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Abstract

Motivation: Ubiquitination is widely involved in protein homeostasis and cell signaling. Ubiquitin E3 ligases are critical
regulators of ubiquitination that recognize and recruit specific ubiquitination targets for the final rate-limiting step of ubi-
quitin transfer reactions. Understanding the ubiquitin E3 ligase activities will provide knowledge in the upstream regula-
tor of the ubiquitination pathway and reveal potential mechanisms in biological processes and disease progression.
Recent advances in mass spectrometry-based proteomics have enabled deep profiling of ubiquitylome in a quantitative
manner. Yet, functional analysis of ubiquitylome dynamics and pathway activity remains challenging.

Results: Here, we developed a UbE3-APA, a computational algorithm and stand-alone python-based software for Ub
E3 ligase Activity Profiling Analysis. Combining an integrated annotation database with statistical analysis, UbE3-
APA identifies significantly activated or suppressed E3 ligases based on quantitative ubiquitylome proteomics data-
sets. Benchmarking the software with published quantitative ubiquitylome analysis confirms the genetic manipula-
tion of SPOP enzyme activity through overexpression and mutation. Application of the algorithm in the re-analysis
of a large cohort of ubiquitination proteomics study revealed the activation of PARKIN and the co-activation of other
E3 ligases in mitochondria depolarization-induced mitophagy process. We further demonstrated the application of
the algorithm in the DIA (data-independent acquisition)-based quantitative ubiquitylome analysis.

Availability and implementation: Source code and binaries are freely available for download at URL: https://github.
com/Chenlab-UMN/Ub-E3-ligase-Activity-Profiling-Analysis, implemented in python and supported on Linux and
MS Windows.

Contact: yuechen@umn.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Ubiquitylation is a key protein post-translational modification
(PTM) involved in diverse cellular processes including protein
homeostasis, cell signaling and epigenetic regulations. Its E1–E2–
E3 cascades linking an isopeptide bond between the c-terminus of
ubiquitin and a lysine residue of the target protein (Pickart, 2001)
to form a mono- or a polymer chain of ubiquitin with eight distinct
linkage types. Ubiquitylation not only acts as the essential modifi-
cation in protein degradation through proteasome that accounted
for the breakdown of over 80% of the proteins (Lee and Goldberg,
1998), but it also plays a crucial role in non-degradative functions,
including regulation of protein trans-location, protein–protein
interactions and enzymatic activity (Schnell and Hicke, 2003).
Within the process of ubiquitylation, E3, also known as the

ubiquitin ligase, mediates the ubiquitination substrates specificity
(Ordureau et al., 2015; Pickart, 2001). Changes in the E3 ligase
activities will lead to changes in ubiquitination of its target pro-
teins, and further regulate various downstream cellular processes
including cell-cycle, apoptosis and transcription regulation
(Hoeller and Dikic, 2009). Studies have found that dysfunction of
E3 ligases and these cellular functions may lead to neurodegenera-
tive diseases (McNaught et al., 2001; Oddo, 2008), cardiovascular
diseases (Herrmann et al., 2004) and development of cancer
(Hoeller et al., 2006; Nakayama and Nakayama, 2006), while
therapies and drugs have been developed to target specific E3
ligases for potential clinical applications (Bulatov and Ciulli,
2015; Petroski, 2008). Therefore, it is important to develop strat-
egies that evaluate the activities of different E3 ligases in a system-
wide manner.
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Recent advances in mass spectrometry have enabled deep profil-
ing of PTM pathways. Combining with quantitative proteomics
strategies such as SILAC and isobaric labeling, proteomics analysis
allows system-wide profiling of PTM dynamics at the site-specific
level. Such quantitative information provides a rich resource to de-
velop computational tools evaluating PTM pathway activities
(Olsen and Mann, 2013). Recent efforts studying kinase activities
based on quantitative phosphorylation datasets have led to the de-
velopment of several tools, including PTMsigDB (Krug et al., 2019),
IKAP (Mischnik et al., 2016), KinasePA (Yang et al., 2016), KSEA
(Wiredja et al., 2017) and KEA3 (Kuleshov et al., 2021). Among
these models, KEA3 collected 24 kinase substrate libraries from dif-
ferent sources as their database and test significance of kinase inte-
grating sum rank tests results of all libraries, while the rank-sum test
in PTMsigDB was supported by a collection of site-specific PTM sig-
nature of perturbations, kinase states and pathway activities from
published studies (Krug et al., 2019). IKAP used a non-linear opti-
mization routine to find enriched kinase, KinasePA used the direc-
tion pathway analysis to study insulin pathways (Yang et al., 2014)
and KSEA applies z-score test to find differentially activated kinases.
Despite these advances in kinase analysis, there is lack of bioinfor-
matic strategies for evaluating ubiquitin E3 ligase activities.

