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Patterns of ties in problem‑solving 
networks and their dynamic 
properties
Dan Braha

Understanding the functions carried out by network subgraphs is important to revealing the 
organizing principles of diverse complex networks. Here, we study this question in the context of 
collaborative problem‑solving, which is central to a variety of domains from engineering and medicine 
to economics and social planning. We analyze the frequency of all three‑ and four‑node subgraphs 
in diverse real problem‑solving networks. The results reveal a strong association between a dynamic 
property of network subgraphs—synchronizability—and the frequency and significance of these 
subgraphs in problem‑solving networks. In particular, we show that highly‑synchronizable subgraphs 
are overrepresented in the networks, while poorly‑synchronizable subgraphs are underrepresented, 
suggesting that dynamical properties affect their prevalence, and thus the global structure of 
networks. We propose the possibility that selective pressures that favor more synchronizable 
subgraphs could account for their abundance in problem‑solving networks. The empirical results also 
show that unrelated problem‑solving networks display very similar local network structure, implying 
that network subgraphs could represent organizational routines that enable better coordination 
and control of problem‑solving activities. The findings could also have potential implications in 
understanding the functionality of network subgraphs in other information‑processing networks, 
including biological and social networks.

Problem-solving is a natural and ubiquitous human  activity1,2, and is concerned with devising courses of action 
aimed at changing existing situations into preferred  ones3. In this sense, the problem-solving activity is key to a 
variety of fields from engineering and medicine to economics and social planning. Some authors even argue for 
a direct resemblance between problem-solving processes and the structure of the scientific  method4.

As problem-solving becomes complex and dynamic, the limited ability of humans to handle complexity 
and large amount of information is accounted for by decomposing the complex system into components that 
are relatively  independent1–3. The problem is then solved collectively by multiple groups (a “group” can include 
one or more individuals), each solving problems with some degree of independence of  others1–3,5,6. In such a 
coordinated problem-solving environment, the decentralized groups make decisions on the basis of information 
that is available to them locally via the network of interactions with other groups. Often, in such a network of 
interactions, decentralized groups make decisions even though the local information is not available or known 
with  certainty2. In this case, decentralized groups need to make assumptions about the information generated 
by other units, and use these assumptions in their decisions. Groups update their decisions due to the avail-
ability of new information generated by other groups, such as changes in input, updates of shared assumptions, 
components, boundaries, or the discovery of  errors2. This interdependence between the various groups makes 
collaborative problem-solving fundamentally  iterative2,5 in the sense that as new information becomes avail-
able, the decentralized decisions are repeated to come closer to the problem-solving goals or specifications. This 
iterative problem-solving process proceeds until convergence  occurs2,5.

One way of thinking about coordinated problem-solving is to view it as involving both exploratory and 
exploitative behaviors. By receiving information locally via the network of interactions, decentralized groups 
gather information (exploration) that will ultimately be valuable in discovering a problem solution (exploitation). 
The tradeoff between the exploration of new possibilities and the exploitation of old  certainties6–8 is a central 
concern for a wide range of adaptive  processes9–18. Gathering too much information via the network of interac-
tions is likely to increase the quality of the over-all coordinated activity at the cost of slower convergence rates. 
On the other hand, carrying out exploitation more rapidly than exploration, e.g., by limiting the explorative 
information-gathering via local interactions, is likely to result in rapid convergence of the coordinated activity 
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at the cost of lacking the ability to adapt to significant changes in information, requirements or constraints 
mediated by connected groups in the network. The latter might result in a suboptimal overall solution. Thus, it 
is reasonable to expect that the structure—both global and local—of the network of group interactions repre-
sents a balance between exploration and exploitation. Another useful view of coordinated problem-solving is to 
look at it as a social process involving cooperation among self-oriented individuals or  groups4,19. According to 
this view, self-oriented individuals or groups cooperate and coordinate with each other, despite being driven to 
make local decisions that aim to achieve their local goals and viewpoints. This perspective is closely related to 
understanding the emergence of cooperation among selfish individuals—a key problem in  biology20,21, network 
 science22,23, and the social  sciences24. In decentralized problem-solving, cooperation among groups is promoted 
by several communication mechanisms including the creation of shared meaning, high-level goals and views, 
and common  knowledge4. Similar to exploration and exploitation, it is likely that the structure of ties in problem-
solving networks captures the tension between cooperation and competition, and might account for the long-
term cooperative actions between self-oriented groups.

Following the above discussion, it is important to understand how the output dynamics of one group can 
be affected by changes in the dynamics of other groups via the network of interactions. An important step in 
this direction is graph-based representations of real-world problem-solving.  Steward25 applied a square-matrix 
format (the adjacency matrix of a network) to represent a network of engineering task interactions, and used 
the method to determine a logical sequence for the tasks being modeled. This method was elaborated and 
extended in a variety of ways (e.g., using clustering analysis), including applications to a wide range of technical 
 domains5,26–29. Braha and Bar-Yam1,2,30 and  Braha31 used complex network theory to identify global statistical 
features that are shared across a variety of large-scale, real-world engineering problem-solving networks (ranging 
in size from 120 to 889 nodes), highlighting the similarity between problem-solving networks and other complex 
networks that occur in nature and  society32. These global statistical features include sparseness of connections, 
the “small-world” property characterized by highly clustered nodes and short distance between any two nodes, 
uneven node degree distributions characterized by a few very highly connected nodes (critical nodes or ‘hubs’), 
asymmetry between the distributions of incoming and outgoing information flows, disassortativity among nodes, 
community structure (modularity), and hierarchical network  organization1,2,30,31.

