCC patients. Functional enrichment revealed 
that AIM1L-related genes might involve in cell 
proliferation and cell migration. We assumed 
that AIM1L exerts oncogenic roles in HCC 
progression.
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3.1 Top 50 upregulated candidate genes 
identified by RTCGAToolbox

Detected by the RTCGAToolbox package in 
R program, top 50 upregulated DEGs in tumor 
tissues were identified. The heatmap of these 
DEGs between tumor and nontumor samples 
were presented in Figure 1.

3.2 Selection of powerful biomarkers for OS in 
HCC patients by LASSO and Cox

In the TCGA dataset, the top 50 upregulated 
DEGs, together with clinico-pathological 

characteristics including age, gender, AJCC sta-
ging, new tumor even after initial treatment, 
pathological TNM stages, person neoplasm cancer 
status, race, radiation therapy, and weight were 
enrolled in LASSO model (Figure 2a). After the 
5-fold cross validation, parameters including TTK, 
ANLN, AIM1L and person neoplasm cancer status 
were recruited to be underlying candidates of OS 
in HCC patients when λ took the minimum value 
(Figure 2a). The regression coefficient plot of fac-
tors by LASSO was shown in Figure 2b.

To fit a Cox proportional hazards regression 
model, the ‘coxph’ function in R program was 
used. As summarized in Figure 3, AIM1L serves 

Figure 1. Differentially expressed genes (DEGs) between tumor and nontumor tissues in HCC patients in TCGA dataset were 
screened the ‘getDiffExpressedGenes’ function in RTCGAToolbox package with criteria P value < 0.05, adjusted P value < 0.05 and 
logFC ≥ 2. Top 50 upregulated DEGs was obtained for heatmap performance when ‘hmTopUpN’ equals to 50 and ‘hmTopDownN’ 
equals to 0.
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as an independent prognosis predictor for OS in 
HCC patients after adjusting TTK, ANLN and 
person neoplasm cancer status (HR = 1.5, 95% 
CI = 1.02–2.1, P = 0.037, Figure 3).

3.3 AIM1L expression

In Fagerberg’s report, RNAseq was performed to 
determine tissue-specificity of protein-coding 
genes of tissue samples from 95 human individuals 
representing 27 different tissues [37]. In 
Consensus dataset, normalized expression (NX) 
of the candidate from three transcriptomics data-
sets, namely, Human Protein Atlas (HPA), the 
Genotype-Tissue Expression (GTEx) project and 
the Functional Annotation of Mammalian 
Genomes 5 (FANTOM5) project, was calculated. 
As shown in Figure 4, AIM1L was expressed at low 
levels in normal liver tissues in Fagerberg’s dataset 
and Consensus dataset (Figure 4a and b). In addi-
tion, single cell RNA sequencing indicated that 
AIM1L was not detected in Hepatocytes, 
Cholangiocytes, Endothelial cells, Erythroid cells, 

Ito cells, Kupffer cells, T cells and B cells in liver 
tissue (Figure 4c).

Next, we compared the AIM1L expression 
between tumor and nontumor samples. In the 
TCGA dataset, AIM1L mRNA was significantly 
upregulated in tumor tissues compared to nontu-
mor tissues (P < 0.0001, Figure 5a). In the 50 
paired normal and tumor samples extracted from 
TCGA dataset, AIM1L was also significantly over-
expressed in tumor samples compared to normal 
livers (P < 0.0001, Figure 5b). Additionally, 
AIM1L mRNA was significantly upregulated in 
tumor tissues compared to nontumor tissues in 
LIRI-JP project from ICGC (P < 0.0001, 
Figure 5c) and GEO series including GSE45436 
[38], GSE55092 [39], GSE84402 [40], GSE101685 
[41], GSE14323 [42], GSE112790 [43], and 
GSE121248 [44] (all P < 0.0001, Figure 5d). In 
a rat model naturally occurring hepatotumorigen-
esis induced by oxidative stress [45], AIM1L was 
significantly upregulated in liver cancer tissues 
compared to normal liver tissues (P < 0.01, 
Figure 5e).

Figure 2. Parameter selection through LASSO regression (a) and elucidation of LASSO coefficient profiles for selected factors (b).
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3.4 High AIM1L accounts for unfavorable OS in 
HCC patients

As described in Figure 6, HCC patients from the 
TCGA dataset with high AIM1L in tumor tissues 
had significantly unfavorable OS compared to 
those with low AIM1L (P = 0.041, Figure 6a). In 
the LIRI-JP project from the ICGC database, HCC 
patients with high AIM1L in tumor tissues had 
significantly poorer OS than those with low 
AIM1L (P = 0.046, Figure 6b).

