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Abstract

We present a nonlinear programming (NLP) framework for the scalable solution of parame-

ter estimation problems that arise in dynamic modeling of biological systems. Such prob-

lems are computationally challenging because they often involve highly nonlinear and stiff

differential equations as well as many experimental data sets and parameters. The pro-

posed framework uses cutting-edge modeling and solution tools which are computationally

efficient, robust, and easy-to-use. Specifically, our framework uses a time discretization

approach that: i) avoids repetitive simulations of the dynamic model, ii) enables fully alge-

braic model implementations and computation of derivatives, and iii) enables the use of

computationally efficient nonlinear interior point solvers that exploit sparse and structured

linear algebra techniques. We demonstrate these capabilities by solving estimation prob-

lems for synthetic human gut microbiome community models. We show that an instance

with 156 parameters, 144 differential equations, and 1,704 experimental data points can be

solved in less than 3 minutes using our proposed framework (while an off-the-shelf

simulation-based solution framework requires over 7 hours). We also create large instances

to show that the proposed framework is scalable and can solve problems with up to 2,352

parameters, 2,304 differential equations, and 20,352 data points in less than 15 minutes.

The proposed framework is flexible and easy-to-use, can be broadly applied to dynamic

models of biological systems, and enables the implementation of sophisticated estimation

techniques to quantify parameter uncertainty, to diagnose observability/uniqueness issues,

to perform model selection, and to handle outliers.

Author summary

Constructing and validating dynamic models of biological systems spanning biomolecular

networks to ecological systems is a challenging problem. Here we present a scalable

computational framework to rapidly infer parameters in complex dynamic models of bio-

logical systems from large-scale experimental data. The framework was applied to infer

parameters of a synthetic microbial community model from large-scale time series data.
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We also demonstrate that this framework can be used to analyze parameter uncertainty,

to diagnose whether the experimental data are sufficient to uniquely determine the

parameters, to determine the model that best describes the data, and to infer parameters

in the face of data outliers.

Introduction

Dynamic modeling is essential for understanding the behavior of biological systems. Systems

of interest in this domain include microbial communities and microbiome, gene regulatory

networks, and metabolic pathways [1–3]. An important task that arises in modeling studies is

validation against experimental data by using parameter estimation techniques. This task is

computationally challenging because of the need to solve optimization problems constrained

by differential equations. Challenges arise from the dimensionality, nonlinearity, and stiffness

of the dynamic model, from the incomplete observation of the system states, from the need to

estimate many parameters, and from the need to handle a large number of experimental data

sets.

Extensive research on solution methods for estimation problems with differential equations

has been reported in the computational biology literature (see [4, 5] for comprehensive

reviews). These methods target maximum likelihood estimation formulations (which are

derived from Bayesian principles). In these formulations, one aims to find parameters that

maximize the likelihood function. The most used strategy to handle such formulations is the

so-called simulation-based approach. Here, the idea is to perform repetitive simulations of the

dynamic model at different trial parameter values to identify a set of parameters that maxi-

mizes the likelihood. The trial parameter values are updated using derivative-based or deriva-

tive-free search schemes [6–8]. While the simulation-based approach is intuitive, repetitive

solutions of large dynamic models become computationally expensive and differential equa-

tion solvers can fail at trial parameter values that are non-physical or that trigger unstable

responses. In addition, techniques to compute first and second order derivatives for deriva-

tive-based schemes (e.g., finite differences, forward and adjoint sensitivities) involve intrusive

procedures and are often limited to first-order derivatives [7]. The need for derivatives can be

bypassed by using derivative-free search schemes [9, 10], which are widely popular in compu-

tational biology. Such methods include simulated annealing [11, 12], genetic algorithms [13,

14], particle swarms [15], approximate Bayesian computation [16, 17], and various other

methods [18, 19]. Derivative-free schemes do not scale well in the number of parameters (a

larger number of trial parameter values often need to be explored compared to derivative-

based schemes). Moreover, second order derivative information is needed to determine if the

parameter estimates are unique/observable given available experimental data [20, 21]. The

uniqueness/observability test of the parameter estimates is based on curvature information of

the likelihood function at the solution.

Simulation-based estimation frameworks previously reported in the computational biology

literature have focused on problems that usually contain less than 100 parameters [10, 16, 22].

To the best of our knowledge, the largest estimation problem solved using a simulation-based

framework contains 3,780 data points and 1,801 parameters [7]. Such a problem was solved (to

partial optimality) using a derivative-based search scheme that uses first-order derivative

information (using an adjoint method) and required over 5 hours of computing time. The

scalability limitations of simulation-based approaches present an important obstacle in consid-

ering models of higher fidelity, in exploiting high-throughput experimental data, in analyzing
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parameter uncertainties, and in implementing sophisticated techniques such as ensemble

modeling.

In this work, we propose a nonlinear programming (NLP) framework for solving estima-

tion problems with embedded dynamic models [23, 24]. The framework is based on a direct
transcription approach wherein the dynamic model is converted into a large set of algebraic

equations by applying time-discretization techniques. The algebraic equations are then embed-

ded directly as constraints in the optimization problem (a nonlinear program-NLP). The

NLPs arising from time discretization are of high dimension (easily reaching hundreds of

thousands to millions of variables and constraints) but are also sparse and structured. More-

over, by transforming the dynamic model into algebraic equations, it becomes possible to use

automatic differentiation techniques available in modern algebraic modeling languages to

compute first and second derivatives. Exploitation of sparsity and structure, together with the

availability of derivative information, enable the solution of estimation problems with complex

dynamic models and efficient handling of many parameters and experimental data sets.

Discretization-based estimation approaches have been widely studied in diverse fields such

as chemical engineering [25–27] and aerospace engineering [28–30] (see [31] for a compre-

hensive review) but less so in computational biology. A major factor that has hindered wider

adoption is the lack of easy-to-use computational frameworks that facilitate access to non-
expert users. In this work, we demonstrate that modern modeling and solution tools can be

combined to create scalable, robust, easy-to-use, and flexible frameworks. We demonstrate the

benefits by solving challenging estimation problems arising in microbial community models.

The proposed framework enables the implementation of higher level tasks such as observ-

ability analysis and uncertainty quantification. Uncertainty quantification (UQ) seeks to char-

acterize parameter posterior distribution, which is necessary to obtain confidence levels/

regions and parameter correlation information. Conventionally, UQ is performed by using

second order derivative (Hessian) information of the likelihood function to construct an

approximate parameter posterior covariance matrix [24, 32] or by using a Markov-Chain-

Monte-Carlo (MCMC) techniques [33–36]. The Hessian-based approach is scalable but it

requires intrusive computation (cannot be automatically computed by the solver) and does

not capture well the effect of nonlinearities and physical constraints [32]. In MCMC, one sam-

ples parameters from the prior parameter density and compares the associated model outputs

with experimental data to decide whether to accept that sample or not. By repeating these

accept/reject steps one can construct an approximate parameter posterior. MCMC is rather

easy to implement (it is not intrusive and does not require solving an optimization problem)

but, being simulation-based, also suffers from potential failures of the differential equation

solver at non-physical parameter samples, it does not scale well with the number of parame-

ters, and it cannot handle constraints directly (e.g., nonnegative concentrations) [37]. In this

work, we propose to overcome some of these challenges by using a randomized maximum a

posteriori (rMAP) framework [36–39]. This method computes approximate (to second order)

samples from the parameter posterior distribution by performing random perturbations on

the experimental data and by re-solving the estimation problem. This allows exploration of the

parameter space more efficiently compared to the MCMC scheme because each sample can be

computed in parallel (MCMC is sequential). Moreover, the rMAP approach is non-intrusive,

can capture nonlinear and physical constraints effects, and avoids potential failures of differen-

tial equation solvers. The proposed estimation framework is flexible and can easily accommo-

date advanced estimation formulations. To demonstrate this, we implement formulations that

use different prior regularization schemes and k-max norms (the mean of a specified fraction

of largest values) to mitigate large outliers [40, 41].
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The main contributions of this paper are summarized as follows. First, we provide an over-

view of parameter estimation and uncertainty quantification that leverages state-of-the-art

optimization methods. Second, we demonstrate the computational capability of the

nonlinear programming framework to handle large-scale parameter estimation problems for

biological models. Lastly, we propose a novel problem formulation for parameter estimation

using risk measures. Fig 1 shows an outline of parameter estimation framework presented in

this paper.

