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Aging is usually accompanied by the decline of physiological function and dysfunction of
cellular processes. Genetic markers related to aging not only reveal the biological
mechanism of aging but also provide age information in forensic research. In this
study, we aimed to screen age-associated mRNAs based on the previously reported
genome-wide expression data. In addition, predicted models for age estimations were
built by three machine learning methods. We identified 283 differentially expressed mRNAs
between two groups with different age ranges. Nine mRNAs out of 283 mRNAs showed
different expression patterns between smokers and non-smokers and were eliminated
from the following analysis. Age-associated mRNAs were further screened from the
remaining mRNAs by the cross-validation error analysis of random forest. Finally, 14
mRNAs were chosen to build the model for age predictions. These 14 mRNAs showed
relatively high correlations with age. Furthermore, we found that random forest showed the
optimal performance for age prediction in comparison to the generalized linear model and
support vector machine. To sum up, the 14 age-associated mRNAs identified in this study
could be viewed as valuable markers for age estimations and studying the aging process.
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INTRODUCTION

Aging is a normal phenomenon and the most complicated biological process in nature. Research on
the biological mechanisms of aging can contribute to understanding the pathogenesis of age-
associated diseases like Alzheimer’s disease and Parkinson’s disease (Gomez-Verjan et al., 2018). In
forensic research, age prediction can provide informative investigative clues, especially for some trace
samples like blood stain, saliva, and seminal stain. Furthermore, age is also viewed as an important
index for sentencing young criminals in legal cases. A previous study pointed out that there were
some featured imprints related to the body physiological function during the aging process (López-
Otín et al., 2013). Accordingly, screening age-associated molecular markers is significant to
understanding the aging process and forensic practice.

In forensic science, researchers commonly infer age information of unknown samples found in
crime scenes by morphological methods (Kotěrová et al., 2018; Meng et al., 2019; Gok et al., 2020).
For example, Meng et al. estimated age by the color change of the costal cartilage; Gok et al. utilized
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two methods (dental pulp visibility and tooth coronal index) to
infer age information; Koterova et al. conducted age estimation by
the changes of the pubic symphysis and the auricular surface of
the hip bone. However, these morphological methods possessed
relatively low prediction accuracy; Therefore, they were prone to
the influence of the subjective. Therefore, it is necessary to select
novel genetic markers for age estimation. In recent years, with the
development of aging research, biological processes associated
with aging have been identified, like mitochondrial dysfunction,
genomic instability, and epigenetic changes (López-Otín et al.,
2013; Kennedy et al., 2014). Molecular markers related to these
biological processes were selected for age prediction (Kennedy
et al., 2013; Ibrahim et al., 2016; Demanelis et al., 2021).
Nonetheless, it is of note that these methods still possess
relatively low accuracy for age estimation. DNA methylation,
one of the epigenetic changes, has shown to be an ideal biomarker
for age prediction. Until now, a host of age-associated DNA
methylation markers have been selected, and various prediction
models have been built (Naue et al., 2017; Feng et al., 2018).
Nonetheless, the quantification method of DNA methylation
needs to conduct the bisulfite conversion procedure, which
may lead to DNA fragmentation or DNA damage.
Accordingly, these methods adversely detected forensic trace
samples, which limited their application in forensic practices.
Interestingly, previous studies have found that gene expression
levels showed high correlations with aging (Pan et al., 2007; de
Magalhães et al., 2009; Peters et al., 2015; Huan et al., 2018;
Mamoshina et al., 2018). Forensic researchers also selected age-
associated mRNA and miRNA markers for forensic age
estimation (Nakamura et al., 2012; Zubakov et al., 2016; Deng
et al., 2017; Fang et al., 2020; Wang et al., 2022). Even so, it is
essential to screen more markers associated with age, which is
beneficial to inferring the biological age of unknown individuals
better.

In this study, we re-analyzed the previously reported genome-
wide expression data (Votavova et al., 2011) and screened
mRNAs related to aging. Next, these initially selected mRNA
makers were further screened by the machine learning method
(random forest, RF). Finally, we compared the performances of
three machine learning methods for age estimations based on
screened mRNA markers.