Improvements in biochemical enrichment and chemical labeling
strategies have allowed global quantification of ubiquitination dy-
namics (Elia et al., 2015; Kim et al., 2011; Udeshi et al., 2013;
Wagner et al., 2011) and measurement of site-specific ubiquitination
stoichiometries (Li et al., 2019). Recent bioinformatic efforts have
led to the development of multiple enzyme–substrate databases in
the ubiquitination pathway (Chen et al., 2019; Du et al., 2011; Han
et al., 2012; Li et al., 2017; 2021; Nguyen et al., 2016). In this
study, based on an integrated resource of ubiquitin E3 ligase and
substrate network, we proposed a computational strategy UbE3-
APA, Ubiquitin E3 ligase Activity Profiling Analysis (Fig. 1,
Supplementary Table S1), for systematic evaluating ubiquitin E3 lig-
ase activity based on quantitative ubiquitylome analysis. The model
was validated with two published large-scale proteomics studies
with different biological context (Sarraf et al., 2013; Theurillat
et al., 2014) and confirmed known regulatory mechanisms in the
pathway.

2 Materials and methods

2.1 Collecting E3–substrate interactions
We integrated ubiquitin E3 ligases and substrates relationship data
from the following three sources: UbiBrowser (Li et al., 2017),
Ubinet (Li et al., 2021; Nguyen et al., 2016) and a multidimensional

database collection (Chen et al., 2019). UbiBrowser is an extensive
database that collects interactions between E3 ligases and substrates.
They incorporate E3–substrate interactions (ESIs) from both litera-
ture manual curations and predictions, which were based on a set of
biological features and Bayesian models, in their database. Another
online platform that updated recently, Ubinet, focuses on ESI collec-
tion, prediction and visualization across different species. They pre-
dicted ESIs based on the substrate specificity of E3 ligases extracted
from experiment verified interactions. To characterize the inter-
action network between E3 ligases and their substrates, the Chen
group collected ESIs from a variety of sources: E3net (Han et al.,
2012), hUbiquitome (Du et al., 2011), Uniprot (Bateman et al.,
2017) and BioGRID (Chatr-Aryamontri et al., 2017). They collected
ESIs directly from the first two sources, and they gathered the inter-
action between E3 ligase and proteins in the last two databases
through data mining and selected those physical interactions sup-
ported by low throughput methods. By integrating the Ub E3–sub-
strate interaction network from these three resources, we established
the database for Ub E3 ligase activity profiling analysis
(Supplementary Table S2). Only the interactions that were sup-
ported by literature from all sources above were integrated into our
database. Those interactions solely supported by prediction models
were not included.

2.2 Algorithm development for ubiquitin E3 ligase

activity profiling analysis
The E3 ligase activity analysis model profiles E3 ligase activities
based on a bootstrapping procedure by evaluating the difference be-
tween the quantitative ratios of E3 ubiquitination targets and the
overall background. Firstly, the program collects the quantitative
ratios of identified ubiquitination sites and proteins from proteomics
analysis. To normalize the site-specific ubiquitination ratios for stat-
istical analysis, the program offers two options—computationally
normalized values or protein-normalized values. Computationally
normalized ubiquitination ratios are often provided by the quantifi-
cation software. For example, Maxquant provides normalized site-
specific ubiquitination ratios based on the median ratios of all
quantified sites. To obtain protein-normalized ubiquitination ratios,
the program will fetch the original ratios of both the ubiquitination
sites and their corresponding ubiquitination proteins. The protein
quantification ratios should be calculated excluding ubiquitinated
peptides. The protein-normalized ubiquitination site ratios are cal-
culated by dividing the original site ratios by the original ratios of
the corresponding proteins. The normalized site-ratios are then log2
transformed for downstream analysis and averaged to generate the
quantification ratios of ubiquitination protein substrates.