The paper is organized as follows. The methods section provides a general form for the

estimation problem under study and discusses how this can be cast as a sparse NLP by using

time-discretization techniques. Furthermore, we introduce basic concepts behind NLP solvers

that exploit sparsity and structures at the linear algebra level. In addition, we discuss rMAP

and outlier mitigation schemes. In the results section, we demonstrate that the proposed

framework can handle challenging estimation problems arising in microbial community

models.

Fig 1. Illustration of the proposed estimation framework. Mathematical models for biological systems are often expressed as systems of differential equations with

parameters that need be estimated from experimental data. We formulate the estimation problem using a maximum a posteriori (MAP) formulation. This yields

optimization problems constrained by differential equations that are transformed into fully algebraic nonlinear programs by using discretization schemes. The

resulting NLPs can be easily implemented in algebraic modeling languages such as JuMP and Plasmo.jl that compute derivatives automatically and that are

interfaced to powerful interior-point optimization solvers that exploit sparsity and structure to achieve high computational efficiency. The proposed framework is

scalable, robust, easy-to-use, and flexible. These capabilities facilitate high-level tasks such as identification of parameter observability/uniqueness issues, model

selection, and uncertainty quantification.

https://doi.org/10.1371/journal.pcbi.1006828.g001
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Methods

Estimation for dynamic models

We consider estimation problems of the following form:

min
y

φðyÞ þ
X

k2K

φkð�Zk; ZkÞ ð1Þ

s:t: _xkðtÞ ¼ fkðxkðtÞ; yÞ; k 2 K; t 2 ½0;Tk� ð2Þ

xkð0Þ ¼ x0
k; k 2 K ð3Þ

�ZkðtÞ ¼ �kðxkðtÞ; yÞ; k 2 K; t 2 T k ð4Þ

0 � hkðxkðtÞ; yÞ; k 2 K; t 2 T k: ð5Þ

Here, K≔ f0; 1 . . .Kg is the set of experiments and T k≔ ft1; t2; � � � ; tnkg is the set of

measurement (sampling) times in experiment k 2 K. Time is denoted as t 2 [0, Tk], where

Tk 2 Rþ is the duration for experiment k 2 K. The variable vector xk : R! Rnxk are the dif-

ferential state time trajectories, y 2 Rny are the model parameters, �ZkðtÞ 2 R
nZk are the model

predicted outputs with corresponding experimental observations ZkðtÞ 2 R
nZk at time t 2 T k

and experiment k 2 K, and x0
k 2 R

nk are initial conditions for experiment k 2 K. For conve-

nience in the notation, we define the output vectors �Zk ¼ ð�Zkðt1Þ; � � � ; �ZkðtnkÞÞ and the experi-

mental output vectors Zk ¼ ðZkðt1Þ; � � � ; ZkðtnkÞÞ for experiment k 2 K as well as the total

output vector �Z ¼ ð�Z1; � � � ; �ZKÞ and the total experimental output vector η = (η1, � � �, ηK). The

vector function fk(�) denotes the dynamic model mapping, φ(�) and φk(�) are objective func-

tion mappings, ϕk(�) is the state-to-output mapping, and hk(�) is the constraint mapping.

All the mappings are assumed to be at least twice continuously differentiable with respect

to all the arguments. The estimation formulation (1)–(5) captures all the features of our

proposed framework. Our framework, however, can also accommodate more general fea-

tures; for instance, the initial conditions (3) can be also considered as unknown variables

that need to be estimated and we can define non-additive objective functions that penalize

large errors.

Problem (1)–(5) can be derived from Bayesian principles. To see this and introduce some

useful notation, we start from Bayes theorem:

pðy j ZÞ ¼
pðZjyÞpðyÞ
pðZÞ

: ð6Þ

Here, p(θ | η) is the parameter posterior density (i.e., the parameter density given knowledge

on the outputs), p(η | θ) is the output posterior density (i.e., the outputs given knowledge on

the parameters), p(θ) is the prior density (i.e., parameter density before knowledge of the out-

put), and p(η) is the output marginal density. In a maximum a posteriori (MAP) formulation,

the goal is to find the parameters that maximize p(θ | η). Because p(η) does not depend on θ,

this can also be achieved by maximizing p(η|θ)p(θ). Maximizing p(η|θ)p(θ) is equivalent to

maximizing the log-likelihood function L(θ) = log(p(θ)) + log p(η|θ). If the outputs from the

experiments k 2 K are independent (which is usually the case), we have that pðZjyÞ ¼
Q

k2KpðZk j yÞ and thus:

LðyÞ ¼ log pðyÞ þ
X

k2K

log pðZkjyÞ: ð7Þ
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The observed outputs are random variables that are usually considered to be Gaussian and

thus Zkjy � N ð�Zk;SkÞ, where Sk is the covariance matrix. The prior density p(θ) is also often

assumed to be Gaussian and thus y � N ð�y;SyÞ, where �y is the mean of the prior distribution

and Sθ is its covariance. With this, we obtain:

� logpðyÞ ¼
ny
2

log2pþ
1

2
log detSy þ

1

2
ðy � �yÞ

T
S� 1

y
ðy � �yÞ ð8Þ

� log pðZkjyÞ ¼
nZk
2

log2pþ
1

2
logdetSk þ

1

2
ðZk � �ZkÞ

T
S� 1

k ðZk � �ZkÞ: ð9Þ

By comparing (7) with (1) we can see that minimizing φðyÞ þ
P

k2KφkðZk; �ZkÞ is equivalent to

minimizing −L(θ). Here, the dynamic model together with the state-to-output mapping

defines a parameter-to-output mapping of the form �Zk≔ mkðyÞ. In a simulation-based estima-

tion approach, the mappingmk(θ) is computed by simulating the dynamic model (2)–(3) at a

trial value θ using a differential equation solver and by evaluating the outputs at the sampling

times t 2 T k using (4). In a discretization-based approach, the mappingmk(θ) is not computed

explicitly (but we use it here as a mathematical representation that is used to explain some rele-

vant concepts). Constraints (5) restrict the parameter space to be explored.

After dropping all constant terms in the likelihood function we obtain:

φðyÞ ¼
1

2
ðy � �yÞ

T
S� 1

y
ðy � �yÞ ð10Þ

φkð�Zk; ZkÞ ¼
1

2
ðZk � �ZkÞ

T
S� 1

k ðZk � �ZkÞ: ð11Þ

The function φ(θ) is usually known as the prior term and provides a regularization effect that

stabilizes the solution of the estimation problem when the parameters cannot be uniquely

infered from the available data [42–45]. This regularization term arises from the prior density

p(θ) and provides a mechanism to encode knowledge on the parameters. Assuming that the

prior density is Gaussian gives rise to a prior term that is defined by a weighted L2 norm.