MATERIALS AND METHODS

Sample Information
Votavova et al. (2011) assessed the effect of smoking on maternal
cells at the transcription level. In the study, they collected blood
samples of 52 nonsmokers and 20 smokers whose ages ranged
from 18 to 41. However, only 46 nonsmokers and 19 smokers
were engaged for the following analysis. Sample information used
in this study is given in Supplementary Table S1. Expression
levels of 24,526 transcripts in these samples were detected by the
HumanRef-8 v3 Expression BeadChips (Illumina, San Diego, CA,
United States). Based on the data (GSE27272), we aimed to screen
age-associated mRNAs. Detailed experimental procedures were
reported in the study (Votavova et al., 2011). In brief, RNA

samples were extracted and purified from blood samples by using
the LeukoLOCK™ Total RNA Isolation System (Ambion, Austin,
TX, United States). Second, cRNA was synthesized and
biotinylated by using the llumina TotalPrep RNA
amplification kit (Ambion). The hybridization reaction of each
cRNA sample was conducted on the beadchips and scanned by
using the BeadArray Reader. Finally, the obtained raw data were
processed and normalized by the quantile method in the Lumi
package of R software (www.r-project.org).

Selection of Age-Associated mRNAs
First, all samples (46 nonsmokers and 19 smokers) were classified
into two groups to select age-associated mRNA markers; one
group included individuals whose ages were from 18 to 30 and
was viewed as the younger group; the other group included the
remaining individuals and was treated as the older group.
Expression level comparisons between two groups were
conducted by the GEO2R online tool. Differentially expressed
genes were identified when they had p values < 0.05 and |logFC| >
0.35 (Votavova et al., 2011). Next, these initially selected mRNA
markers were further screened according to their expression
patterns between smokers and nonsmokers. The transcripts
that showed significantly different expression patterns between
smokers and nonsmokers were excluded from the following
study. Third, the remaining mRNA markers were further
assessed by the RF method of R software to evaluate their
importance in age prediction. In a nutshell, 10 fold cross-
validation was used to evaluate the performance of models by
sequentially reducing the number of mRNA markers, according
to their importance index. The aforementioned procedure was
repeated 10 times. Next, the optimal number of mRNA markers
for age prediction was determined by comparing the cross-
validation error of each model built with different numbers of
mRNA markers. Spearman correlation coefficients between
selected mRNA markers and different ages were estimated and
visually shown by the Sangerbox 3.0 online tool (http://vip.
sangerbox.com/home.html). Models for age predictions were
built by the generalized linear model (GLM), RF, and support
vector machine (SVM) using all samples. For SVM, we used the
tune function of the e1071 v1.7-3 package to optimize the SVM
model and then employed the best parameters to build the SVM
model with the kernel of linear. For GLM and RF, they were built
by the stats v3.6.1 and randomForest v4.6-14 for age estimation
based on the default configuration. The performance of different
models was compared by two indexes: root mean squared error
(RMSE) and mean absolute error (MAE). The formulae of RMSE
and MAE are listed as follows:

RMSE = sqrt(mean((pred - obs)̂2
MAE = mean(abs(pred-obs))

Note: pred and obs indicate predicted and actual results.
The gene set enrichment analysis of screened genes related to

age was conducted by the clusterProfiler v3.14.3 of R software.
Background genes were chosen from the Molecular Signatures
Database (Liberzon et al., 2011) and the KEGG rest API (https://
www.kegg.jp/kegg/rest/keggapi.html). We used the
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Benjamini–Hochberg method to correct the statistical
significance of inputted gene sets.