In the GEPIA database, high AIM1L might con-
tribute to significantly worse OS in HCC patients 
(HR = 1.5, P = 0.02, Figure 6c). Similarly, HCC 
patients with high AIM1L levels in tumor tissues 
had higher risk for unfavorable OS compared to 
those with low AIM1L in the Kaplan-Meier Plotter 
database (HR = 1.64, 95% CI = 1.16–2.33, 
P = 0.005, Figure 6d). Considered results from 

Cox model and Kaplan-Meier analysis, we 
assumed that AIM1L serves as a novel biomarker 
for predicting unfavorable OS in HCC patients.

3.5 Functional enrichment of AIM1L-related 
genes

The PPI of AIM1L was presented in 
Supplementary Figure S1. The similar genes of 
AIM1L in LIHC tumor, LIHC normal and GTEx 
datasets in GEPIA platform were summarized in 
Supplementary Table S1. Whether these AIM1L- 
related genes were differentially expressed between 
tumor and nontumor tissues were screened using 
the edgeR package in R program. Totally, 144 
AIM1L-related DEGs were selected in the func-
tional enrichment analysis (Supplementary Figure 
S2). As described in Figure 7, AIM1L-related genes 

Figure 3. Cox proportional hazards regression model using the ‘coxph’ function in R program was established. Four parameters 
including TTK, ANLN, AIM1L, and cancer status screened by LASSO model were included in Cox regression model for OS in HCC 
patients. After adjusting TTK and ANLN, AIM1L and cancer status were significantly associated with OS in HCC patients (both 
P < 0.05).
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involved in the process of extracellular matrix 
(ECM) organization, ECM-receptor interaction, 
calcium signaling pathway, focal adhesion, regula-
tion of action cytoskeleton, and neuroactive 

ligand-receptor interaction (all FDR < 0.05, 
Figure 7a). GO enrichment revealed that AIM1L- 
related genes implicated in multiple biological pro-
cesses (BP) including cell proliferation and cell 

Figure 4. Through searching AIM1L in PubMed (gene ID: 55057), the gene expression levels in 27 normal tissues from Fagerberg’s 
dataset were obtained. In Consensus dataset in GEPIA database, normalized expression (NX) of AIM1L from three transcriptomics 
datasets, namely, Human Protein Atlas (HPA), the Genotype-Tissue Expression (GTEx) project and the Functional Annotation of 
Mammalian Genomes 5 (FANTOM5) project, was calculated. AIM1L is at low levels in normal liver both in Fagerberg’s dataset (a) and 
Consensus dataset from HPA (b). In HPA database, single cell RNA sequencing indicated that AIM1L was not detected in 
Hepatocytes, Cholangiocytes, Endothelial cells, Erythroid cells, Ito cells, Kupffer cells, T cells and B cells in liver tissue (c).
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migration (Figure 7b). The GO cellular component 
(CC), and molecular function (MF) of AIM1L- 
related genes were also summarized in Figure 7b 
(all FDR < 0.05).

4 Discussion

Previously, AIM1L mRNA overexpression was 
identified in several cancer cell lines including 
prostate cancer, bladder inverted papilloma, blad-
der cancer, colon cancer, pancreas cancer, ovarian 
cancer, endometrial cancer, and breast cancer. 
While only placenta and testis exhibited high 
AIM1L mRNA expression among noncancerous 
tissues [46]. A pharmacogenomics study indicated 
that the risk of nausea and vomiting in opioid- 
treated cancer patients has a genetic component. 

Whole exome sequencing of DNA pools revealed 
that six single nucleotide polymorphisms in some 
genes including AIM1L were associated with nau-
sea and vomiting in opioid-treated cancer patients 
[47]. Unfortunately, impact of AIM1L on tumor-
igenesis is rarely investigated. Hence, the roles of 
AIM1L in the human cancers including HCC 
population are still essentially needed to be 
elucidated.

AIM1L mRNA was not detected in normal liver 
tissues [46], which is consistent with our results. 
AIM1L mRNA was significantly upregulated in 
tumor samples according to the findings from 
our bioinformatic study enrolled several public 
datasets. In addition, high AIM1L mRNA levels 
were significantly correlated with OS in HCC 
patients, both in TCGA and ICGC databases. 