Recently, the machine learning community has also proposed the use of regularization terms

that use L1 norms (e.g., φðyÞ ¼ ky � �yk1). The L1 norm induces sparsity in the parameters

and corresponds to assuming that the prior density is Laplacian. One can also show that an L1

norm acts as an exact penalty function and implicitly induces constraints on the parameters.

Similarly, one can also use the inequality constraints hk(�) to directly embed physical knowl-

edge in the MAP formulation (e.g., concentrations can only be positive).

From (10) and (11) we see that φk(�) are squared error terms and thus the MAP problem

minimizes the sum of the squared errors across all experiments k 2 K. This approach offers

limited control on large errors that might result from data outliers. Here, we propose to use a

k-max norm to mitigate these issues. Our proposal is based on the observation that a k-max

norm is equivalent to a conditional-value-at-risk (CVaR) norm [40, 41, 46]. The CVaRβ norm

of a vector e = (e1, � � �, eK) with components ek ¼ φkð�Zk; ZkÞ is defined as the average of the β-

fraction of largest elements of the vector (where β 2 [0, 1] is a parameter that defines the size

of the fraction) [46]. One can show that, when β! 1, the CVaR norm is the largest fitting

error and, when β! 0, the CVaR norm is the sum of fitting errors (as in the standard MAP

formulation). A key computational property of the CVaR norm is that it can be formulated as

a standard optimization problem. In particular, the MAP problem with a CVaR error norm

Scalable NLP framework for parameter estimation in dynamic biological system models
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can be expressed as:

min
y;g

φðyÞ þ K gþ
1

ð1 � bÞ

XK

k¼1

ek � g�þ
�

 !

ð12Þ

s:t: ð2Þ � ð5Þ ð13Þ

where [�]+ = max(0, �) is the max function and γ is an auxiliary variable [41].

Nonlinear programming formulation

To solve the MAP problem (1)–(5) we approximate the differential equations by using a dis-

cretization scheme. This enables the use of computationally efficient NLP solvers and facili-

tates high-level UQ and observability monitoring tasks.

Time discretization. Discretization schemes such as Euler, Runge-Kutta, and orthogonal

collocation are commonly used to transform differential equations into algebraic ones.

Orthogonal collocation is often preferred because accurate approximations can be obtained

with few discretization points [23]. To simplify the presentation we use an implicit Euler

scheme, which can be shown to be a special type of an orthogonal collocation scheme (it is a

one-point Radau collocation scheme). We discretize the time domain [0, Tk] into a set of inter-

vals with fixed discrete-time points ft0; t1; � � � ; tNkg for each experiment k 2 K (where t0 = 0

and tNk ¼ Tk). The associated index set is represented by N k≔ f0; 1; � � � ;Nkg. By applying an

implicit Euler scheme, the dynamic model (2) is converted into a set of nonlinear algebraic

equations of the form:

xkðtjþ1Þ ¼ xkðtjÞ þ ðtjþ1 � tjÞfkðxkðtjþ1Þ; yÞ; k 2 K; j 2 N k ð14Þ

xkð0Þ ¼ x0
k; k 2 K: ð15Þ

With this, we can approximate the MAP problem (1)–(5) using the NLP:

min
y;x;�Z φðyÞ þ

X

k2K

φkð�Zk; ZkÞ ð16Þ

s:t: xjþ1

k ¼ x
j
k þ ðtjþ1 � tjÞ fkðx

jþ1

k ; yÞ; k 2 K; j 2 N k ð17Þ

xkð0Þ ¼ x0
k; k 2 K ð18Þ

�ZkðtÞ ¼ �kðxkðtÞ; yÞ; k 2 K; t 2 T k ð19Þ

0 � hkðx
j
k; yÞ; k 2 K; j 2 N k: ð20Þ

Here, we use xjk ¼ xkðtjÞ as short-hand notation to represent states at time tj and experiment k.

It is important that a sufficient number of time discretization points are used so that the differ-

ential equations are accurately approximated. If the number of time points is not sufficient, the

solution of NLP can be sensitive to the choice of the number of points. To verify that the dis-

cretization is sufficient, we can use a test that assesses the sensitivity of the solution with respect

to discretization. For example, one can increase the number of time points and see if the solu-

tions are reasonably close.

Scalable NLP framework for parameter estimation in dynamic biological system models
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For convenience, we express (16)–(20) in the following abstract form:

min
w FðwÞ ð21Þ

s:t: PðwÞ ¼ 0 ð22Þ

w � 0: ð23Þ

where w 2 Rn is a large-dimensional vector containing all the discrete-time states xjk, parame-

ters θ, and additional auxiliary variables. The mapping F : Rn ! R is the objective function

and P : Rn ! Rm are equality constraints that contain algebraic equations obtained fro dis-

cretization of the dynamic model and other auxiliary equations. General inequality constraints

can be transformed into equality constraints and simple non-negativity bounds by using auxil-

iary slack variables (i.e., 0 � hkðx
j
k; yÞ can be written as sk ¼ hkðx

j
k; yÞ with sk� 0).

A useful representation of the NLP results from noticing that the parameters θ are the only

complicating (coupling) variables across experiments k 2 K. Consequently, we can express the

NLP in the structured from [47]:

min
y;w0...wK

FðyÞ þ
X

k2K

Fkðwk; yÞ ð24Þ

s:t: Pkðwk; yÞ ¼ 0; k 2 K ð25Þ

wk � 0; k 2 K: ð26Þ

Here, the variable vector wk contains all the discrete-time states and auxiliary variables of

experiment k 2 K, F(�) is the prior term, Fk(�) is the contribution of experiment k 2 K to the

likelihood function, and Pk(�) contains the discretized dynamic model equations and auxiliary

equations for experiment k 2 K. As we discuss next, this representation can be used to derive

parallel solution approaches.

Interior-point solvers. The NLPs that result from time discretization exhibit a high

degree of algebraic sparsity (only a few variables appear in each constraint) and are highly

structured. Sparsity and structure permeates down to linear algebra operations performed

inside the optimization solver. This is sharp contrast to the simulation-based approach, which

induces dense linear algebra operations in the space of the parameters θ. Most modern large-

scale NLP solvers such as Ipopt and Knitro seek to exploit sparsity and structure at the lin-

ear algebra level to achieve high computational efficiency [48, 49]. Interior point solvers, in

particular, provide a flexible framework to do this. These solvers replace the variable bounds

by using a logarithmic barrier function. In the context of NLP (21)–(23), this results in a loga-

rithmic barrier subproblem of the form:

min
w

FðwÞ � m
Xn

i¼1

logwðiÞ ð27Þ

s:t: PðwÞ ¼ 0 ð28Þ

where m 2 Rþ is the so-called barrier parameter. The logarithmic term becomes large as w(i)

approaches the boundary of the feasible region. This ensures that variables remain in the inte-
rior of the feasible region (hence the origin of the term barrier). A key observation is that one

can recover a solution of the original NLP (21)–(23) by solving a sequence of barrier problems

for decreasing values of μ [50]. An important property of interior-point methods is that the

original NLP with bounds is converted into a sequence of NLPs with equality constraints. This

Scalable NLP framework for parameter estimation in dynamic biological system models
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removes the combinatorial complexity of identifying the set of bounds that are active or inac-

tive at the solution (a bottleneck in active-set solvers).