RESULTS AND DISCUSSION

Selection of Age-Associated mRNAs
First, 65 samples were classified into two groups with different age
ranges to select differentially expressed mRNAs between the two
groups. According to the criteria mentioned earlier, 283 mRNAs
were selected from the whole genome transcript level
(Supplementary Table S2). Since smoking may affect the
expression levels of different genes, we also assessed
differentially expressed mRNAs between smokers and non-
smokers. Results revealed that 315 mRNAs displayed different
expression levels between smokers and non-smokers
(Supplementary Table S3). Therefore, nine overlapped
mRNAs between two sets of differentially expressed mRNAs

were eliminated from the following analysis to avoid the
negative effect of smoking on the age prediction. Finally, 274
candidate mRNA markers related to age were employed for
further analysis.

Based on the selected 274 mRNA markers, we used RM to
further screen age-related mRNAs. First, we assessed the
importance index (mean decrease in node impurity) of these
mRNA markers in age estimation (Supplementary Table S4).
The mean decrease in node impurity can measure the effect of
each variable on the impurity of predicted results; it is calculated
by the residual sum of squares for regression analysis. The larger
the mean decrease in node impurity of the variable is, the more
important the variable is. To determine the optimal number of
mRNA markers, the cross-validation error of each model built
with different number of mRNA makers was assessed, as shown
in Supplementary Figure S1. We found that a significant
decrease in the cross-validation error was observed when the
number of mRNA makers was 14. Even though the lowest cross-

FIGURE 1 | Spearman correlation coefficient of 14 mRNAs with age. Detailed information of 14 mRNAs is given in Supplementary Table S5.
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validation error was observed by using more mRNA markers, we
selected the top 14 mRNA markers, according to the parsimony
principle. The basic information of these 14 mRNAs is given in
Supplementary Table S5.

Next, we assessed the correlation coefficient of 14 mRNAs with
age, as shown in Figure 1. Results showed that fivemRNAs exhibited
positive correlation with age, and their correlation coefficient ranged
from 0.30 to 0.47. Furthermore, nine mRNAs displayed negative
correlation with age, and their correlation coefficient ranged from
-0.47 to -0.28. Compared to six age-associated miRNAs selected by
Fang et al. (2020), the 14 mRNAs presented in this study showed

higher correlation with age, implying that these 14 mRNAsmight be
more beneficial for age estimations.

Development of age Prediction Models by
Three Machine Methods
Machine learning could build a high-efficient and accurate predicted
model for various purposes, which has shown great promising aspects
in clinical and forensic research (Obermeyer and Emanuel, 2016; Liu
et al., 2020; Peña-Solórzano et al., 2020; Santolaria, 2021). For RF, it is
an ensemble learning algorithm by developing a number of decision

FIGURE 2 | Scatter plot of the predicted age and actual age by random forest based on 274 (A) and 14 mRNAs (B).

FIGURE 3 | Scatter plot of the predicted age and actual age by the generalized linear model (A) and support vector machine (B) based on 14 mRNAs.
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trees. Predicted results were determined by these decision trees.
Accordingly, RF can avoid overfitting for the training data set and
possess better performance than a decision tree. More importantly,
RF can build a high-performance model for a variety of data sets with
little configuration (https://www.stat.berkeley.edu/~breiman/
RandomForests/cc_home.htm). For SVM, it is one of the most
robust machine learning methods. Compared to other machine
learning methods, SVM is not prone to building an overfitting
predicted model and shows high prediction accuracy for all kinds
of data (Ghatak, 2017). ForGLM, it is a simple learningmethod and is
used to construct the predicted model to measure relationships
between targeted variables and explanatory variables by the linear
function. Given that selected mRNAs presented linear relationships
with aging to some degree, we also explored the power of GLM for age
estimation.

First, two RF models were built based on 274 and 14 mRNAs.
These two models were used to predict the age of 65 samples,
respectively. The scatter plot of the predicted age and actual age is
shown in Figure 2. We found that the same R2 between the
predicted results and actual results could be observed from 274

and 14 mRNAs, but the model built based on 14 mRNAs showed
lower MAE and RMSE than the model based on 274 mRNAs,
implying that these 14 mRNAs showed better performance for
age estimation than the 274 mRNAs.