Fig. 1. A workflow of analyzing quantitative ubiquitylation proteome with E3 ligases activity profiling analysis
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Secondly, based on the integrated ubiquitin E3 ligase–substrate
database, the program iteratively analyzes each E3 ligase and extract
all substrates quantified for each E3 ligase in the quantitative data-
sets. Then, for each E3 ligase, the program collects the total number
of quantified targets and the average quantification ratios of its
targets.

Thirdly, the program performs randomized selection from the
quantification datasets. At this point, the program offers two
options for enrichment testing—protein-level profile analysis and
site-level profile analysis. For protein-level profile analysis, the pro-
gram randomly selects the same number of ubiquitylation proteins
as the number of targets for a specific E3 ligase and then computes
the average quantification ratios of selected ubiquitination proteins.
For site-level profile analysis, the program randomly selects the
same number of ubiquitylation sites as the number of sites quanti-
fied for known targets of a specific E3 ligase and then computes the
average quantification ratios of selected ubiquitination sites. The
random selection process is repeated various times for every E3 lig-
ase for parameter optimization and the data analysis in this study
was performed with 10 000 repeats.

Lastly, the average ratios of randomly selected groups of ubiqui-
tination proteins or sites were fit into a normal distribution based on
the central limit theorem. Based on this distribution, the program
calculates the statistical significance for the averaged ratio of the E3
ligase protein targets or sites quantified in the dataset using the for-
mula below.
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Here, s stands for the average quantification ratios of ubiquitina-
tion substrate proteins or sites quantified for a given E3 ligase in the
dataset, r stands for the average ratio of one group of randomly
selected proteins or sites, rr stands for the standard deviation for the
distribution of all the average ratios of randomly selected groups of
ubiquitination proteins or sites, z stands for z-score and P stands for
the P-value.

The program outputs tab-delimited results in text format. To
generate a more concise output file, the program offers the option to
group E3 ligases. The grouping is helpful as some E3 ligases share
ubiquitination targets and depending on the analysis depth, not all
targets are quantifiable in the datasets. E3 ligases are grouped to-
gether with the leading E3 ligases has all the ubiquitination sub-
strates in this group while the remaining E3 ligases in the group only
accounts for a subset of the ubiquitination substrates in the group
with no unique substrates. In this way, users can filter out E3 ligases
that have no unique substrates but get enriched because of a few
common substrates as shown in our analysis result, and therefore,
put more emphasis on the E3 ligases whose activity profiles domin-
ate the ubiquitination dynamics. The workflow was written into a
python package, and can be accessed from either PyPI, the standard
way of installing python package or our GitHub webpage.

2.3 Analysis of large-scale quantitative ubiquitylome

proteomics datasets
We benchmarked our algorithm using two published global ubiqui-
tylome analysis. First, we collected original ubiquitylation ratios
generated by two studies. One study focused on how SPOP-mutant
affects ubiquitylome and prostate cancer (Theurillat et al., 2014).
From this study, we collected the protein-normalized median log2
ratio of quantified ubiquitination site under each experimental con-
dition. The other one focused on the relation between mitochondrial
depolarization and PARKIN-dependent ubiquitylome (Sarraf et al.,
2013). In this study, we collected the log2 site ratios of quantified
ubiquitination site under each experimental condition. Second, we
reorganized original data into different tables according to experi-
mental groups described in literature. In this way, the SPOP related

data was reorganized into six groups, containing two of mutant-
control, mutant-wild-type and mutant-wild-type each. Meanwhile,
the PARKIN-related data was reorganized into 73 groups of experi-
ments treated with different chemicals or with various genetic back-
ground. Thirdly, the protein-level UbE3-APA analysis was applied
to profile E3 ligase activities in both studies. Ubiquitin site ratios
from both studies were log2 ratios, so we analyzed them directly
without further log transformation. For the PARKIN study, the
grouped protein-level analysis was performed. In the group mode,
the E3 ligases in the results were clustered when they are sharing the
same set of quantifiable targets and the E3 ligase that has the great-
est number of quantifiable substrates in the group was defined as the
leading E3 ligase. Correlation of E3 ligase profiles between each
pair of experiments was calculated with the two-dimensional
Euclidean distance between E3 ligase activity profiles in
experiments.