Sparse linear algebra. Interior-point methods enable efficient linear algebra implementa-

tions. To explain how this is done, we note that the optimality conditions of the barrier prob-

lem are given by the following set of nonlinear equations:

rwFðwÞ þ rwPðwÞ
T
l � n ¼ 0 ð29Þ

PðwÞ ¼ 0 ð30Þ

VW1 ¼ m; ð31Þ

where, l 2 Rm are the Lagrange multipliers of the equality constraints, ν are the Lagrange mul-

tipliers of the bound constraints, V = diag(ν) andW = diag(w) are diagonal matrices, and 1 is a

vector of all ones.

By applying Newton’s method to (29)–(31), we obtain the following linear algebra system:

Hðw‘; l
‘
Þ þ kwI rwPðw‘Þ

rwPðw‘Þ

2

4

3

5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
M‘ðkwÞ

Dw‘

Dl
‘

" #

¼ �
rwLðw‘; l

‘
Þ

Pðw‘Þ

2

4

3

5:
ð32Þ

Here, ℓ is the Newton iteration index, Δwℓ is the search direction for the primal variables, Δλℓ

is the search direction for the dual variables, andHðw‘; l
‘
Þ ¼ rwwLðw‘; l

‘
Þ þ ðW‘Þ

� 1V‘ is the

Hessian of the Lagrange function Lðw‘; l
‘
Þ≔ Fðw‘Þ � m

Pn
i¼1

logw‘
ðiÞ þPðw

‘Þ
T
l
‘
. The

matrixMℓ(κw) is known as the augmented matrix. The Newton step computation in a simula-

tion-based approach operates only in the space of the parameters θ (the states are implicitly

eliminated by simulation). In the time discretization approach, the Newton search is in the

space of both the discretized states and parameters (contained in the high-dimensional vari-

able vector w). Interestingly, however, the augmented matrix found in typical applications is

highly sparse (with less than 1% of its entries are non-zero) [24].

The constant kw 2 Rþ is aHessian regularization parameter which plays a key role in the

context of parameter estimation. In particular, one can prove that the augmented matrix

Mℓ(κw) is non-singular (and thus the linear algebra system has a unique solution) if and only if

the reduced Hessian matrix ZT H(wℓ, λℓ)Z is positive definite and the Jacobian matrixrwP(wℓ)
has full row rank. Here, the matrix Z 2 Rny�ny is such that its columns span the null-space of the

Jacobian (i.e.,rwP(wℓ)Z = 0). Moreover, the matrix Z is of the same dimension as the number

of degrees of freedom (in our context this is precisely the number of parameters). When the

reduced Hessian is positive definite (i.e., all its eigenvalues are positive) and the Jacobian has full

row rank, one can prove that the Newton step of the primal variables Δwℓ obtained from the

solution of (29)–(31) is a descent direction for the objective function (i.e., (Δwℓ)TrwF(wℓ)< 0)

when the constraints are close to being satisfied (i.e.,P(wℓ)� 0). This is key because it indicates

that the Newton step improves the objective function (in our context, the negative likelihood

function). This property cannot be guaranteed when the reduced Hessian is not positive defi-

nite. When such a situation is encountered, one can increase the regularization parameter κw
until the reduced Hessian is positive definite and a descent direction is obtained. This approach

is closely connected to the Levenberg-Marquardt method used in simulation-based estimation

approaches (in which one regularizes the Hessian of the negative likelihood function as

� ryyLðy
‘
Þ þ kyI) [51]. Another key observation is that, when the reduced Hessian is positive

definite at the solution w�, the estimated parameters are unique. This provides an indication
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that the experimental data is sufficiently informative to identify the parameters uniquely (i.e.,

the parameters are observable). We note that using a prior term φ(θ) in the MAP formulation

has the effect of adding the positive definite matrix S� 1

y
to the reduced Hessian. This artificially

regularizes the problem (as is done in the Levenberg-Marquardt scheme by adding the term

kwI). Consequently, when testing for observability/uniqueness, it is necessary to drop the prior

term from the MAP formulation. Testing for observability also requires exact second order

derivative information because the Hessian is needed. In the time-discretization approach, such

information can be obtained directly from algebraic modeling languages. Simulation-based

solution approaches often cannot check observability of the parameters (computing second

derivatives using adjoint and sensitivity schemes is complicated).

Computing the eigenvalues of the reduced Hessian to check for positive definiteness is

expensive. Interestingly, one can also determine if the reduced Hessian is positive definite by

using inertia information of the augmented matrixMℓ(κw). The inertia of a matrixM is denoted

as Inertia(M) = {n+, n−, n0} where n+, n−, and n0 are the number of positive, negative, and zero

eigenvalues of matrix M, respectively. One can prove that the reduced Hessian matrix is posi-

tive definite if Inertia(Mℓ(κw)) = {n,m, 0}, where we recall that n is the dimension of the variable

vector w andm is the number of constraints. Notably, one can obtain the inertia ofMℓ(κw)

without computing the eigenvalues of the matrix. This is done by using modern sparse symmet-

ric factorization routines such as MA57 or Pardiso [50]. Such routines factorize the matrix

Mℓ(κw) as LBLT where L is a lower triangular matrix and B is a matrix with 1 × 1 and 2 × 2

blocks in the diagonal. One can show that the number of positive and negative eigenvalues of

Mℓ(κw) are the number of positive and negative eigenvalues of B (which are easy to determine).

Modern interior-point solvers are equipped with highly sophisticated safeguarding tech-

niques that enable the solution of highly nonlinear problems. A powerful approach is called a

filter line-search method, in which one seeks to find a step-size κ such that the trial Newton

iteration wℓ+1 = wℓ + κΔwℓ either decreases the objective function or the constraint violation

||P(wℓ)||. If the step is accepted, the current values for the objective and constraint violation

(F(wℓ), P(wℓ)) are stored in a filter (a history of previous successful iterations). At the next iter-

ate, one requires that the Newton step is not in the filter and that it improves either the objec-

tive or the constraint violation. This rather simple strategy is extremely effective in practice.

We highlight the fact that the proposed discretization approach bypasses the need to repeti-

tively simulate the dynamic model (the discretized dynamic model contained in F(w) is solved

progressively by Newton’s method). This brings substantial computational savings. Moreover,

since the discrete-time model is solved at the solution w� of the NLP (21)–(23), we have that

the discrete-time states fxjkg
�

approximate the state trajectories xðtÞ; t 2 T k; k 2 K. In the

absence of inequality constraints, one can also show that the reduced Hessian ZT H(w�, λ�)Z
approximates the Hessian of the negative log-likelihood functionrθθ L(θ�) in a neighborhood

of w� (which contains θ�). We thus have that the reduced Hessian approximates the inverse

parameter covariance matrix V � 1
y

. When inequality constraints are present, some of the

parameters or state variables might hit their physical bounds and this deteriorates the approxi-

mation. When the parameters are not unique (the reduced Hessian has zero eigenvalues), the

parameter covariance matrix is singular. We highlight that such information can be obtained

as by-products of the solution from the nonlinear programming solver. Therefore, the observ-

ability of the parameter estimation problem can be analyzed without further computational

efforts. We also highlight that parameter observability/identifiability can be checked prior to

solving the estimation problem [52, 53]. Unfortunately, such a priori methods require comput-

ing parameter-to-output sensitivity matrices, which requires specialized implementations and

which might miss to capture impacts of nonlinearities (the sensitivity is computed only at a
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reference point). Moreover, such approaches do not capture the impact of constraints. Under

the proposed NLP framework, observability is checked automatically by using the inertia of

the reduced Hessian at the MAP point.