Next, we also assessed the efficiency of GLM and SVM for age
estimation based on 14 mRNAs, as shown in Figure 3. Results
reflected that GLM and SVM showed comparable performance for
age prediction. Even so, we found that these two models developed
by the GLM and SVM exhibited worse performance than the RF
model. Therefore, we stated that RF could be viewed as the preferable
machine learning method for age prediction in this study. In
comparison to previous studies (Zubakov et al., 2016; Fang et al.,
2020; Wang et al., 2022), relatively low MAE and RMSE between
actual and predicted results were observed in the current study. We
postulated that these results might be related to a small age bracket
(18–41), which leads to lowMAE and RMSE. Therefore, we need to
collect more individuals with different age ranges to further evaluate
the performance of these 14 mRNAs for age estimation.

It should be noted that there are some shortcomings in the
current research. First, age-associated mRNAs were only selected

FIGURE 4 | Gene ontology analysis for cellular components (A) and biological processes (B) of 14 genes associated with age.
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based on peripheral blood samples of female individuals.
However, the aging process showed gender- and tissue-specific
changes (Gomez-Verjan et al., 2018). Previous research revealed
higher predicted accuracy of age was observed in males than
females based on the RNA markers (Zubakov et al., 2016; Fang
et al., 2020; Wang et al., 2022). Given these findings, we stated
that these 14 mRNAs could achieve better age estimation in male
individuals, but the application values of these 14 mRNAs in
males and other tissues need to be assessed in the future. Second,
the study was conducted based on the previously reported data.
We need to validate the expression level of these 14 mRNAs by
real-time PCR. Third, the studied individuals are European
individuals. We were not sure whether the obtained results
were suitable for Chinese individuals, given the large genetic
differentiation between Chinese and Europeans. Accordingly,
expression levels of these 14 mRNAs in Chinese individuals
with different age ranges remain to be further evaluated.

Gene Set Enrichment Analysis of Genes
Associated With Age
Gene ontology analyses of 14 genes that correspond to 14 mRNA
markers were conducted to explore the molecular function, biological
process, and cellular components of these 14 genes. As shown in
Figure 4A and Supplementary Table S6, we found that these 14
genes were related to external encapsulating structure, messenger
ribonucleoprotein complex, prc1 complex, neuron to neuron synapse,
nuclear ubiquitin ligase complex, pcg protein complex, chromatin,
heterochromatin, etc. Even so, these cellular components did not
show statistically significant relationships with 14 genes after
Benjamini–Hochberg correction. For biological processes of these
14 genes, we found that the PDCD5 gene is mainly related to outer
mitochondrial membrane organization, mitochondrial membrane
organization, regulation of chaperone-mediated protein folding,
and negative regulation of protein folding; the DSPP gene is
mainly related to odontoblast differentiation and dentinogenesis;
the NR4A2 gene is mainly involved in negative regulation of the
neuron apoptotic process and response to corticotropin-releasing
hormone; the CPEB4 gene is mainly implicated in the negative
regulation of the neuron apoptotic process and negative regulation
of cytoplasmic translation; the ALKBH7 gene is mainly related to
mitochondrial membrane organization (Figure 4B and
Supplementary Table S7). However, no statistically significant
biological processes were observed for these 14 genes when
Benjamini–Hochberg correction was applied. Molecular function
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis of 14 genes are shown in Supplementary Figure S2 and
Supplementary Tables S8, S9. Likewise, we did not observe
statistically significant molecular function and KEGG pathway for
these 14 genes after Benjamini–Hochberg correction.

CONCLUSION

To sum up, 14 mRNAs related to age were identified from the
genome-wide expression data, which showed relatively high

correlations with aging. In addition, three machine learning
methods were used to build models for age estimation based
on selected 14 mRNA markers. We found that the RF showed
the best performance in comparison to the two algorithms,
which could be viewed as the preferable method to develop
the model for age prediction. Anyway, expression patterns of
selected 14 mRNAs in Chinese individuals with different age
ranges and other common tissues need to be further assessed in
the future.
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