As discussed above, although the network structure of collaborative problem-solving is static the nodes 
(subproblems/tasks) represent values that change in time. Understanding the interplay between network struc-
tures and the global dynamics and performance of real-world problem-solving networks has been investigated 
by several researchers. Empirical work on small groups by organizational scientists show a mixed relationship 
between network density and  performance33–38. A meta-analysis34 of 37 studies of teams (ranging in size from 3 
to 15 members) showed a modest positive relationship between team’s performance and network structure such 
as density of ties and the centrality of team’s leaders in the network. Other studies found an inversely U-shaped 
relationship between density of ties and team  performance35–37, while other studies found no association at  all38. 
Several laboratory-based experiments (such as graph-coloring tasks) examined the effect of density, clustering, 
and efficiency (measured in terms of average path length) on the balance between problem-solving exploration 
and  exploitation18,39–43. For example, it was suggested that clustering inhibits exploration of new solutions (e.g., 
by copying and refining solutions of others) and promotes exploration of new knowledge and  facts18. Research 
that examines the relationship between structure and performance also benefited from simulations and agent-
based  modeling6,44,45. This research found, for example, that efficient network structures (e.g., fully connected 
networks) that facilitate fast diffusion of information quickly converge on solutions that are better than the ones 
corresponding to inefficient networks. However, in the long run, inefficient networks that facilitate exploration 
of new information could perform significantly better than inefficient  networks6.

By integrating theory, computational modeling, and empirical data of large-scale problem-solving networks, 
Braha and Bar-Yam1,2,30 provided explanations for how the various organizing principles observed in real-world 
problem-solving networks affect overall system dynamics. Sparseness and small-world properties were explained 
in terms of efficiency, exploration, and integration. The average connectivity and the extent of degree correla-
tions in the network determine whether collaborative problem-solving converge on an equilibrium, and how 
rapidly decentralized groups synchronize their activity. In particular, positively correlated networks tend to 
slow synchronization and convergence to an equilibrium. The right-skewed degree distributions and the char-
acteristic feature of ‘hubs’ (highly connected nodes) lead to ultra-robustness under the circumstances of adverse 
fluctuations that affect randomly selected nodes. On the other hand, the right-skewed distributions also make 
problem-solving networks more fragile and vulnerable to adverse fluctuations that occur at highly connected 
nodes; a condition that slows synchronization and convergence. At the same time, the right-skewed distributions 
enable remarkable improvement of synchronization performance when resources are preferentially allocated to 
the highly connected nodes in the network.

Although global topological features (such as path lengths and degree distributions) provide important insight 
into problem-solving  networks1,2, a more refined analysis of repeated patterns of ties (subgraphs) in problem-
solving networks is needed to truly understand their large-scale dynamical properties. The frequency of a sub-
graph with a particular arrangement of ties (typically a subgraph of three or four nodes) in a particular network 
is the number of different matches of this subgraph, where topologically identical arrangements are counted as 
the same type of subgraph. Network motifs are defined as subgraphs that are overrepresented in the real-world 
network relative to their appearance in an ensemble of appropriately randomized  networks46–48. Identifying sub-
graphs that are underrepresented in the real-world network (anti-motifs) is of equal importance in characterizing 
the network structure. The same network motifs may appear in diverse  networks46,49, suggesting that motifs can 
delineate broad families of  networks47, each family is characterized by common basic functionalities (e.g., net-
works that process information are distinct from networks that process energy flow and transfer). The exploration 
of subgraphs with two nodes (dyads) and three nodes (triads) has a long and rich  history50,51, beginning with the 
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work of Holland and  Leinhardt52 who used three-node subgraphs to study social networks. Similar techniques 
were applied in a variety of fields, including  ecology53–55, systems  biology48,49, economics and  finance56,57, and 
 neuroscience58. The dynamic and functional properties of network motifs in biological and ecological networks 
were explored both analytically and  empirically48,49,59. Significant effort has shown that abundant motifs in diverse 
transcription networks (both sensory and developmental) perform a variety of regulatory and information 
processing functions, such as balancing homeostasis and  plasticity59. It was also argued that the patterns of ties 
of biological and ecological network motifs make them more locally stable—roughly speaking, the tendency for 
system perturbations to damp out, returning the system to some persistent  equilibrium60. The stability analysis 
applied in these works is based on calculating the eigenvalues of randomly generated matrices (representing the 
Jacobian of an underlying dynamical system)—an approach introduced by Gardner and  Ashbey61, and extended 
to study ecological  stability53,60. For example,  Pimm53 showed that subgraphs that are commonly found in real 
ecological food webs (including subgraphs of three, or four species) also tend to be more locally stable. Similar 
concepts were applied to several biological networks (including transcription, signal transduction, and neu-
ronal networks) where it was shown that the stability properties of all structurally distinct three- or four-node 
subgraphs are highly correlated with their abundance in the  network49. The approach presented in the current 
paper follows this direction of comparing subgraph abundance in real networks with their dynamic properties.

In this paper, we extend our previous work on complex problem-solving  networks1,2,30 by analyzing the fre-
quency of all three- and four-node subgraphs in diverse real problem-solving networks. We attempt to answer 
the pertinent question of what determines the frequency of network subgraphs in real problem-solving networks. 
It has been shown that the system-level structure of many complex systems is best approximated by a hierar-
chical network organization with seamlessly nested  modularity62, a property also observed in problem-solving 
 networks30. A nested hierarchical organization of problem-solving networks means that there are many highly 
integrated small groups of individuals, which assemble into a few larger groups, which in turn can be integrated 
into even larger groups. It is plausible to reason that rapid and effective synchronization of the problem-solving 
activity evolves by the accumulation of rapidly synchronized intermediate configurations, which are intercon-
nected to form more synchronized complex structures. We thus hypothesize that real problem-solving networks 
will be biased towards repeated patterns of ties in which it is easier to obtain problem-solving synchronization. In 
this paper, we show that network subgraphs embedded in a variety of real problem-solving networks can emerge 
based on such considerations. In particular, we find a high correlation between a dynamic property of a network 