Structured linear algebra. A key advantage of using interior-point solvers is that they

enablemodular linear algebra implementations. For instance, the multi-experiment structure

of problem (24)–(26) permeates down to the linear algebra system, to give a system of the form:

Kµ BT
1 BT

2 : : :      BT
k

B1 K1

B2 K2

...
. . .

Bk Kk

¢µ
¢w1
¢w2
...

¢wK

= ¡

rµ
r1
r2
...
rK

; ð33Þ

where Δθ is the Newton step for the parameters and Δwk = (Δxk, Δλk) is the Newton step for

variables in experiment k. The above system is said to have a block-bordered diagonal (BBD)

structure. Here, we have that:

Ky ¼ Hy; Kk ¼
Hk JTk

Jk

" #

; BTk ¼ ½Q
T
k T

T
k �; ð34Þ

where Jk ¼ rwk
Pk, Tk =rθPk,Hy ¼ ryyLþ kwI,Hk ¼ rwkwk

LþW � 1
k Vk þ kwI,

Qk ¼ ryxk
L, ry ¼ ryL, and rk ¼ rwk

L.

The BBD matrix is a permutation of the augmented matrix Mℓ(κw) (obtained by ordering

variables by experiment). The BBD matrix can thus be expressed as PTMℓ(κw)P where P is a

permutation matrix. The permutation does not affect the eigenvalues of the matrix. The BBD

system (33) can be solved in parallel by using a Schur complement decomposition approach

[47, 54] or specialized preconditioning strategies [55]. In this work, we focus on Schur comple-

ment-based approach. This requires the solution of the linear algebra systems:

ðKy �
X

k2K

BkK
� 1

k B
T
k ÞDwy ¼ � ry þ

X

k2K

K � 1

k Bkrk ð35Þ

KkDwk ¼ � rk � BTkDy; k 2 K: ð36Þ

Here, S ¼ Ky �
P

k2KBkK
� 1
k B

T
k is the Schur complement matrix which has the same dimension

as the number of degrees of freedom (in our case the number of parameters). The key observa-

tion is that the experiment matrices Kk can be factorized by using an LBLT factorization (by

using MA57 or PARDISO) in parallel. As a result, Schur decomposition can achieve high

computational efficiency in estimation problems with many experimental data sets.

When using a Schur decomposition, one can estimate the inertia of the BBD matrix by

using Haynsworth’s formula:

InertiaðM‘ðkwÞÞ ¼
X

k2K

InertiaðKkÞ þ InertiaðKy �
X

k2K

BkK
� 1

k B
T
k Þ: ð37Þ

We recall that n = nθ + ∑k nk andm = ∑k mk. Consequently, if we have that Inertia(Kk) = {nk,
mk, 0} for all k 2 K then Inertia(Mℓ(κw)) = {n,m, 0} if and only if Inertia(S) = {nθ, 0, 0} (i.e., the

Schur complement is positive definite). One can obtain the inertia of the blocks Kk and S using

LBLT factorization. This allows us to test observability of the parameters.

We highlight that Schur decomposition and block cyclic reduction techniques can also be

used to decompose the estimation problem along the time horizon. This enables the solution
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of problems with fine time resolutions and long horizons (see [56]). Unfortunately, scalable

implementations of such techniques are currently not available (this is an interesting direction

of future work). We also highlight that there exist generic parallel linear solvers (such as

MA97) that seek to identify and exploit structures on-the-fly. Such approaches are in general

not competitive with approaches that communicate structure directly to the solver (such as

Schur decomposition).

Uncertainty quantification

The estimation problem under the MAP framework gives the values of the parameters θ� that

maximize the parameter posterior density. However, a characterization of the entire posterior

is necessary to assess parameter uncertainty. The posterior covariance may be approximated

from the reduced Hessian at the solution of the problem w� and the covariance matrix can be

used to determine ellipsoidal level sets of the posterior (confidence regions). This approach,

however, might fail to capture nonlinear and constraint effects [24]. In this work, we circum-

vent these issues by using a randomized maximum a posteriori (rMAP) approach. Under this

method, the posterior distribution is explored by using random perturbations on the experi-

mental data (which can be easily parallelized). The rMAP framework can also deliver approxi-
mate samples from the parameter posterior distribution and implicitly captures nonlinear and

constraint effects. To show this, we use the implicit mapping representation �Zk ¼ mkðyÞ.

Under this representation, the posterior density (6) can be expressed as:

pðy j ZÞ ¼
1

pðZÞ
exp ðy � �yÞ

T
S� 1

y
ðy � �yÞ þ

X

k2K

ðmkðyÞ � ZkÞ
T
S� 1

k ðmkðyÞ � ZkÞ

 !

ð38Þ

¼
1

pðZÞ
exp �

1

2
ðmðyÞ � ẐÞTS� 1ðmðyÞ � ẐÞ

� �

ð39Þ

wherem(θ) ≔ (θ,m1(θ), � � �,mK(θ)), S≔ diag(Sθ, S1, S2, � � �, SK), and Ẑ ¼ ð�y; ZÞ. Here, we

redefine Z Ẑ to enable compact notation. Since θ� is a solution of the MAP problem, we

have that:

y
�
¼ argmin

y

ðmðyÞ � ZÞTS� 1ðmðyÞ � ZÞ: ð40Þ

If the mappingmk(�) is continuously differentiable, we have that:

mðyÞ ¼ mðy�Þ þ rmðy�Þðy � y�Þ þ Oðky � y�k2

2
Þ: ð41Þ

To enable compact notation we define η� =m(θ�) andrm� =rm(θ�). We have that θ� satisfies

the stationary condition of (40):

ðrm�ÞTS� 1ðZ� � ZÞ ¼ 0: ð42Þ

We use (41) to obtain a second-order Taylor approximation of the posterior as:

pðy j ZÞ �
1

pðZÞ
exp �

1

2
ðZ� � Zþrm�ðy � y�ÞÞTS� 1ðZ� � Zþrm�ðy � y�ÞÞ

� �

¼
expððZ� � ZÞTS� 1ðZ� � ZÞÞ

pðZÞ
exp �

1

2
ðy � y

�
Þ
T
rm�TS� 1rm�ðy � y�ÞÞ

� �

/ exp �
1

2
ðy � y

�
Þ
T
rm�TS� 1rm�ðy � y�Þ

� �

ð43Þ
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This implies that the posterior is approximately represented as:

y j Z � N ðy�; ðrm�TS� 1rm�Þ� 1
Þ: ð44Þ

We recall that the output error is Gaussian and we can thus write η =m(θ) + � with

� � N ð0;SÞ. We now consider the MAP problem with randomly perturbed data:

~y ¼ argmin
y

ðmðyÞ � ðZþ �ÞÞTS� 1ðmðyÞ � ðZþ �ÞÞ ð45Þ

and note that

ðmðyÞ � ðZþ �ÞÞTS� 1ðmðyÞ � ðZþ �ÞÞ

¼ ðZ� � Zþrm�ðy � y�Þ � �ÞTS� 1ðZ� � Zþrm�ðy � y�Þ � �Þ þ Oðky � y�k2

2
Þ

¼ ðy � y
�
Þ
T
rm�TS� 1rm�ðy � y�Þ þ 2ðy � y

�
Þ
T
rm�TS� 1�þ Oðky � y�k2

2
Þ þ C;

ð46Þ

where C is a constant. Consequently, for sufficiently small �, we can linearize the mapping m(�)

to obtain an approximate solution of (45) of the form:

