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Synthesis of polyfunctionalized 
dihydro‑2‑oxypyrroles catalyzed 
by 1​,2,​3,5​‑te​tra​kis​(ca​rba​zol​‑9‑​yl)​
‑4,​6‑d​icyanobenzene (4CzIPN) 
as a novel donor‑acceptor 
fluorophore
Farzaneh Mohamadpour

We developed a green radical synthesis method for polyfunctionalized dihydro-2-oxypyrroles 
based on the Michael–Mannich cyclocondensation of amines, dialkyl acetylenedicarboxylates, and 
formaldehyde. To generate a renewable energy sources from visible light, a PCET (proton-coupled 
electron transfer) photocatalyst was used in an ethanol solution in an air environment and at room 
temperature. In this study, we aim to develop an inexpensive and easily accessible novel donor–
acceptor (D–A) fluorophore. Besides its speed-saving features and ease of use, the carbazole-based 
photocatalyst (4CzIPN) also shows high yields, energy-efficient, and is environmentally friendly. In 
this way, it is possible to monitor changes in chemical and environmental variables over time. The 
variety of yields is pretty uniform (84–97%, average 92.3%), and the kind of response times be very 
speedy (15–25 min, average 17.6 min), and the element noted within the dialogue is that the system 
tolerates a variety of donating and withdrawing functional groups, at the same time as nevertheless 
giving very fast rate and tremendous yields. A study of polyfunctionalized dihydro-2-oxypyrroles 
was conducted to calculate the turnover number (TON) and turnover frequency (TOF). Gram-scale 
cyclization proves that it can be applied to industry in a practical manner.

Both academia and industry are interested in developing clean, economical, and efficient chemical processes 
from a green and sustainable chemistry perspective. By forming versatile open shell reactive species, radical 
chemistry has emerged as a powerful tool for rapidly constructing complicated organic molecules. Thermolysis, 
radiation, photolysis, electrolysis, and redox systems can all be used to trigger radical reactions. A particularly 
clean and promising method among these strategies is photocatalysis, which has been extensively applied to 
radical chemistry1–10.

A parallel to these discoveries is the renaissance of visible light photo-redox catalysis in organic synthesis, 
providing novel opportunities for the design of synthetic routes through efficient light-mediated transforma-
tions. These reasons have led to the widespread use of photo-redox catalysis in the synthesis of building blocks, 
pharmaceuticals, and the total synthesis of complex natural products11. The electron-transfer process is enabled 
in a significant percentage of these transformations by the use of ruthenium (II) and iridium (III) complexes as 
photocatalysts12–14.

According to Zeitler et al.15, libraries of derivatives of 4CzIPN-type photocatalysts possess diverse electrochem-
ical properties and may prove beneficial for developing unique reactions in the future14. 1,2,3,5-Tetrakis(carbazol-
9-yl)-4,6-dicyanobenzene (4CzIPN), which combines carbazolyl as a donor and dicyanobenzene as an electron 
acceptor, is a novel donor–acceptor (D–A) fluorophore (Fig. 1 shows its photocatalysis cycles11). The excellent 
redox window, environmental and economic sustainability, as well as their broad applicability and established 
electronic properties, make 4CzIPN an attractive metal-free photocatalyst6,14,16.

For environmentally friendly organic chemical synthesis, visible light irradiation is a reliable technology due 
to its large energy reserves, cheap cost, and renewable energy sources17–19.
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Oxypyrrole rings are regarded as being bio- and pharmacologically interesting (Fig. 2). The human cytomeg-
alovirus protease (HCMV) is one example with pyrrole rings20, in addition, human cytosolic carbonic anhydrase 
isozymes21, PI-09122, Oteromycin23, cardiac cAMPphosphodiestrase24, and most alkaloids25.