We further applied our model to two recently published ubiqui-
tylome studies with data-independent acquisition (DIA) analysis.
First, we gathered original ubiquitylation intensities generated by
two studies. One study explored how tumor necrosis factor (TNF)
treatment affects ubiquitylome (Hansen et al., 2021). And we col-
lected the average log2 intensities of quantified ubiquitination site of
treated group and mock group from this study respectively. The
other study investigated ubiquitylome changes under USP7 inhib-
ition with chemical inhibition and knockdown methods (Steger
et al., 2021). In this study, we collected the average log2 site inten-
sities of quantified ubiquitination site under each experimental con-
dition respectively. Second, we reorganized original intensity data
into ratios by comparing different treatment groups described in lit-
erature. In this way, we calculated the Treated/Mock ratios in TNF
treatment study. And we calculated siCTRLþFT671/
siCTRLþDMSO and siUSP7þFT671/siUSP7þDMSO in the USP7
study. Lastly, we applied protein-level UbE3-APA analysis for both
studies in the grouped mode.

2.4 Model accessibility and utility
We packed the whole UbE3-APA model into a python3 library on
PyPI to make it accessible. And the most direct way of installing the
library is executing the pip commend from a python console. For
Unix/macOS/Windows users, use ‘python -m pip install ube3_apa’
for installation..

The main function that performs that analysis is e3enrich. It
takes two tables and a set of parameters as standard input. The first
of two tables is the site ratio table which records the protein ID, the
site position and site ratio of every ubiquitylation site in this experi-
ment. The second one, the protein ratio table, contains information
about protein ID and the ratio of different proteins instead of sites.
The input of this table is optional and triggers normalization of site
ratio by corresponding protein ratio. Other parameters can be modi-
fied to fit different types of protein ID inputs, change the directory
that results are generated and select various output formats based on
research focus. A detailed explanation of this function is in the
Supplementary Material. And contents of input and output table
were also explained (Supplementary Table S1).

All related files including the code, the E3 ligase substrate dic-
tionary, example input files were also uploaded to GitHub, which
can be downloaded from the following link: https://github.com/
Chenlab-UMN/Ub-E3-ligase-Activity-Profiling-Analysis.

3 Results

3.1 Establish a comprehensive ESI network
We collected datasets with rich information of ESIs supported by
biological experiments from multiple sources, including the
UbiBrowser, the Ubinet and another published ESI database (Li
et al., 2017, 2021)(Chen et al., 2019). Comparing the information
from the three data sources showed a largely overlapping informa-
tion with some differences (Fig. 2). After removing redundancy and
discrepancies, we established an integrated database for human ubi-
quitin E3 ligase–substrate interaction that include 354 E3 ligases
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and 2501 interactions (Supplementary Table S2). All E3 ligases
interactions collected in the database were built in the package to
allow comprehensive analysis.

3.2 Profile E3 ligase activity in quantitative ubiquitylome

studies
With the establishment of a comprehensive E3 ligase–substrate data-
base, the program collects the site and protein-specific data from

quantitative ubiquitylome studies. To profile E3 ligase activity based
on this data, we reasoned that a physiologically meaningful changes
in ubiquitin E3 ligase activities should be reflected on the overall

changes of the ubiquitination abundance of their corresponding tar-
gets (Fig. 3a). As the ubiquitylome proteomics analysis mainly pro-
vide site-specific quantification of ubiquitination, the program

offers the option to calculate the averaged site ratios of a target pro-
tein to represent the ubiquitination changes of each protein for the

protein-level E3 ligase activity profile analysis. Then, all quantified
ubiquitination proteins for a specific E3 ligase in the dataset will be
collected as a sample group. The same number of quantified ubiqui-

tination proteins as the number of quantified substrates for any
given E3 ligase will be randomly selected from the ubiquitylome

dataset in a bootstrapping procedure. Based on the Central Limit
Theorem, the average quantification ratios of each group of ran-
domly selected ubiquitinated proteins should form a normal distri-

bution. Based on this reference distribution, we can estimate the
statistical significance of the average ubiquitination ratio of the sub-

strate group for an E3 ligase (Fig. 3a). A significant change in the ac-
tivity profile can indicate a significant increase or decrease of E3
ligase activity in the context of experimental conditions comparing

to the overall changes in ubiquitination dynamics in the back-
ground. The protein-level E3 ligase activity profile analysis was used