Figure 5. AIM1L expression between tumor and nontumor samples in HCC patients were compared. AIM1L was significantly 
upregulated tumor tissues in TCGA (P < 0.0001, A), in 50 paired tumor samples from TCGA (P < 0.0001, B), in LIRI-JP project from 
ICGC (P < 0.0001, C) and in GEO series including GSE45436, GSE55092, GSE84402, GSE101685, GSE14323, GSE112790, and GSE121248 
(all P < 0.0001, D). In a rat model naturally occurring hepatotumorigenesis induced by oxidative stress, AIM1L was significantly 
upregulated in liver cancer tissues compared to normal liver tissues (P < 0.01, E).
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Our functional enrichment of AIM1L-related 
genes indicated that AIM1L and its-related genes 
might involve in cell proliferation, cell migration, 
and signaling pathways, namely, extracellular 
matrix organization, ECM-receptor interaction, 
calcium signaling pathway, etc. Since tumorigen-
esis roles of AIM1L in human cancers have not 
been reported in details, absent in melanoma 1 
(AIM1) has been studies in various human malig-
nancies [48–50]. AIM1 has been shown to be 
highly overexpressed in prostate cancer tissues, 
and cultured androgen-independent prostate can-
cer cells, indicating that AIM1 might be a potential 
therapeutic target for treatment of prostate cancer 

[51]. Among 93 bladder cancers samples and 26 
nonmalignant tissues, the frequencies of AIM1 
methylation were significantly higher in tumors 
(84%) than that in nontumor tissues (27%) [52]. 
The AIM1 methylation was also shown to be cor-
related with nasopharyngeal carcinoma compared 
to controls [53]. And AIM1 methylation was sig-
nificantly associated with invasive tumors [52]. 
Metastatic melanoma had higher frequency of 
AIM1 promoter hypermethylation than primary 
melanomas. Melanomas AIM1 methylation was 
correlated with disease-free survival (DFS) and 
OS in Stage I/II patients. Circulating methylated 
AIM1 was also detected in melanoma patients’ 

Figure 6. Associations between AIM1L and HCC survival. Kapan-Meier plot method indicated that HCC patients with AIM1L 
overexpression in tumor tissues had unfavorable OS compared to those with low levels of AIM1L in TCGA dataset (Log rank 
P = 0.041, A), ICGC dataset (Log rank P = 0.046, B), GEPIA (HR = 1.5, Log rank P = 0.02, C) and Kapan-Meier plotter (HR = 1.64, 95% 
CI = 1.16–2.33, Log rank P = 0.041, D) datasets.
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serum and was predictive of OS in Stage IV 
patients [49]. On the other hand, advanced pros-
tate cancers usually own AIM1 deletion and 
reduced expression. AIM1 depletion in prostate 
epithelial cells increases cell migration and inva-
sion, and anchorage-independent growth. AIM1 
could also inhibit pro-invasive properties in 
benign prostate epithelium. Moreover, AIM1 
downregulation results in high risk of metastatic 
dissemination in vivo [48]. AIM1 has also been 
identified as a potential suppressor candidate of 
human malignant melanoma [50]. Considered 

controversial results of AIM1 in human cancers 
and little literatures of AIM1L available, we 
assumed that further research focusing AIM1L 
on tumorigenesis in cancers including HCC 
should be urgently conducted.

This bioinformatic study has some limitations. 
First, no experiments were performed to address 
the effects of AM1L on hepatoma cellular func-
tions. Second, no our own follow-up data of HCC 
patients were available, the predictive values of 
AIM1L for OS in HCC patients were not validated 
in prospective cohorts. Third, this analysis was 

Figure 7. KEGG pathway, Reactome (a) and Gene Ontology (GO) enrichment (b) including Biological process (BP), Cellular 
component (CC), and Molecular function (MF) of differentially expressed related-genes of AIM1L screened by edgeR package in 
TCGA dataset with a |log FC| > 1, and adjusted P value < 0.05. Top ten genesets were addressed with a false discovery rate (FDR) 
q-value < 0.05.
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conducted at mRNA level, links between AIM1L 
protein and HCC prognosis was not investigated.

5 Conclusion

AIM1L mRNA is at a low level in normal liver 
tissues, and is upregulated in tumor samples. High 
levels of AIM1L in tumors contributed to unfavor-
able OS in HCC patients. The AIM1L-related 
genes might involve in cell proliferation and cell 
migration. based on our results, we cautiously 
draw a hypothesis that AIM1L is an oncogenic 
gene and promotes cancer progression in HCC 
patients. Considered few reports of AIM1L on 
HCC tumor pathological phenotypes, we suggest 
that experimental and clinical research of the 
impact of AIM1L on the development of HCC 
should be addressed in future.

Highlights

● AIM1L is low in normal liver and high in 
liver tumors.

● High AIM1L in tumors accounts for unfavor-
able OS in HCC patients.

● Enrichment analysis indicated that AIM1L 
might involve in cell proliferation and cell 
migration.
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