There are several synthetic techniques that can be used to make polyfunctionalized dihydro-2-oxypyrroles 
such as methylene blue26, I2

27, glycine28, AcOH29, Cu(OAc)2·H2O30, Fe3O4@nano-cellulose–OPO3H31, tartaric 
acid32, nano-Fe3O4@SiO2/SnCl4

33, glutamic acid34, graphene oxide35, caffeine36, 2,6-pyridinedicarboxylic acid37, 
saccharin38, BiFeO3 nanoparticles39, and CoFe2O4@SiO2@IRMOF-340. Consequently, there is a shortage of metal 
catalysts, high reagent costs, difficult reactions, and poor yields, which increases reaction duration and impacts 
waste management. As well, homogeneous catalysts are challenging to isolate from reaction mixtures. In a 
green medium, we have recently created heterocyclic compounds using photocatalysts. Fluorophore organic dye 
photo-redox catalysts are also accessible and affordable, according to the study. As a result of this methodology, 
donor–acceptor (D–A) has emerged as a potent organo-photocatalyst. In our research, we were particularly 
focused on 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) due to its photophysical and photo-
chemical properties. In response to this situation, carbazolyl dicyanobenzenes (CDCBs) have emerged as a novel 
donor–acceptor (D–A) fluorophore with intriguing photoelectric performance, expanding organic chemists’ 
toolbox of photocatalysts. In an organic dye compound containing carbazole as donor and dicyanobenzene as 
acceptor, a significant redox window was observed, as well as excellent chemical stability and a wide range of 
applications.

4CzIPN is a novel carbazole-based photocatalyst that has already been characterized as a proton-coupled 
electron transfer (PCET) photocatalyst. This process uses Michael–Mannich cyclocondensation, which uses 
amines, dialkyl acetylenedicarboxylates, and formaldehyde, which can also utilize visible light as a renewable 
energy source and an air atmosphere in an ethanol solution at room temperature. In spite of the fact that it was 
completed within budget, on schedule, and without a hitch.

A well-known Michael–Mannich cyclocondensation reaction for the synthesis of polyfunctionalized dihydro-
2-oxypyrroles become developed in an eco-safe manner with the 4CzIPN is a novel carbazole-based photocata-
lyst. In keeping with the consequences, it turned into discovered that this technique is a fruitful one-pot technique 
underneath quite powerful and facile response situations. Exceedingly fast conversion with extremely good yield 
using renewable energy supply makes this protocol appealing to inexperienced chemists. Multigram scale as 
much as 50 mmol and synthesis of real-global drug-API denotes its pharmaceutical importance. Similarly, key 
capabilities consist of a clean experimental setup, huge substrate tolerance, budget-friendly, easy art work-up 
techniques in the absence of tedious separation strategies, and minimized amount of waste for every organic 
transformation. The kind of yields is quite uniform (84–97%, average 92.3%), and the form of response times 
could be very rapid (15–25 min, average 17.6 min), and the point cited in the discussion is that the technique 
tolerates pretty a number donating and withdrawing functional groups, even as however giving awesome yields. 
The response is fairly insensitive to the person of the substituents.

Adapted to 
photoredox catalysis

4CzIPN
[organic 

fluorophore]

4CzIPN 4CzIPN*Light

ee

e e
4CzIPN

4CzIPN
.

.

oxidative
quenching

reductive
quenching

Ground State Excited State

CNNC
N

N

N

N

Figure 1.   The 4CzIPN is capable of performing photocatalytic cycles11.



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16911  | https://doi.org/10.1038/s41598-022-20689-4

www.nature.com/scientificreports/

Experimental
General.  A 9100 electrothermal device was used to determine the melting points of all compounds. Further-
more, CDCl3 was used to record 1HNMR, and 13CNMR with Bruker DRX-400, DRX-300, and DRX-100 Avance 
tools. Mass spectra were obtained with an Agilent Innovation (HP) spectrometer operating at 70 eV. There were 
large quantities of these reagents given by Fluka, Merck, and Acros, and they were quickly used.