Figure 1.  A dynamic network model of collective problem-solving. (A) The problem-solving network consists 
of nodes, representing subproblems attempted by decentralized groups. The groups interact with one another 
via directed communication links. In the diagram, blue and red nodes represent ‘closed’ and ‘open’ subproblems, 
respectively. (B) The stochastic rules that govern the dynamics of the network. The model involves two 
parameters—the reopening probability β , and the self-directed probability δ.
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subgraph—synchronizability—and its frequency and statistical significance in real problem-solving networks. 
In this paper, synchronizability is characterized as the probability of rapidly coordinating the problem-solving 
activities, and is determined for each three- and four-node subgraph based on a corresponding dynamical model 
of collective problem-solving. The results in this paper show that highly-synchronizable subgraphs are overrep-
resented in the real problem-solving networks, while poorly-synchronizable subgraphs are underrepresented, 
suggesting that the dynamical properties of subgraphs affect their prevalence, and thus the global structure of 
problem-solving networks.

Modeling setup
Before studying the dynamic properties of subgraphs, we need to develop a generic dynamical model of collective 
problem-solving. To this end, we use the well-characterized stochastic model presented  in2. Consider the sce-
nario of solving a complex problem, which involves a large number of decentralized groups each of which solves 
a simpler subproblem task. As shown in Fig. 1A, subproblem tasks are represented as the nodes of a directed 
network, and a directed link from one subproblem to another represents the information dependency between 
the two subproblems. Each node in the network can be in two states: ‘open’ (if the subproblem is ‘unresolved’) or 
‘closed’ (if the subproblem is ‘resolved’). At each time step, a node is selected at random. If the node is in a ‘closed’ 
state (Fig. 1B, top), its state can be changed depending on the number of ‘open’ nodes connected to it through 
incoming links. These ‘open’ nodes send out new information that might lead to the reopening of a neighboring 
‘closed’ subproblem. More specifically, each ‘open’ subproblem causes a connected ‘closed’ subproblem to reopen 
its state with a reopening probability β . The strength of this reopening probability β plays an important role in 
determining the synchronization of the problem-solving activity. If the node is in an ‘open’ state (Fig. 1B, bottom), 
its state can be changed depending on two simultaneous conditions: (1) the node is not influenced by any of its 
neighboring ‘open’ nodes (each occurring with probability 1− β ), and (2) the node switches to a ‘closed’ state 
(with probability δ ). Condition 2 reflects the fact that, with the absence of nearest-neighbor influences, each group 
attempts to solve its subproblem in a self-directed way. As with the reopening probability β , the strength of the 
self-directed probability δ affects the synchronization of the problem-solving activity. Without loss of generality, 
we assume homogeneity with βi = β and δi = δ for all nodes in the network—considered as typical average values.

As the problem-solving activity evolves, ‘open’ subproblems are resolved, and may be reopened due to influ-
ences propagated by nearest-neighbor ‘open’ nodes. A mean-field analysis of large-scale problem-solving net-
works shows that—depending on β , δ , and the topology of the network—the process continues until either all 
subproblems are solved and full synchronization is achieved, or until the network settles into a quasi-equilibrium 

Figure 2.  Typical simulation runs of the dynamic problem-solving model on a real-world vehicle problem-
solving network with 120 nodes (subproblems) and 417 links (information flows). The graphs show the 
percentage of solved subproblems over time, for two simulation scenarios.
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state with a non-zero fraction of ‘open’  subproblems2. The latter outcome reflects partial synchronization, and 
is an undesirable characteristic of the problem-solving activity. To illustrate this dynamical behavior, we show 
in Fig. 2 two typical simulation runs of the dynamic network model. The underlying network in this case is a 
real-world vehicle problem-solving network (see “Data” section), which includes 120 nodes (subproblems) and 
417 links. We fix the self-directed probability δ = 0.5 , and vary the reopening probability β . Two different types 
of dynamical behavior are seen: while rapid synchronization is obtained for β = 0.2 , increasing the reopening 
probability to β = 0.25 results in poor synchronization.

The dynamic analysis can also be applied at the level of a single network subgraph. For a given pair of param-
eters β and δ , we apply the stochastic problem-solving model to a network subgraph and estimate (using Monte 
Carlo simulations) the probability of full synchronization after an arbitrarily chosen number of iterations. The 
effect of β and δ , as they vary from 0 to 1 , on the synchronization properties of several three-node network sub-
graphs is illustrated in Fig. 3. In general, different combinations of the two parameters β and δ result in different 
probabilities of subgraph’s synchronizability. For the two parameter values this is indicated by the heatmap in 
Fig. 3, which shows distinct dynamic properties exhibited by different three-node subgraphs. Intuitively, we see 
that the feedforward loop subgraph (Fig. 3A) is more likely to synchronize for a wide range of parameter values 
than the mutual-in subgraph (Fig. 3B), which includes a single two-node feedback loop. The mutual-in subgraph 
in turn is more likely to synchronize than other subgraphs that include a mixture of more complicated feedback 
loops (e.g. the mutual-cascade and the clique subgraphs in Fig. 3C,D). In the real world, model parameters are not 
constants but vary according to some distribution that depends on a variety of factors. In order to operationalize 
the concept of subgraph’s synchronizability, we sample a large number of parameter values β and δ from a uniform 
(0, 1) distribution, and compute the average synchronization probability over all realizations. This results in a 
synchronizability metric score (SM-score), which is assigned to all possible three- or four-node subgraphs, and 
then compared with subgraph frequency in real problem-solving networks.