~y � y
�
þ ðrm�TS� 1rm�Þ� 1

rm�TS� 1�: ð47Þ

Here, we observe that the right-hand side of (47) is Gaussian with mean θ� and covariance:

ððrm�TS� 1rm�Þ� 1
rm�TS� 1ÞSððrm�TS� 1rm�Þ� 1

rm�TS� 1Þ
T

¼ ðrm�TS� 1rm�Þ� 1
ðrm�TS� 1rm�Þðrm�TS� 1rm�Þ� 1

¼ ðrm�TS� 1rm�Þ� 1
:

ð48Þ

We thus have that:

~y � N ðy�; ðrm�TS� 1rm�Þ� 1
Þ; ð49Þ

Consequently, solving (45) provides an approximate sample from the posterior distribution p
(θ j η). The sampling procedure (45) is accurate up to second order. To obtain an exact sam-

pling from the posterior, one needs to implement a rigorous MCMC scheme. The MCMC

scheme removes the bias that appears in the rMAP sample density, which results from the sec-

ond order approximation [35, 36, 36, 37]. This effect is illustrated with an examples in [37].

Several works in the literature, however, report that accurate posterior densities can be

obtained using an rMAP scheme [38, 57, 58]. We also note that the rMAP scheme implicitly

captures nonlinearities and physical constraints when computing samples from the posterior

(MCMC does not capture constraints). In particular, solving the perturbed problem (45) cor-

responds to solving the MAP problem (1)–(5) with randomly perturbed data and the MAP

problem enforces constraints and handles the full nonlinear model. The computational frame-

work provided in this work focuses on the solution of the estimation problem and seeks to

highlight that these capabilities enable the implementation of advanced UQ procedures. A

detailed analysis and comparison of different UQ methods for biological dynamical models is

an interesting topic of future work. Systematic comparisons in other settings are provided in

[35, 36].

Algebraic modeling platforms

Having an algebraic representation of the estimation problem has many practical and compu-

tational advantages. In particular, one can implement the estimation problem in easy-to-use

and open-source modeling languages such as JuMP [59], Plasmo.jl [60], and Pyomo [61,
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62]. These modeling languages are equipped with automatic differentiation techniques that

compute exact first and second derivatives. Derivative information is communicated to opti-

mization solvers without any user intervention. Modern algebraic modeling languages such as

Plasmo.jl and Pyomo also allow users to convey structural information to the solvers. This

is beneficial in the case of parameter estimation, where the structure can be exploited to enable

parallelism and the use of high-performance computing clusters. In our framework, we use the

modeling language Plasmo.jl to express multi-experiment estimation problems as graphs.

Our implementation using Plasmo.jl is illustrated in Fig 2. The full Julia script is avail-

able at https://github.com/zavalab/JuliaBox/tree/master/MicrobialPLOS. We highlight that the

same script can be used to solve the estimation problem using a general NLP solver such as

Ipopt on a single-processor computer or with a structure-exploiting parallel NLP solver such

as PIPS-NLP on multiple parallel computing processors (this might be a multi-core comput-

ing server or a large-scale computing cluster). This allows users with limited knowledge on sci-

entific computing to gain access to advanced high-performance computing capabilities.

Results

Human gut microbial communities and microbiomes are highly dynamic networks coupled

by positive or negative interactions and numerous feedback loops that display complex behav-

iors [63–66]. The generalized Lotka-Volterra (gLV) model provides a useful approach to cap-

ture such behavior [67–71]. Specifically, gLV captures single species growth rates and intra-

species and inter-species positive and negative interactions. We apply the proposed NLP

Fig 2. Snippet of parameter estimation implementation in Plasmo.jl.

https://doi.org/10.1371/journal.pcbi.1006828.g002
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framework to estimate the growth and interaction parameters of the gLV model from experi-

mental data collected in [66]. The microbial species involved in the experiments are shown in

Table 1. Experiments were designed to study the synthetic ecology encompassing 12 prevalent

human-associated intestinal species.

The gLV model is given by:

dxs
dt
¼ ms þ

X

s02S

ass0xs0

 !

xs; s 2 S ðModel 1Þ

where S ¼ f1; 2; � � � ; Sg is the set of microbial species, xs : R! R is the trajectory of the

abundance of species s 2 S, μs is the growth rate of species s, and αss0 is the interaction parame-

ter that captures the effect of the abundance of species s0 on the growth rate of species s. Species

s and species s0 are referred to as recipient species and donor species, resepectively. Since

(Model 1) only includes smooth mappings, one can apply the parameter estimation framework

presented in the previous section.

The parameters (growth rates and interaction) cannot be calculated directly from first-prin-

ciples and must be estimated from experimental data. The means of the prior densities of the

parameters are assumed to be �ms ¼ �ass0 ¼ 0 and their standard deviations are assumed to be

sm ¼ sa ¼ 1=
ffiffiffiffiffi
50
p

. Such values are empirically determined by selecting the standard deviation

values that give biologically feasible parameter estimates (the range of biologically feasible

parameter values are 0.09< μs< 2.1, −10< αij< 10, and −10< αii< 0). The variances for the

output measurements are assumed to be σk,s(t) = 0.05 max(0.1, ηk,s(t)). There are a total of 156

parameters including 12 monospecies growth rate and 144 interaction parameters (12 x 12).

The set of experiments K includes 12 monospecies experiments and 66 pairwise community

experiments (total of K = 78 experiments). The estimation problem contains a total of 144 dif-

ferential equations (i.e. the model is a system of ordinary differential equations onR144). The

computational characteristics of the estimation problem are summarized in Table 2 (labeled as

P1).

The dynamic model is discretized using an implicit Euler scheme with five equally-spaced

discretization points (monospecies experiments) and 120 equally-spaced discretization points

(pairwise experiments). The sufficiency of discretization is verified by checking the sensitivity

of the solution with respect to the change of discretization. The following scheme is used:

Table 1. List of microbial species used in case study.

Label Full name Abbreviation

1 Blautia hydrogenotrophica BH

2 Collinsella aerofaciens CA

3 Bacteroides uniformis BU

4 Prevotella copri PC

5 Bacteroides ovatus BO

6 Bacteroides vulgatus BV

7 Bacteroides thetaiotaomicron BT

8 Eggerthella lenta EL

9 Faecalibacterium prausnitzii FP

10 Clostridium hiranonis CH

11 Desulfovibrio piger DP

12 Eubacterium rectale ER

https://doi.org/10.1371/journal.pcbi.1006828.t001
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1. Solve the problem to obtain the set of parameters θ�.

2. Increase the number of discretization points by a factor of two (i.e., reduce the time step by

half), and resolve the problem to obtain the set of parameters ~y.

3. Check if θ� and ~y satisfy the following sensitivity criteria:

y
�

i �
~y i < �abs _ ðy

�

i �
~y iÞ=y

�

i < �rel 8i ¼ 1; 2; � � � ; ny: ð50Þ

We use �abs = �abs = 0.01. We have verified that the above-mentioned discretization sheme

yields solutions that satisfy (50).

Observability and regularization

Parameter observability was checked by solving the MAP formulation for P1 (which uses the

available experimental data) and by checking the inertia of the augmented system at the solu-

tion (reported by Ipopt). Here, we omitted the prior regularization term φ(�). We found that

parameters obtained from P1 are not unique (not observable from the available data). More-

over, we found that the estimated parameter values without regularization have unrealistic

(non-physical) values, see Fig 3(a). This observation justifies the need to use prior information.