A step‑by‑step procedure for producing polyfunctionalized dihydro‑2‑oxypyrroles (5a–
u).  Amine 1 (1.0 mmol) and dialkyl acetylenedicarboxylate 2 (1.0 mmol) in the presence of 4CzIPN (1 mol%) 
was stirred for 15 min at room temperature in EtOH (3 mL). While adding formaldehyde 4 (1.5 mmol) and 
amine 3 (1.0 mmol), the reaction mixture was stirred at room temperature. Recording the responses was done 
using thin layer chromatography (TLC). TLC was carried out with silica gel as the stationary phase utilizing 
EtOAc/n-hexane (1:2) as an eluent. This pure chemical was then purified without additional purification by 
screening and washing with ethanol after the reaction. In terms of pharmaceutical process R&D, we are inter-
ested in determining if we can produce the aforementioned substances on a gram scale. The following four 
substances were used in one experiment: 50 mmol: 6.37 g 4-chloroaniline, 37.5: 1.12 g mmol formaldehyde, 
and 25  mmol: 3.55  g dimethyl acetylenedicarboxylate (DMAD). The product was collected using a conven-
tional filtration method after 20 min of reaction time. On the basis of the 1HNMR spectrum, it appears that the 
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Figure 2.   Pharmaceutically active oxypyrrole rings.
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Table 1.   We provide an optimization table for photocatalysts used in 5a productiona. Significant values 
are in [bold]. a Reaction conditions: a blue LED (7 W) is used along with a number of photocatalysts and 
formaldehyde (1.5 mmol), aniline (2 mmol), and dimethyl acetylenedicarboxylate (DMAD) (1 mmol) at rt.
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Entry Photocatalyst Solvent (3 mL) Time (min) Isolated Yields (%)

1 – EtOH 60 Trace

2 4CzIPN (0.5 mol%) EtOH 15 81

3 4CzIPN (1 mol%) EtOH 15 97

4 4CzIPN (1.5 mol%) EtOH 15 97

5 4CzPN (1 mol%) EtOH 15 52

6 Tetrahydrocarbazole (1 mol%) EtOH 15 23

7 Carbazole (1 mol%) EtOH 15 34

8 Tetrafluoroisophthalonitrile (1 mol%) EtOH 15 19

9 2CzPN (1 mol%) EtOH 15 41

10 Erythrosin B (1 mol%) EtOH 25 54

11 Fluorescein (1 mol%) EtOH 25 59

12 Rhodamine B (1 mol%) EtOH 25 46

13 Rose bengal (1 mol%) EtOH 25 63
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compound is spectroscopically pure. We classified the products based on their spectroscopic data (1HNMR, 
13CNMR, and mass). Detailed information is available in the “Supporting Information” file.

Results and discussion
The purpose of this experiment was to examine the reaction between formaldehyde (1.5 mmol), aniline (2 mmol), 
and dimethyl acetylenedicarboxylate (DMAD) (1 mmol) in EtOH (3 mL). A trace amount of 5a at rt was pro-
duced by 3 mL of EtOH for 60 min without photocatalyst (Table 1, entry 1). The reaction was intensified by 
adding numerous additional photocatalysts. As shown in Fig. 3, these compounds included 4CzIPN, 4CzPN, 
tetrahydrocarbazole, carbazole, tetrafluoroisophthalonitrile, 2CzPN, erythrosin B, fluorescein, rhodamine B, 
and rose bengal. A yield of 19–97% can be obtained by using this process for the synthesis of 5a (Table 1). By 
achieving these results, 4CzIPN was able to perform better. In Table 1, entry 3, it is shown that 97% of the yield 
was obtained by using 1 mol% 4CzIPN. Table 2 shows that DCM, solvent-free, DMSO, DMF, THF, and H2O 
yielded significantly lower values. As a result EtOAc, CH3CN, and MeOH yielded more and accelerated the reac-
tion. The rate and yield of the reaction in EtOH were both high. Using the data from Table 2’s entry 6, 97% yield 
was achieved. Studies have used various light sources to investigate the impact of blue light on yield (Table 2). 
As a result of controlling the test without the light source, 5a was detected in the trace. As a result of the study, 
4CzIPN and visible light are necessary for the production of product 5a. Based on 3 W, 7 W, and 10 W blue LED 
intensity levels, the optimal settings were determined. Based on the results obtained with blue LEDs (7 W), the 
best results were obtained (Table 2, entry 6). Several substrates were subjected to tests under ideal conditions 
(Table 3 and Fig. 4). Aniline substitution had no influence on the reaction outcome (Table 3). There were no 
restrictions on halide substitutions in this reaction. The current state of the reaction allows both reactions of 
electron-donating functional groups as well as reactions of electron-withdrawing functional groups. There is 
a great deal of yield potential for aliphatic and benzylic amines. There is a similar reactivity between dimethyl 
acetylenedicarboxylate (DMAD) and diethyl acetylenedicarboxylate (DEAD).