Figure 3.  Synchronization probability of three-node subgraphs. The dynamic properties of several three-
node subgraphs, with increasing number and length of feedback loops, are explored: Feedforward Loop 
(A), Mutual-In (B) Mutual Cascade (C), and Clique (D). The synchronization probability for a given pair of 
parameters β and δ is determined by generating 100 realizations of the problem-solving model, and calculating 
the percentage of simulations in which full synchronization (i.e. all subproblems are solved) is achieved after an 
arbitrarily chosen number of 120 iterations. The synchronizability metric score (SM-metric) of a subgraph is 
obtained by averaging over 10,000 samples of the two parameters β and δ.
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Figure 4.  Ranking of all topologically distinct 13 three-node subgraphs according to their SM scores and 
occurrence in real problem-solving networks. The three-node subgraphs are ranked from largest to smallest 
SM scores (first column, top to bottom). We use the quartiles of the SM scores to divide the subgraphs into four 
natural SM classes (low SM score, moderately-low SM score, moderately-high SM score, and high SM score). 
The ranking of subgraphs, from largest to smallest frequencies (top to bottom), are shown in columns 2–8 where 
each column represents a particular real network (networks are ordered from larger to smaller). A monotonic 
association between synchronizability and subgraph frequency as well as between subgraph frequency in 
different problem-solving networks is suggested by the graphical representation. More rigorous nonparametric 
statistical analyses (Spearman’s correlation and Kruskal–Wallis tests) are used in the text to substantiate this 
suggestion.
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Data
We compiled well-characterized data from the literature, quantifying relationships between subproblems tasks 
in diverse problem-solving environments and geographical locations. The original data is part of a commonly 
used method (Dependency Structure Matrix, DSM), which uses a matrix representation of a directed graph to 
graphically depict information dependencies between the elements of a complex  system25–29. Mapping the inter-
dependencies among subproblem tasks in these data was conducted primarily using structured interviews with 
experienced individuals involved in the problem-solving activity. The problem-solving network data considered 
here include: vehicle development (‘Veh1’, see Supplementary Data S1 online) with 120 nodes and 417 directed 
 links2; real estate development (‘Red’, see Supplementary Data S2 online) with 91 nodes and 1148 directed  links63; 
strategy and knowledge development (‘Knwl’, see Supplementary Data S3 online) with 62 nodes and 285 directed 
 links64; microprocessor development (‘Mip’, see Supplementary Data S4 online) with 60 nodes and 301 directed 
 links65; bioscience facility development (‘Bio’, see Supplementary Data S5 online) with 53 nodes and 230 directed 
 links66; vehicle development (‘Veh2’, see Supplementary Data S6 online) with 44 nodes and 249 directed  links67; 
and equipment development (‘Equip’, see Supplementary Data S7 online) with 43 nodes and 120 directed  links68.

Results
We calculate the SM scores for all topologically distinct 13 three-node and 199 four-node directed subgraphs. 
We further enumerate the frequency of all three- and four-node subgraphs in each of the seven real problem-
solving networks, where the frequency of a subgraph in a particular network is the number of different matches 
of this subgraph. The frequency of subgraphs is then compared with their assigned SM scores. To get a sense 
of the relative order between the various subgraphs, we rank the three-node subgraphs by their assigned SM 

Figure 5.  Spearman’s rank correlations between three-node subgraph SM score and three-node subgraph 
frequency, for all real problem-solving networks. The panels show scatter plots of ranks of subgraph frequencies 
(ranking from high to low) versus ranks of SM scores (ranking from high to low), for each of the real networks.
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scores (largest to smallest) as well as by their frequencies (largest to smallest) in the real networks (Fig. 4). As 
Fig. 4 shows, a strong relationship is suggested between synchronizability and subgraph frequency. In general, 
subgraphs that are more synchronizable tend to be more abundant in the real networks. Of no less importance is 
the fact that the ranking of subgraph frequency is quite consistent across the diverse problem-solving networks, 
suggesting that the non-random nature of problem-solving networks is closely linked to the synchronizability 
of network subgraphs.

We apply several statistical tests to further substantiate the above observations. A series of Spearman rank 
correlations were conducted in order to determine if there were any relationships between SM score and subgraph 
frequency, in different problem-solving networks. Spearman’s rank correlation measures the strength and direc-
tion of monotonic association between two variables, and is determined by calculating Pearson’s correlation on 
the ranked values of the data. Figure 5 shows the Spearman’s correlation coefficients for three-node subgraphs. 
A two-tailed test of significance indicates the there is a strong monotonic relationship between SM score and 
subgraph frequency ( 0.84≤ rs(13) ≤ 0.91 , p < 0.001 ). On average, the higher the SM score of a subgraph, the 
more abundant the subgraph in the real network. The results are extended to four-node subgraphs as shown 
in Fig. 6. The 199 four-node subgraphs offer a fuller description of patterns of local interconnections than the 
three-node subgraphs, and can help refine the association between synchronizability and subgraph frequency. 
Results of the Spearman correlations indicate that there is a strong monotonic association between SM score 
and subgraph frequency (the vast majority of rs(199) are between 0.71 and 0.85 , p < 0.001 ). Surprisingly, even 

Figure 6.  Spearman’s rank correlations between four-node subgraph SM score and four-node subgraph 
frequency, for all real problem-solving networks. The panels are as in Fig. 5.
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with the increased variability introduced by four-node subgraphs, the general trend is the same as in the three-
node analysis.