We have used L1 and L2 priors with uniform standard deviations (other forms of prior can

also be used as long as they can be reformulated as smooth functions). The results are pre-

sented in Fig 3(b) and 3(c). Unique parameter estimates were found when L1 or L2 priors

were used. We also found that the L1 prior induces sparser solutions (many parameters are

zero). For the remainder of the results, we use the formulation with an L2 prior.

Model fitting

Model validation was performed by assessing the goodness of fit to the experimental data

(Fig 4). We can see that the model is capable of fitting most of the data points, but there are a

Table 2. Characteristic of estimation problems used in scalability studies.

Original Original+Synthetic Synthetic

Label P1 P2 S1 S2 S3 S4

Number of Species 12 12 12 24 36 48

Number of Diff. Equations 144 1,584 144 576 1,296 2,304

Number of Parameters 156 156 156 600 1,332 2,352

Number of Experiments 78 858 78 300 666 1,176

Number of Data Points 1,704 18,744 1,632 5,568 11,808 20,352

Number of NLP Variables 91,644 1,006,524 83,004 340,824 773,460 1,380,912

Number of NLP Constraints 91,488 1,006,368 82,848 340,224 772,128 1,378,560

Problem P1 includes the original experimental data [66] for a 12-species microbial community (consisting of 12 mono-species and 66 pairwise community

experiments). The sampling frequency and the experiment duration of the mono-species experiments are 30 minutes and 24 hours, respectively. The sampling

frequency in the pairwise community experiments is 12 hours and the experiment duration range from 60 to 72 hours. In the pairwise experiments, the media are

diluted by 1/20 once every 24 hours. The dynamic model is discretized using an implicit Euler scheme with 5 equally-spaced discretization points (monospecies

experiments) and 120 equally-spaced discretization points (pairwise experiments). The data used in P2 includes the original data of P1 and 10 additional synthetic data

sets obtained with random data perturbations. Data for problems S1-S4 is synthetic and is obtained by running a simulation of the community model with fixed

parameters and by adding 5% noise to the outputs. The data sampling characteristics (e.g., frequency, duration, dilution patterns) are the same as those of P1. The

parameter values used for simulations are randomly generated from ms � N ð0:3; 0:12Þ, ass � N ð� 1; 0:12Þ, and ass0 � N ð0; 0:12Þ.

https://doi.org/10.1371/journal.pcbi.1006828.t002
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number of experiments where the model prediction deviates significantly from the experimen-

tal data (such experiments are highlighted with red boxes). Furthermore, we can observe outli-

ers at single data points (highlighted with red circles). Poor fitting can be caused by either bad

local minima (the optimization solver finds a local optimal solution rather than the global opti-

mal solution) or by a structural model error (the model structure is incapable of capturing the

actual behavior of the system). To avoid bad local minima, we solved the MAP problem with

multiple starting points. Such an approach increases the probability to find the global opti-

mum, but obtaining a rigorous certificate of a global minimum is computationally challenging

(rigorous global optimization techniques are currently not scalable to large problems). We

found that the use of multiple starting points does not improve the model fit. Consequently,

we attribute fitting errors to the model structure itself. In particular, the gLV model neglects

various physical and biological phenomena such as lag phase or interaction coefficients that

change as a function of time [66]. To investigate structural errors, we solved the MAP problem

with a variant of the gLV model. In particular, we investigated the saturable gLV model [72,

Fig 3. Parameter estimates with MAP formulations (P1, Model 1). (a) Estimates using MAP formulation with no prior information. (b) Estimates using L1 prior.

(c) Estimates using L2 prior. (a-c) The first row shows values for the growth rate parameters μs and the rest of the rows show values for the interaction parameters

αss0. The species name corresponding to s and s0 are presented on the x and y axes. Recipient and donor species are on the x and y-axis, respectively.

https://doi.org/10.1371/journal.pcbi.1006828.g003
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Fig 4. Fitting of experimental data (P1, Model 1). Subplots show the measured and predicted species abundance in the microbial community. The subplots on the

diagonal show fitting for mono-species experiments. Subplots on the i-th row and j-th column shows fitting for the corresponding pairwise culture (the abundance of

species i in the presence of species j). Recipient and donor species are listed in rows and columns, respectively. For each subplot, the y-axis represents the absolute

abundance in the community based on relative abundance multiplied by total biomass (OD600) and the x-axis represents the experiment time in hours. Data points

are denoted by grey dots and dynamic model trajectories are denoted by solid lines. The data points highlighted with red circles are data points corresponding to the

ten largest errors ð1=2ÞðZk;sðtÞ � �Zk;sðtÞÞ
2
=sk;sðtÞ

2
. The subplots highlighted with red boxes are subplots for the experiments with the ten largest total prediction errors

P
t2T k
ð1=2ÞðZk;sðtÞ � �Zk;sðtÞÞ

2
=sk;sðtÞ

2
.

https://doi.org/10.1371/journal.pcbi.1006828.g004

Fig 5. Improvement of model fitting with saturable gLV model (P1, Model 2). Model fitting for 4 experiments selected among the

experiments with 10 largest total prediction errors. The gLV model fits (dotted line) are compared with those of the saturable model

(solid line). (a) Model fits to monospecies experiment with CH. (b) Model fits to monospecies experiment with CA. (c) Model fits to

pairwise community experiment with PC in the presence of EL. (d) Model fits for pairwise community experiment with CA in the

presence of ER.

https://doi.org/10.1371/journal.pcbi.1006828.g005
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73] (Model 2):

dxs
dt
¼ ms þ

X

s02S

ass0xs0
Kss0 þ xs0

 !

xs; ðModel 2Þ

where Kss0 > 0 are additional interaction parameters. The saturable model exhibits a much

higher degree of nonlinearity than the gLV model and includes S2 more parameters (the num-

ber of degrees of freedom increases from S2 + S to 2S2 + S). As a result, the saturable gLV

model provides more flexibility to improve model fitting. These results thus seek to illustrate

that the proposed NLP framework can be used to handle challenging dynamic models. The

model fitting obtained with the saturable gLV form is illustrated in Fig 5. As can be seen, sig-

nificant improvements were made; in particular, the overall fitting error

X

k2K

X

s2Sk

X

t2T k

1

2

Zk;sðtÞ � �Zk;sðtÞ
sk;sðtÞ

!2

;

 

ð51Þ

was reduced by 30%. Increasing the number of degrees of freedom can cause overfitting, how-

ever, and this can make the model less predictive. Consequently, there is a trade-off between

fit and predictability.

To mitigate outliers, we solved the MAP problem with a CVaR norm and β = 0.9 (to penal-

ize the 10% largest errors). The relevant results are summarized in Fig 6. It can be observed

that the fitting errors for the outliers obtained with the standard MAP formulation are

reduced. The effect of the CVaR formulation is also evident when analyzing the prediction

error histogram (see Fig 7). In particular, we observe that the tail of high prediction errors

becomes less pronounced under the CVaR formulation. In particular, the mean of the 10%

largest errors decreases by 18% (from 167.81 to 137.04). On the other hand, it can also be

observed that the mean error increases under CVaR and that the tail of small errors shrinks.

This illustrates the fundamental trade-off that usually arises in robust statistics. The behavior

induced with CVaR aids estimator performance because it prevents overfitting experimental

data sets.