for the downstream applications.
To further explore how the number of quantified substrates and

the times of sampling may affect the analysis processes and results,

we performed tests with different parameters (Fig. 3b and c). Our
data showed that if more substrates of any given E3 ligases were

quantified, the standard deviation of randomly selected sample
ratios for the activity profile analysis decreased, which therefore led
to more statistically significant estimation of E3 ligase substrate

ratios based on the distribution (Fig. 3b). This built-in mechanism of
our model certainly supports the notion that E3 ligase activity pro-

file could be better assessed if more E3 ligase substrates were quanti-
fied. Our test of the sampling process showed that increasing the
number of random samplings in the bootstrapping process could re-

duce the variation of P-values calculated based on the sampling dis-
tribution and therefore led to more reliable and precise estimation of

the statistical significance (Fig. 3c). On the other hand, increasing
the number of random samplings would also cost more time per run
and reduce the efficiency of the analysis (Fig. 3c). Considering both

efficiency and reliability of the results, we have selected 10 000 times
of repeats for the random selection process in E3 ligase activity
profiling analysis.

3.3 Validate UbE3-APA workflow with the quantitative

ubiquitylome analysis of SPOP E3 ligase
To validate our algorithm, we chose a quantitative proteomics study
that aimed to characterize ubiquitination dynamics that was medi-
ated by SPOP, an E3 ligase that is frequently mutated in prostate
cancer and affects the regulation of downstream pathways in cancer
progression (Theurillat et al., 2014). This study included two sets of
quantitative proteomics experiments and each set of experiment
aimed to quantify the ubiquitination dynamics upon the overexpres-
sion of vector control, SPOP-wild-type (WT) and one of the two
SPOP-mutants F133L and Y87N. Both mutations are naturally
occurring mutations in prostate cancer and known to suppress the
SPOP-WT induced ubiquitylation. The quantitative analysis was
performed using SILAC workflow with the expression of each form
of SPOP-WT or vector control pairing to one of the SPOP-mutant.

Using UbE3-APA workflow, we analyzed the normalized quanti-
tative ubiquitination ratios included in their Supplementary
Material across all six pairs of SILAC experiments (Supplementary
Table S3). The activity profiling analysis showed that the SPOP ac-
tivity was significantly enriched in cells overexpressing SPOP-WT
when comparing to cells overexpressing vector control or either one
of the SPOP mutants (Fig. 4a). When comparing between cells
expressing SPOP mutant and vector control, our model found no
significant changes in SPOP activity. These profiling analysis results
matched well with SPOP ubiquitylation activity differences expected
in the original study. The activity profiling analysis also allowed us
to generate volcano plots with the statistical significance test and
quantification ratios. Two examples with the Y87N (L)—WT (H)
group and the Y87N (L)—mutant (H) group were shown (Fig. 4b
and c). As clearly shown, when SPOP-WT was overexpressed, the
SPOP activity increased significantly comparing to the overexpres-
sion of SPOP-Y87N mutant with significantly increased SILAC H/L
ratios of SPOP target proteins, while the SPOP activity did not
change when comparing the cells overexpressing SPOP-Y87N mu-
tant and vector control.

3.4 Apply UbE3-APA model to profile E3 ligase activities

in response to mitochondrial depolarization
We applied UbE3-APA workflow to analyze a quantitative ubiquity-
lome study that focused on PARKIN and global ubiquitylation

Fig. 2. Overlap and integration of the E3 ligase–substrate data resources

Fig. 3. Establishing the statistical model for UbE3-APA (a) Statistical modeling to

evaluate an E3 ligase activity profile in UbE3-APA analysis. (b) Variations of standard

deviations of the sampling ratios toward E3 ligases with different number of quanti-

fied substrates (testing with a dataset in the SPOP study). (c) Variations of SPOP P-

value and analysis time for single run in seconds (s) with various number of sampling