To further explore the association between synchronizability and subgraph frequency, we use the quartiles 
of the SM scores to divide the subgraphs into four natural synchronizability classes (high SM score, moderately-
high SM score, moderately-low SM score, and low SM score). Figure 7 presents box plots of the frequencies of 
three-node subgraphs (grouped by the different synchronizability classes), for all of the real problem-solving 
networks. Figure 8 shows the results for four-node subgraphs. A box plot (also called a box-and-whisker plot) is 
a standard graphical tool (see caption of Fig. 7 for details) used in  statistics69 and other quantitative  sciences70–73 
to visualize summary statistics for sample  data69, compare groups of  data70–72, or identify extreme  events73. On 
average, the box plots indicate that the higher the synchronizability class of subgraphs, the higher the frequen-
cies of the subgraphs in the real network. A Kruskal–Wallis  test70—a nonparametric alternative to the one-way 
ANOVA—shows that there is a statistically significant difference in subgraph frequency between the different 
synchronizability classes ( p ≤ 0.05 for three-node subgraphs, and p < 0.001 for four-node subgraphs).

Figure 7.  Box plots of three-node subgraph frequencies contrasted by subgraph synchronizability class. 
Synchronizability classes 1, 2, 3, and 4 correspond to low SM score, moderately-low SM score, moderately-
high SM score, and high SM score, respectively. The box plot is a five-number summary of the empirical 
 distribution69–73. The outer edges of the box represent the first quartile Q1 (the 25th percentile), and the third 
quartile Q3 (the 75th percentile). The middle red line of the box indicates the median (or the 50th percentile). 
The length of the box, Q3−Q1 , is the interquartile range (IQR), which measures the spread in the data. The 
dashed line (“upper whisker”) that extends from Q3 is the smallest between the maximum value of the sample 
and Q3+ 1.5× IQR , and the dashed line (“lower whisker”) that extends from Q1 is the largest between the 
minimum value of the sample and Q1− 1.5× IQR . Observations that are farther than 1.5× IQR from the 
top or bottom of the box indicate outliers, and are shown as red + signs. The p‐value of the Kruskal–Wallis tests 
is less than 0.05, indicating a statistically significant difference in subgraph frequency between the different 
synchronizability classes. Each panel corresponds to a particular problem-solving network.
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Although the above results are revealing, there might be confounding and selection biases acting on the 
network’s subgraphs, which could introduce spurious relationships between subgraph synchronizability and 
subgraph frequency. To avoid any such selective biases, we extend the previous analysis by controlling for pos-
sible confounding factors. First, the unobserved mechanism that drives the organization of the problem-solving 
network might be a confounding factor. Therefore, we employ a random null model and focus on the statisti-
cal significance of subgraphs rather than looking at their counts in the network. The statistical significance of 
a subgraph is determined by comparing its frequency in the real network relative to its mean frequency in an 
ensemble of a large number of randomly generated  networks46–48,52. Statistically significant subgraphs (also 
called network motifs) are defined as subgraphs that occur in a real network much more often than in random 
networks. Using a random null model, which is free of any type of selective bias, will enable to adequately account 
and control for the non-random nature of problem-solving networks, and test the hypothesis that subgraphs 
with higher-synchronizability are more overrepresented—when compared to randomized networks—in real 
problem-solving networks.

To generate the ensemble of randomized networks, we employ the simplest Erdös-Rényi (ER) random graph 
 model32, which was used before to detect network  motifs48,49. To make a meaningful comparison, each simulated 
random network in the ensemble is constrained to have the same number of nodes and directed links as in the 
corresponding real network. The choice of the ER random graph model is motivated by the fact that it is devoid 
of any organizing  principles48,49. This reduces the risk of confounding by unmeasured factors, and makes the 
association between subgraph abundance and subgraph dynamics clearer. The statistical significance of each 
(three- or four-node) subgraph is measured by calculating the Z-score, which is defined as the difference between 
the subgraph frequency in the real network and the mean frequency in a large ensemble of randomly generated 
ER networks, divided by the standard deviation of the frequency values for the randomized  networks46–48,52. 
The Z-scores of three-node subgraphs was used in 47 to calculate the significance profile of a directed network, 
obtained by normalizing the vector of Z-scores. These methods were found to be useful in clustering networks 
into distinct families based on the correlations between their significance  profiles47. Since the most abundant 
subgraphs in sparse networks tend to have fewer edges than less abundant  subgraphs48,49, it is necessary in 
subsequent analysis to also control and eliminate the influence of edge number on subgraph significance, when 
studying the relationship between the significance of three- and four-node subgraphs and their dynamic proper-
ties. This is achieved, as suggested  in49, by dividing the subgraphs into density classes, each of which containing 
subgraphs with the same number of directed links.

Figure 8.  Box plots of four-node subgraph frequencies contrasted by subgraph synchronizability class. The box 
plots and panels are defined as in Fig. 7.
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Before presenting the main findings, it is instructive to examine the significance profiles of the 13 possible 
connected subgraphs for the real problem-solving networks. Figure 9 (left panel) shows the significance profiles 
of the 13 possible three-node subgraphs for the problem-solving networks. Results of Spearman correlations 
(Fig. 9, right panel) of the significance profiles indicate a strong monotonic relationship between subgraph 
abundance in different unrelated problem-solving networks (the vast majority of rs(13) are between 0.7 and 0.98 , 
p < 0.001 ), furthering the hypothesis that subgraph abundance is driven by dynamic properties of local network 
structures. Subgraphs 4, 5, 8, 12 and 13 have the highest normalized Z-scores, and subgraphs 3 and 9 the lowest. 
The feedforward loop (subgraph 4) is composed of a problem-solving activity that sends information to another 
activity, and both send information to a third activity. The regulated and regulating mutual subgraphs (subgraphs 
5 and 8, respectively) show mutual information feedback between two activities that send to or receive informa-
tion from a third activity. The semi-clique (subgraph 12) and clique (subgraph 13) display three activities that 
repeatedly interact with each other, either directly or via transitive interactions. The cascade (subgraph 3) and 
the feedback loop (subgraph 9) are rare. What could explain these patterns?