A turnover frequency (TOF) and turnover number (TON) are provided in Table 4. There are two types of 
yield: TON = Yield/Amount of catalyst (mol) and TOF = Yield/Time/Amount of catalyst (mol). Catalyst efficiency 
increases with higher TON and TOF values due to less catalyst required to boost yields.

There is a high TON = 97 and TOF = 6.46 for catalyst 5a, and a high TON = 95 and TOF = 6.33 for catalyst 5b, 
which is compared to the other catalysts in Table 5. As a result of the study’s goal of increasing yield, reducing 
reaction time, and using the bare minimum of catalysts. Also, 1HNMR data of products have been compared 
with literature (Table S1). (Table S1 has been added to the “Supporting Information” file).

In Fig. 5, Control experiments were carried out to reveal the mechanism behind this four-component reac-
tion driven by visible light. Using standard conditions (4CzIPN in EtOH under blue LED), reducing H2O to 
obtain imine (I) was the procedure for condensation of aniline (3) with formaldehyde (4). Formaldehyde (4) and 
dimethyl acetylenedicarboxylate (DMAD) (2) did not react under identical reaction conditions. As a result, under 

Table 2.   There is a table that shows the optimal concentrations of solvent and visible light for the synthesis 
of 5aa. Significant values are in [bold]. a Reaction conditions: at rt, 4CzIPN (1 mol%) was mixed with 
formaldehyde (1.5 mmol), aniline (2 mmol), and dimethyl acetylenedicarboxylate (DMAD) (1 mmol).
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Entry Light source Solvent (3 mL) Time (min) Isolated yields (%)

1 Blue light (7 W) DCM 40 22

2 Blue light (7 W) EtOAc 15 70

3 Blue light (7 W) CH3CN 15 75

4 Blue light (7 W) – 35 45

5 Blue light (3 W) EtOH 15 88

6 Blue light (7 W) EtOH 15 97

7 Blue light (10 W) EtOH 15 97

8 Green light (7 W) EtOH 15 90

9 – EtOH 60 Trace

10 White light (7 W) EtOH 15 86

11 Blue light (7 W) MeOH 15 68

12 Blue light (7 W) DMSO 35 32

13 Blue light (7 W) DMF 40 29

14 Blue light (7 W) THF 40 27

15 Blue light (7 W) H2O 35 38
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Table 3.   As a novel donor–acceptor (D–A) fluorophore, carbazole-based photocatalyst (4CzIPN) is used to 
create polyfunctionalized dihydro-2-oxypyrroles.
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normal conditions, 97% of the reactions between imine (I) and enamine radical (II) produced the predicted 
product 5a. Even when the reaction was carried out in the dark, a trace of product 5a was obtained. Based on 
the results of this experiment, Fig. 6 suggests a possible reaction route.

The proposed mechanism is illustrated in Fig. 6. 4CzIPN fluorophore organic dye created photocatalytic 
devices that use visible light as a renewable energy source by using the proton-coupled electron transfer (PCET) 
approach. Visible light accelerates the process. The Michael reaction produces enamine (A) by reacting amine 
(1) with dialkylacetylenedicarboxylate (2). By utilizing a PCET method and visible light irradiation, the aniline 
radical (B) is produced to enhance the visible-light-induced 4CzIPN*. In the next step, radical cation (B) reacts 
with formaldehyde (4) to form radical cation (C). By electron transfer (ET) process the radical adduct (C) and 
the 4CzIPN radical anion, intermediates (D), and the ground-state 4CzIPN are produced. The intermediate (F) 
is then obtained by removing one H2O molecule from (E). With a PCET approach, the enamine radical (G) is 
generated to enhance visible-light-induced 4CzIPN*. The Mannich reaction occurs between an activated imine 
(F) and an enamine radical (G), producing a more stable tautomeric form (I). Finally, a polyfunctionalized 
dihydro-2-oxypyrrole (5) is formed by intramolecular cyclization in intermediate (I).