times for E3 ligase activity profiling testing with a dataset in the SPOP study
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network in response to mitochondrial depolarization (Sarraf et al.,
2013). This large-scale study included 73 quantitative ubiquitylome
proteomics analysis to explore the dynamics of the ubiquitination
pathways under various mitochondrial depolarization treatment as
well as in cells with different genetic background, and detailed infor-
mation of experiment condition of each group we collected from
Supplementary Data in original paper (Sarraf et al., 2013) were
listed (Supplementary Table S4). Analysis of all the datasets with
UbE3-APA workflow showed that when mitochondria was not
damaged, there was not an apparent PARKIN activity even when
PARKIN was overexpressed (Supplementary Table S5). Once the
mitochondria were polarized, there was a significant increase of
PARKIN activity (Fig. 5a). Inhibition of Pink1, the upstream kinase
activating PARKIN, abolished the activation of PARKIN as
expected when mitochondria was depolarized. When mitochondria
were depolarized, we could not see an apparent activation of
PARKIN based on ubiquitylome analysis data (Fig. 5b). But when
cells were treated with bafilomycin, an autophagy inhibitor, there
was a strong indication of activation of PARKIN upon mitochondria
depolarization (Fig. 5c), suggesting that the ubiquitinated substrates
of PARKIN could not be efficiently degraded. Therefore, this data
agrees well with the knowledge that PARKIN activation led to mito-
chondria degradation through autophagy process and it also sug-
gested that PARKIN substrates are mainly degraded through
autophagy pathways. In addition, the dataset also included the pro-
teasome inhibition experiment upon mitochondria depolarization.
Interestingly, our analysis showed that the inhibition of proteasome
activity alone showed no strong enrichment of PARKIN substrate
ubiquitination, which could suggest that either PARKIN substrates
were mainly degraded through processes other than proteasome deg-
radation (such as autophagy), or PARKIN was not activated upon
mitochondria depolarization when proteasome was inhibited
(Fig. 5c). Analysis of the dataset with the cotreatment of cells with
both proteasome inhibitor and autophagy inhibitor showed that
PARKIN was indeed not activated upon proteasome inhibition be-
cause even autophagy inhibitor treatment failed to enrich PARKIN
ubiquitination substrates (Fig. 5c). This finding agreed well with
previously published observation that upon proteasome inhibition,
mitochondria depolarization failed to induce mitochondria

fragmentation despite of PARKIN translocation to mitochondria
(Tanaka et al., 2010).

We then integrated the analysis of the ubiquitylome dynamics in
all experimental conditions in the mitochondria depolarization
study and plot the E3 ligase activity profiles in heatmap (Fig. 6,
Supplementary Table S6). The E3 ligases were clustered with hier-
archical clustering based on how similar their activity profiles
change under different treatment conditions. Out of 203 E3 ligases
profiled by our model across all experimental conditions, three E3
ligases (FZR1, AMFR, MARCHF5) showed a very similar activity
pattern as PARKIN across most of the experimental conditions.
Since the activity profiles of E3 ligases were analyzed based on their
corresponding substrates, it was likely that E3 ligases showed simi-
lar activity profiles when they shared common substrates. For better
clarification, we mapped the E3-ligase—substrate interaction net-
works for the four E3 ligases (Fig. 7a, Supplementary Table S7). The
network indicated the shared and unique connection between each
E3 ligase and corresponding substrates, the number of times the sub-
strates were quantified under all conditions and the significance of
ubiquitination level changes for the substrate proteins. We can clear-
ly see that the unique substrates of AMFR and FZR1 did not change
significantly to contribute to activity profiles and their activity
changes were mainly caused by the changes of ubiquitination levels
in substrates shared with PARKIN. Only MARCHF5 had unique
substrates whose ratios were changed significantly and similarly
along with those unique substrates of PARKIN. For better clarifica-
tion of the data, we included ‘Group’ mode to the result output. In
this mode, the software will group E3 ligases that share substrates
together if the E3 ligases do not have unique substrate and only the
E3 ligases that contain all the substrates in the group were labeled as
leading E3 ligases of the group. We re-analyzed all the data using
the Group mode and identified 127 E3 ligase groups
(Supplementary Table S8). Then, we performed correlation analysis
of all the E3 ligase groups in distance matrix. The data clearly
showed that MARCHF5 and PARKIN shared the most similar acti-
vation profiles (Fig. 7b). This finding confirmed that MARCHF5
was also activated during mitochondrial depolarization, which
agrees well with the previous finding that PARKIN-dependent

Fig. 4. Protein level E3 ligase activity profiling results of the SPOP study. Ctrl, vector

control; WT, wild-type-SPOP; 133 L, SPOP-F113L; 87 N, SPOP-Y87N; 1 and 2, ex-

periment set one and two. (a) All experiments of the SPOP study in box plot, each

box contained enrichment P-values of all E3 ligases in one SILAC experiment. (b)