The bar graphs (Fig. 9, left panel) show the normalized Z-scores of the 13 subgraphs, which are ordered 
from left to right by their SM scores. Subgraphs 1, 2, and 3 represent a density class with 2 edges; subgraphs 
4, 6, 7, and 9 represent a density class with 3 edges; subgraphs 5, 8, 10, and 11 represent a density class with 4 
edges; and subgraphs 12 and 13 represent density classes with 5 and 6 edges, respectively. Remarkably, the com-
parison of the significance of subgraphs within a particular density class reveals a general trend of significant 
overrepresentation of subgraphs with higher synchronizability, and weak overrepresentation—and sometimes 
underrepresentation—of subgraphs with lower synchronizability. Subgraphs 1 and 2 consistently have higher 
normalized Z-scores than subgraph 3. In almost all cases, the order of normalized Z-scores among pairs of 
3-edge subgraphs (4, 6, 7, and 9) is consistent with their SM score ranking. Subgraph 4, which has the highest 
SM score, is significantly overrepresented in all networks relative to all other 3-edge subgraphs; and subgraph 9, 
which has the lowest SM score, is underrepresented in all networks relative to other 3-edge subgraphs. In almost 

Figure 9.  Spearman’s rank correlation matrix (right panel) of the three-node significance profiles (left panel) 
for the directed problem-solving networks (‘Red’ through ‘Equip’; for comparison, ‘Veh1’ was excluded due 
to an undefined Z-score of subgraph 13). (Left panel) The three-node significance profiles for the problem-
solving networks. The significance profile shows the normalized Z-score for each of the 13 connected subgraphs. 
(Bottom of left panel) The 13 connected subgraphs are ordered from left to right by their SM scores, and each is 
colored according to its synchronizability class (red, yellow, green, and blue corresponding to high, moderately-
high, moderately-low, and low SM scores, respectively). The normalized Z-score of all subgraphs is determined 
by comparison to 500 randomized ER networks. (Right panel) Spearman’s rank correlations among pairs of 
significance profiles. The panels show scatter plots of ranks of subgraph normalized Z-scores in one network 
(ranking from high to low) versus ranks of subgraph normalized Z-scores in another network (ranking from 
high to low).
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all cases, the order of normalized Z-scores among pairs of 4-edge subgraphs (5, 8, 10, and 11) is consistent with 
their SM score ranking. Subgraphs 5 and 8, with moderate SM scores, are significantly more overrepresented 
than subgraphs 10 and 11, which have lower SM scores.

The interplay between subgraph abundance and synchronizability can also be seen by comparing the SM 
classes of subgraphs, within a particular density group, with their Z-scores. The 2-edge subgraphs (1, 2, and 3) 
belong to the high SM class, and both the 3-edge subgraphs (4, 6, 7, and 9) and 4-edge subgraphs (5, 8, 10, and 
11) belong to multiple SM classes (Fig. 9, bottom left). Figures 10 and 11 show scatter plots of Z-score versus 
SM class for 3-edge and 4-edge subgraphs, respectively. We see that in almost all cases subgraphs of higher SM 
classes are more overrepresented in real problem-solving networks than subgraphs of lower SM classes. The 
complexity and variety of the 199 four-node directed subgraphs enables a more comprehensive statistical analysis 
of the relationship between subgraph abundance and subgraph synchronizability. A series of Kruskal–Wallis 
tests, one for each subgraph density class, are conducted to examine this relationship for four-node subgraphs. 
Figures 12, 13, 14 show that—in each of the 4-edge, 5-edge, and 6-edge density classes—there is a statistically 
significant difference in subgraph Z-score between the different synchronizability classes (p ≤ 0.05 for most 
cases). The comparison of the dynamic properties of subgraphs to their Z-scores reveals that—compared to a 
random null model—subgraphs with higher synchronizability are more enhanced in the real networks, while 
low- synchronizable subgraphs are more suppressed. This suggests that the dynamic properties of network 
subgraphs have an influence on their abundance in the network and correspondingly the overall organization 
of the problem-solving network.

Although the Z-score is a commonly used measure for detecting statistically significant  subgraphs46–48,51, it 
does not provide full information on the relative importance of subgraphs. The relative importance of a subgraph 

Figure 10.  Z-score classified by synchronizability class, for three-node subgraphs in the 3-edge density class. 
The panels show scatter plots of subgraph SM class (SM classes 1, 2, 3, and 4 correspond to low, moderately-low, 
moderately-high, and high SM scores, respectively) versus subgraph Z-score, for each of the real networks.
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can also be understood in terms of the relative difference between the subgraph frequency in the target network 
and the expected frequency in the random networks. One way to define the relative difference of two numbers 
is to take their difference divided by some function of the two  numbers74.  Following47,74, we define the relative 
difference (RD-score) of each (three- or four-node) subgraph as the difference between the subgraph frequency 
in the real network and the mean frequency in ER networks, divided by the sum of these two frequencies. In 
order to compare networks of different sizes, the vector of subgraph RD-scores can be normalized, obtaining 
the RD profile of the directed  network47. The Z and RD scores do not necessarily  overlap47—a subgraph can 
be detected as statistically significant (high Z-score) due to a narrow distribution of subgraph incidence in the 
randomized networks, but still have a slight difference between its abundance in the real network relative to 
random networks (small RD-score).