In Table 5, several catalysts are compared in terms of their ability to catalyze polyfunctionalized dihydro-
2-oxypyrroles. In view of its relatively minimal amount of photocatalyst, quick reaction time, and lack of byprod-
ucts, this technique can be used in visible light environments. At multigram scales, atom-economic protocols 
are very effective and influence the sector significantly.

Conclusion
By using amines, dialkylacetylenedicarboxylases, and formaldehyde in radical Michael–Mannich reactions, poly-
functionalized dihydro-2-oxypyrroles were synthesized without the use of metals. Through proton-coupled elec-
tron transfer (PCET), the photosynthesis was catalyzed using a carbazole-based photocatalyst (4CzIPN), which 
is a novel donor–acceptor (D–A) fluorophore. The light from visible light can be used to generate renewable 
energy sources in an ethanol solution at room temperature and in an environment with air. As well as the fast 
reaction time and the lack of harmful solvents or catalysts, the process also takes advantage of small quantities 
of photocatalysts, outstanding yields, a high-efficiency reaction process, stable conditions, and renewable energy 
sources. It was not necessary to use chromatography for the separation process. A multigram scale reaction of 
model substrates can be accelerated without compromising the outcome. Therefore, the technique can be applied 
both commercially and environmentally.
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Figure 4.   An approach to creating polyfunctionalized dihydro-2-oxypyrroles.

Table 4.   In order to calculate the turnover number (TON) and turnover frequency (TOF), we made the 
following calculations.

Entry Product TON TOF Entry Product TON TOF

1 5a 97 6.4 12 5l 91 4.5

2 5b 95 6.3 13 5m 92 6.1

3 5c 95 6.3 14 5n 94 6.2

4 5d 94 6.2 15 5o 88 4.4

5 5e 90 4.5 16 5p 91 4.5

6 5f 87 4.3 17 5q 95 6.3

7 5g 94 6.2 18 5r 96 6.4

8 5h 91 4.5 19 5s 97 6.4

9 5i 84 4.2 20 5t 94 6.2

10 5j 85 3.4 21 5u 96 4.8

11 5k 93 4.6
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Table 5.   Analysis of the catalytic ability of the numerous catalysts in the text leads to the synthesis of 5a 
and 5ba.  a Four-components are used in the synthesis: aniline, dimethyl/ethylacetylenedicarboxylate, and 
formaldehyde.

Entry Product Catalyst Conditions Time/Yield TON TOF References

1 I2 MeOH, rt 1 h/82% 8.2 0.13 27

2 Glycine MeOH, rt 3 h/93% 9.3 0.05 28

3 Glutamic acid MeOH, rt 2 h/91% 4.5 0.03 34

4 2,6-Pyridinedicarbox-
ylic acid MeOH, rt 1 h/85% 8.5 0.14 37

5 4CzIPN blue LED (7 W), EtOH, rt 15 min/97% 97 6.46 This work

6 I2 MeOH, rt 1 h/81% 8.1 0.13 27

7 Glycine MeOH, rt 3 h/90% 9 0.05 28

8 Glutamic acid MeOH, rt 2 h/88% 4.4 0.03 34

9 2,6-Pyridinedicarbox-
ylic acid MeOH, rt 2 h/81% 8.1 0.06 37

10 4CzIPN Blue LED (7 W), EtOH, rt 15 min/95% 95 6.33 This work
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Data availability
All data generated or analyzed during this study are included in this published article [and its supplementary 
information files].
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