SPOP-Y87N to SPOP-WT group in volcano plot. (c) SPOP-Y87N to vector control

group in volcano plot

Fig. 5. Ubiquitin E3 ligase activity profiling analysis of PARKIN under various gen-

etic and chemical treatment. (a) PARKIN activity difference in HCT116 cells with

PARK2 overexpression and with or without carbonyl cyanide m-chlorophenyl

hydrazone (CCCP, mitochondrial depolarization inducer) treatment. (b) PARKIN

activity difference in HCT116 cells with PARK2 overexpression and with or with-

out Pink1 inhibition. (c) PARKIN activity difference in HCT116 cells with the treat-

ment of bafilomycin (BafA, an autophagy inhibitor) and/or Velcade (a proteosome

inhibitor)
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ubiquitination targets MARCHF5 for translocation and activation
(Koyano et al., 2019).

3.5 Apply UbE3-APA model to DIA dataset
To further explore the usage of our UbE3-APA model, we applied it
to two recently published quantitative ubiquitylome studies based
on DIA analysis. The first study explored how the ubiquiyltome was

associated with the TNF signaling pathways (Hansen et al., 2021)
by treating cells with or without TNF. We collected site-specific

intensities of all replicates in treated group and mock group and

calculated the intensity ratios between TNF treated and mock
treated cells. Then we performed UbE3-APA analysis on the protein
level in the grouped mode. The activity profiling analysis revealed
several distinct up- and down-regulated E3 ligases under TNF treat-
ment (Fig. 8, Supplementary Table S9). Among these up-regulated
E3 ligases, TRAF2 and TRAF6 were members of tumor necrosis fac-
tor receptor-associated factors whose ubiquitination activity was
crucial in the TNF signaling pathways (Bradley and Pober, 2001). In
addition, our analysis also identified up-regulation of activity for
RNF216, SOCS3 and down-regulation of activity for MIB1 and
FBXO33.

Fig. 6. E3 ligase co-activation profiles across all experiments involved in the mitochondria depolarization study. The P value enrichment of E3 ligases across 73 groups of

experiments were -ln transformed. Only E3 ligases that were enriched (P<0.05) in at least one experiment were included in this heatmap

Fig. 7. Regulation networks between four E3 ligase, PARKIN, MARCHF5, AMFR and FZR1 in the PARKIN study. (a) Interaction network of four E3 ligases and their sub-

strates found in the mitochondria depolarization experiments. Blue square represents E3 ligases, circle represents substrates, edge represents Enzyme–substrate Interaction

(ESI), size of circles indicates the number of groups (out of 73 experimental groups) this substrate being quantified and used for the corresponding E3 ligase activity analysis,

and the color of the circle indicates the difference in average log2 quantification ratio between the substrate ratio and the group average. (b) Correlation matrix and heatmap

of leading E3 ligase activity profiles from all experiments. Color gradient represents 2-D Euclidean distance (Dist) between a pair of leading E3 ligase activity profiles. Only E3

ligases with P<0.2 in at least one experiment were included
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The second study investigated the ubiquitylome changes in re-
sponse to the inhibition of deubiquitinase USP7 by siRNA knock-
down or chemical inhibitor such as FT671 (Steger et al., 2021). We
extracted their DIA-based ubiquitylome data under these four condi-
tions: siCTRLþDMSO, siCTRLþFT671, siUSP7þDMSO and
siUSP7þFT671 and then calculated the ratio difference between
FT671 and DMSO treatments under either siCtrl background or
siUSP7 background. Analyzing the two pairs of ubiquitylome data-
sets with UbE3-APA revealed differential activation profiles of E3
ligases upon the FT671 treatment with siUSP7 background or
siCTRL background (Supplementary Fig. S1, Supplementary Table
S10). In agreement with the findings in the published study, more E3
ligases showed altered activity profiles upon FT671 treatment but
these activity changes were attenuated under siUSP7 background,
suggesting that FT671 treatment was specific in targeting USP7 ac-
tivity in cells.