We compare the problem-solving networks based on the RD profiles of the 13 possible three-node subgraphs 
(Fig. 15, left panel). Results of Spearman correlations (Fig. 15, right panel) indicate a very strong monotonic 
relationship between subgraph RD-scores in different unrelated problem-solving networks ( rs(13) are between 
0.8 and 0.98 , p < 0.001 ), suggesting (as also implied by Fig. 9) that the networks have similar key subgraphs that 
were developed to have similar dynamic properties. Subgraphs 4, 5, 8, 12 and 13 have the highest normalized 
RD-scores, and subgraphs 3 and 9 the lowest, which is consistent with the results obtained for the Z-score. The 
bar graphs (Fig. 15, left panel) show the normalized RD-scores of the 13 subgraphs, which are ordered from 
left to right by their SM scores. Remarkably, and consistent with the results for the Z-score, the comparison of 
the RD-scores of subgraphs within a particular density class (i.e., 3-edge and 4-edge) reveals a general trend of 
large subgraph RD-scores having high SM classes, and small subgraph RD scores—and sometimes negative RD-
scores—having low SM classes. This trend is further substantiated when analyzing the 199 four-node subgraphs. 

Figure 11.  Z-score classified by synchronizability class for three-node subgraphs in the 4-edge density class. 
The panels show scatter plots of subgraph SM class (SM classes are numbered as in Fig. 10) versus subgraph 
Z-score, for each of the real networks.
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Figures 16, 17, 18 show that—in each of the 4-edge, 5-edge, and 6-edge density classes—there is a statistically 
significant difference in subgraph RD-score between the different synchronizability classes (Kruskal–Wallis, 
p ≤ 0.05 for most cases). The excellent correlation between subgraph synchronizability and both subgraph abun-
dance (Z-score) and relative difference (RD-score) indicates that subgraphs with higher synchronizability are 
both more statistically significant and occur in real networks at numbers that are significantly larger than those 
in randomized networks. In other words, highly-synchronizable subgraphs are both significant and important 
in real problem-solving networks. This suggests, once again, that the topology of problem-solving networks is 
deeply related to the dynamic properties of regular patterns of local interconnections, which constitute the basic 
building blocks of the networks.

Discussion
In this paper, we study the relationship between the dynamic properties of three- and four-node subgraphs and 
their frequency in directed problem-solving networks. The dynamic behavior of a subgraph is characterized in 
terms of its synchronizability—measured by the probability of rapidly converging to a problem-solving equilib-
rium. We give an evidence that highly synchronizable subgraphs are more overrepresented and critical in real 
problem-solving networks.

Figure 12.  Box plots of Z-scores, for four-node, 4-edge subgraphs, contrasted by subgraph SM class (SM classes 
are numbered as in Fig. 10). In most cases, the p‐value of the Kruskal–Wallis tests is less than 0.05, indicating a 
statistically significant difference in subgraph abundance (relative to a random null model) between the different 
synchronizability classes. Each panel corresponds to a particular problem-solving network. The box plots are 
defined as in Fig. 7.
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What is the origin of the correlation revealed between synchronizability and subgraph prevalence? Although 
it is difficult to fully disentangle the causative relation between the dynamical properties of subgraphs and their 
abundance, the results in this paper suggest that both global constraints and properties of local subgraphs influ-
ence the occurrence of subgraphs in a given problem-solving network. Collaborative problem-solving activity 
is organized into a nested hierarchical structure with semi-independent activities at different scales performing 
particular tasks that contribute to the overall performance of the network. In such a nested hierarchy, subgraphs—
patterns of local collaborative activities—do not exist in isolation but are embedded in a heavily interconnected 
network of “subgraphs within subgraphs”, which are connected to each other via patterns of local ties that are 
themselves subgraphs at higher  scales30. Moreover, as pointed out  in75,76, real complex network connections are 
often highly fluid; even when there exists an underlying fixed topological structure, connections between nodes 
(and so subgraphs) can adaptively become active or inactive over time. In complex problem-solving networks, 
we might expect the dynamics of lower-level subgraphs to change faster (i.e., on a shorter time scale) than 
higher-level configurations. The nested hierarchical organization along with the separation of time scales exerts 
a powerful effect on the synchronization and convergence of the problem-solving activity. In the short run, 
lower-level subgraphs will tend to rapidly synchronize to an approximate equilibrium state nearly independently 

Figure 13.  Box plots of Z-scores, for four-node, 5-edge subgraphs, contrasted by subgraph synchronizability 
class. Details and panels are as in Fig. 12. In most cases, the p‐value of the Kruskal–Wallis tests is less than 0.05, 
indicating a statistically significant difference in subgraph abundance (relative to a random null model) between 
the different synchronizability classes. The box plots are defined as in Fig. 7.
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of others. These accumulated intermediate steps can have dramatic effect on the rapid synchronization of the 
network as a whole. In other words, complex problem-solving networks will synchronize much more rapidly 
if there are synchronizable intermediate configurations than if there are not. It is thus plausible, as our results 
also suggest, that problem-solving networks are biased towards subgraphs in which it is easier to synchronized.

As was shown in Fig. 3, subgraphs that include feedback loops (e.g., the regulated mutual, semi-clique, and 
clique subgraphs) are less likely to synchronize. We therefore expect that these feedback-based subgraphs will 
be underrepresented in the networks (when compared with random networks). However, our study reveals that, 
while being relatively rare, these subgraphs are sometimes overrepresented in the networks. This suggests that 
other factors and selective pressures, besides synchronizability, are important in determining the prevalence of 
network subgraphs. One possible explanation might be that high performance of problem-solving networks usu-
ally involves a trade-off between the exploration for new information that could impede effective synchronization, 
and the exploitation of existing knowledge that facilitates effective synchronization. It is thus plausible that the 
abundance of highly-synchronizable subgraphs combined with the existence of subgraphs that include feedback 
loops reflect the balance between these exploratory and exploitative activities in real problem-solving networks.