4 Discussion

Advances in quantitative proteomics have enabled large-scale profil-
ing of ubiquitination substrates, also known as the ubiquitylome.
Application of quantitative proteomics in ubiquitylome analysis
revealed the key ubiquitination targets in the biological processes
and determined the downstream signaling pathways that were most
significantly affected by the ubiquitination process. Yet, few studies
systematically examine the upstream regulatory pathways of the
ubiquitination. Analysis of regulatory enzyme activities has been
largely limited to a few well-selected targets of each enzyme. Recent
advances in the collection and biological validation of E3 ligase–sub-
strate database provide a great opportunity to use ubiquitylome
quantitative analysis as an activity-readout to profile the ubiquitin
E3 ligases.

In this study, we developed a statistical framework and work-
flow to identify the ubiquitin E3 ligase activity in a high-throughput
and unbiased manner. This open-source python package enabled ef-
fective profiling of E3 ligase activities through robust statistical ana-
lysis based on quantitative ubiquitylation results. In the case study
of SPOP E3 ligase ubquitylome analysis, our model correctly vali-
dated the SPOP activity upon the overexpression of SPOP WT and
mutant forms with various activity. Application of our workflow to
analyze the ubiquitylome dynamics upon mitochondria depolariza-
tion confirmed that activation of PARKIN E3 ligases under various
conditions and unexpectedly discovered the role of proteasome

inhibition on PARKIN activation. Our statistical framework
allowed us to collect the E3 ligase activity profiles across multiple
conditions. Application of our workflow to profile 73 quantitative
ubiquitylome analysis enabled clustering analysis of E3 ligases
across the experimental conditions and revealed the co-activation of
PARKIN and MARCHF5 upon mitochondrial depolarization. Our
methods were further applied to two studies with DIA ubiquitomes,
and in both case studies, E3 ligases related with the treatment
proved by previous papers were revealed by our model through acti-
vation profile changes.

The statistical framework described in this study can be generally
applied to other PTM pathway analysis. We have recently applied
the workflow and developed Kinase Activity Profiling Analysis
(KAPA) to identify iron deficiency induced activation of AMPK
pathway in neuronal cells (Erber et al., 2021). Our study demon-
strated that it is possible to apply statistical analysis workflow to
systematically profile E3 ligase activity. However, we also recognize
that efficient analysis of E3 ligase activity in a system-wide manner
is limited by several factors. First, the number of E3 ligase–substrate
interaction in our knowledgebase is still limited comparing to other
PTMs such as phosphorylation and acetylation. Our integrated
database from various sources contained 2354 gene-level interac-
tions of humans in total, which is quite small comparing to 13 855
gene-level interactions between phosphorylation sites and kinases
collected by PhosphoSitePlus in human (Hornbeck et al., 2015).
Continued effort in the high throughput discovery of E3 ligase and
substrate interaction is needed to expand the knowledgebase for
more reliable and confident analysis of upstream regulatory enzyme
activities.

Secondly, although current high throughput proteomics have
allowed in-depth quantification of ubiquitylome in single experi-
ment, the data-dependent analysis (DDA) often suffers from limited
reproducibility and reduced quantification precision. For example,
in our analysis of mitochondria depolarization ubiquitylome study,
for E3 ligase FZR1 and AMFR, they have 56 and 14 substrate pro-
teins respectively based on our ESI database, but only 10 and 4 sub-
strates were found at least once in all 73 groups of experiments.
Therefore, their activity profiles were affected by the shared sub-
strates with PARKIN. If more substrates were reproducibly quanti-
fied, the analysis profiles of the two E3 ligases could be more
accurate and informative. Application of DIA for ubiquitylome ana-
lysis as we demonstrated in our study will certainly help address this
challenge (Hansen et al., 2021).

Lastly, currently E3 ligase and substrate interaction database has
been largely based on the protein-level and there is limited know-
ledge on the site-specificity of ubiquitination regulatory pathways
comparing to the knowledge on the kinase-phosphorylation regula-
tory network. Lack of site-specific regulation information presents a
challenge to reveal potential regulatory enzyme activities on overlap-
ping protein substrates but on distinct target sites., making it less
precise compared to other well-studied PTMs based on the regula-
tory network between enzymes and sites, for example, phosphoryl-
ation and acetylation. It requires the continued development
technologies to identify major enzyme target sites in the ubiquitina-
tion pathway. Future updates of the program will include updated
E3 ligase–substrate interactions database with the potential for site-
specific enzyme activity analysis.
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