Figure 14.  Box plots of Z-scores, for four-node, 6-edge subgraphs, contrasted by subgraph synchronizability 
class. Details and panels are as in Fig. 12. In most cases, the p‐value of the Kruskal–Wallis tests is less than 0.05, 
indicating a statistically significant difference in subgraph abundance (relative to a random null model) between 
the different synchronizability classes. The box plots are defined as in Fig. 7.
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For small-scale problem-solving networks, it is possible to generate highly optimizable interconnections that 
promote synchronization among group members since linking constraints are easy to satisfy. As the complexity 
of problem-solving crosses over some threshold, the purposeful attainment of highly-synchronizable structures 
becomes more difficult. In such cases, it is possible that the observed diversity of subgraphs in problem-solving 
networks reflects the cumulative effect of various short-term adaptive processes that combine to produce change 
in the local network structure over long-periods of time. The network structure of the problem-solving activity is 
modified to meet changes in the requirements of previously implemented solutions. For example, starting from 
previous group interactions underlying vehicle development the problem-solving network will change organically 
as incremental or innovative changes occur at the subsystem and component levels of the car. Similar considera-
tions apply to many other problem-solving processes including drug development, economic development, or 
social planning. In each problem-solving phase, various group interactions are attempted, their consequences 
are observed, and this information is used to guide the “re-wiring” of group interactions. The results in this 
paper might suggest that one of the forces behind the link rearrangement of group interactions is adaptation, 
present at different levels, towards effective synchronization within constraints of the problem-solving activity. 
The evolution of problem-solving networks shares some basic characteristics with evolutionary change in biotic 
populations, which involves a process of variation, selection, and transmission. If a collection of organizational 
patterns (subgraphs) differ in the efficiency with which they can synchronize, selection processes will favor such 
patterns of ties. Over time, such selection processes will lead to increased abundance of the more fit patterns of 
ties. The results in this paper suggest that selectivity of synchronizable configurations may guide the evolution of 

Figure 15.  Spearman’s rank correlation matrix (right panel) of the three-node RD profiles (left panel) for 
the directed problem-solving networks (‘Red’ through ‘Equip’; for comparison, ‘Veh1′ was excluded due to an 
undefined RD-score of subgraph 13). (Left panel) The three-node RD profiles for the problem-solving networks. 
The RD profile shows the normalized RD-score for each of the 13 connected subgraphs. (Bottom of left panel) 
The 13 connected subgraphs are ordered from left to right by their SM scores, and each is colored as described 
in Fig. 9. The normalized RD-score of all subgraphs is determined by comparison to 500 randomized ER 
networks. (Right panel) Spearman’s rank correlations among pairs of RD profiles. The panels show scatter plots 
of ranks of subgraph normalized RD-scores in one network (ranking from high to low) versus ranks of subgraph 
normalized RD-scores in another network (ranking from high to low).
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the problem-solving network, a mechanism that is essential for its subsequent rapidity. Changes in the structure 
of organizational interconnections emerge not only through selection, but also through a variety of transmis-
sion mechanisms, including mimicry, copying, learning, and re-use of network  motifs1,2. Organizations that 
are involved in problem-solving activities attempt to implement ‘best practices’ or adopt organizational forms 
extracted from other problem-solving activities that were successful in the  past77. Such imitation or copying 
processes would give rise to an increasing number of synchronizable network forms of organization.

The similarity in the local structure of distinct large-scale problem-solving networks, based on their subgraph 
significance and relative difference profiles (Figs. 9 and 15), leads to the intriguing possibility that subgraph 
abundance in problem-solving networks is a manifestation of organizational “routines.” The concept of routines 
plays a key role in organizational theory, strategic management, and evolutionary  economics78–80. Routines are 
defined as recurrent patterns of interactions executed by various actors, which represent behaviors, knowledge, 
or capabilities held in organizational  memory79,81. Organizational routines were proposed as analogous to bio-
logical  genes79 in which they are passed on by various transmission processes, such as learning and copying. 
Our theory could provide a bridge between the science of complex networks and the well-established concept 
of organizational routines. In particular, the study of network subgraphs could provide a powerful perspective 
on organizational routines. Our results show that large-scale problem-solving networks share repeated patterns 

Figure 16.  Box plots of RD-scores, for four-node, 4-edge subgraphs, contrasted by subgraph SM class (SM 
classes are numbered as in Fig. 10). In all cases, the p‐value of the Kruskal–Wallis tests is less than 0.05, 
indicating a statistically significant difference in subgraph RD-score between the different synchronizability 
classes. Each panel corresponds to a particular problem-solving network. The box plots are defined as in Fig. 7.
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of interdependent activities (routines) that are not idiosyncratic to a specific problem-solving organization but 
are universal across many distinct organizations. These repeated patterns might then be considered as problem-
solving routines—patterns of activity ties occurring in the network at numbers that are significantly higher 
than those in randomized networks, and that are conserved across a large number of distinct problem-solving 
networks. The main result in this paper is that the abundance of these problem-solving routines is highly cor-
related with their ability to synchronize and coordinate the problem-solving activity.

In conclusion, the results in this paper reveal a strong association between a dynamic property of network 
subgraphs—synchronizability—and the frequency and significance of these subgraphs in real-world problem-
solving networks. We suggested the possibility that selective pressures that favor more synchronizable subgraphs 
could account for the diverse abundance of subgraphs in problem-solving networks. Our empirical results show 
that unrelated problem-solving networks display very similar local network structure, defined in terms of the 
significance and relative difference profiles of three- and four-nodes connected subgraphs. These observations 
led us to the hypothesis that network subgraphs represent organizational routines that enable better coordina-
tion and control of the problem-solving activity as well as the exchange and sharing of knowledge within and 
across problem-solving activities.

Figure 17.  Box plots of RD-scores, for four-node, 5-edge subgraphs, contrasted by subgraph synchronizability 
class. Details and panels are as in Fig. 16. In most cases, the p‐value of the Kruskal–Wallis tests is less than 0.05, 
indicating a statistically significant difference in subgraph RD-score between the different synchronizability 
classes. The box plots are defined as in Fig. 7.
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