Fig 6. Improvement of model fitting by using CVaR (k-max) MAP formulation (P1, Model 1). Model fits for 4 experiments

selected among the experiments with 10 largest prediction errors ð1=2ÞðZk;sðtÞ � �Zk;sðtÞÞ
2
=sk;sðtÞ

2
. The model fits from standard

MAP formulation (dotted line) are compared with the model fits from CVaR formulation with β = 0.9 (solid line). (a) gLV model

fits to pairwise community experiment of PC in the presence of EL. (b) gLV model fits to pairwise community experiment of CA

in the presence of ER. (c) gLV model fits to pairwise community experiment with CH in the presence of PC. (d) gLV model fits

to pairwise community experiment with CH in the presence of BO.

https://doi.org/10.1371/journal.pcbi.1006828.g006
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Inference (posterior) analysis

We used rMAP to assess the uncertainty of the 156 parameters estimated from P1 using the

available experimental data. To do so, we draw data perturbations as ηk,s(t) ηk,s(t) + �k,s(t)
with �k;sðtÞ � N ð0; sk;sðtÞ

2
Þ. We solved 500 MAP problems to obtain parameter samples and

use this to approximate the covariance matrix for the posterior. The standard deviations are

shown in Fig 8(a) and the marginals for the posterior are shown in Fig 9. A large standard

deviation indicates that the estimated parameter value is not reliable. We note that about half

of the parameters can be estimated reliably while the other half exhibit significant uncertainty.

This indicates that more experimental data should be obtained. From the sample covariance,

we generated 95% ellipsoidal confidence regions for each pair of parameters. The correlation

plots of μs against αss0 for s; s0 2 S are shown in Fig 10 and the Pearson correlation coefficients

are shown in Fig 8(b). In an ideal case, the parameters should be uncorrelated because data

should be sufficient to estimate each parameter reliably. Using our data set, however, we can

observe strong correlations between the parameters μs and αss in Fig 10, and strong positive

and negative correlations can also be found in Fig 8(b).

Furthermore, since the whole approximate distribution is obtained in the inference analysis

based on rMAP framework, we can perform more sophisticated analysis on the characteristics

of the distribution. In particular, one can investigate third and fourth moments (Fig 11) to

examine the skewness and the kurtosis of the distribution. Such information can be used to

Fig 7. Histograms of fitting errors (P1, Model 1). (a) Error histogram for the standard MAP formulation. (b) Tail region of (a). (c) Error histogram for CVaR

formulation. (d) Tail region of (c). (a-d) The x-axis represents the value of prediction error evaluated at the solution and the y-axis represents the frequency. The red

and blue line represent quantiles: the overall mean of prediction errors (red) and the mean of largest 10% errors (blue).

https://doi.org/10.1371/journal.pcbi.1006828.g007
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Fig 8. Parameter uncertainty and correlations (P1, Model 1). (a) Heat map presents the standard deviation for the parameter posterior density. The first

row shows the standard deviations of the growth rate parameters μs and the rest of the rows show the standard deviations of the interaction coefficients αss0.
Recipient and donor species are on the x and y-axis, respectively. The data points highlighted with green circles are data points corresponding to the ten

largest standard deviations. (b) The heat map represents the Pearson correlation coefficients of the poterior distributions. The x-axis and the y-axis represents

the index of parameters where the parameter vector is constructed as θ = (μ1, α11� � �α1S, � � �, μS, αS1, � � � αSS). The block on the i-th row and j-th column is the

Pearson correlation between the i-th and j-th component of parameter vector θ.

https://doi.org/10.1371/journal.pcbi.1006828.g008

Fig 9. Posterior (marginal) densities for estimated parameters (P1, Model 1). Each subplot shows the histogram of the samples from the approximate parameter

posterior. The x-axis represents the values of the estimated parameters and the y-axis represents the frequencies. The subplots on the first column show the distribution

of the growth rates μs and the rest of the subplots show distributions of the interaction parameters αss0. Recipient and donor species are listed in rows and columns,

respectively. The x-axis is scaled to show μ ± 3σ where the μ is the mean and the σ is the standard deviation of the posterior distribution.

https://doi.org/10.1371/journal.pcbi.1006828.g009
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Fig 10. Correlations between parameter pairs (P1, Model 1). Each subplot shows the 95% confidence regions (solid ellipses) of the approximate parameter posterior

distributions and the sample points (dots). The subplots on the s-th row and s0-th column show the correlation of μs and αss0. Recipient and donor species are listed in

rows and columns, respectively. Only a representative subset of parameter pairs is presented (there are a total 12,090 pairs).

https://doi.org/10.1371/journal.pcbi.1006828.g010

Fig 11. Third and fourth momentum of posterior (P1, Model 1). (a) Heat map presents the third momentum of the parameter posterior density (normalized by

σ3).(b) The heat map represents the fourth momentum of the poterior density (normalized by σ4). (a-b) The first row shows the standard deviations of the growth

rate parameters μs and the rest of the rows show the standard deviations of the interaction coefficients αss0. Recipient and donor species are on the x and y-axis,

respectively.

https://doi.org/10.1371/journal.pcbi.1006828.g011
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investigate the deviation of the posterior distribution from the normal distribution. If the pos-

teriors are stritly normally distributed, the third and fourth moments should be zero and 3σ4,

respectively. However, we can observe that many posterior distributions deviate from such

expectations. Thus, we can see that some of the distributions are not close to the normal

distribution.

Computational scalability

We assessed the computational scalability of the estimation framework by analyzing problems

with different sizes and characteristics. Problem P1 was implemented in the algebraic model-

ing platform JuMP and solved with the NLP solver Ipopt configured with the sparse linear

solver MA57. Problem P1 with gLV model and L2 prior was solved in 134 seconds and 78 NLP

iterations on a standard computing server with an Intel(R) Xeon(R) CPU E5-2698 v3 proces-

sor running at 2.30GHz. Problem P1 with gLV model and L1 prior was solved in 219 seconds

and 68 NLP iterations with the same hardware. A comparable problem requires over 7 hours

to solve using a simulation-based approach implemented in Matlab and that uses finite dif-

ferences to obtain first derivatives [66]. Despite the significant gains in computational perfor-

mance obtained with Ipopt, its solution time scales nearly quadratically with the number of

data sets. To overcome this scalability issue, we compared the performance of the serial solver

Ipopt against that of the parallel solver PIPS-NLP (which uses a Schur complement decom-

position to perform linear algebra operations). To test the scalability of PIPS-NLP, we gener-

ated a larger version of the estimation problem (labeled as P2). This problem is created by

adding synthetic data sets. The NLP corresponding to P2 has over one million variables and

constraints (but the number of parameters is the same as that of P1). This problem was imple-

mented in Plasmo.jl. The benefit of using a parallel approach is clearly seen in Fig 12.

Here, we highlight that PIPS-NLP solved P2 in less than 10 minutes and 94 NLP iterations

using 16 cores while Ipopt requires around 30 minutes and 67 iterations. Furthermore,

IPOPT found a different local solution and the solution from PIPS-NLP had a better

Fig 12. Performance comparison of general solver Ipopt and the structure-exploiting solver PIPS-NLP (P1-P2,

Model 1). (a) Solution time for P2 using Ipopt and PIPS-NLP. The y-axis shows the solution time and the x-axis

shows the number of cores used. For Ipopt the single core solution time is given by the horizontal blue line. (b) The

y-axis represents the speed-up (the single-core solution time divided by the multi-core solution time). The blue line is

the single-core solution time of PIPS-NLP divided by the single-core solution time of Ipopt. The grey dashed line

represents the strong scaling line.

https://doi.org/10.1371/journal.pcbi.1006828.g012
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objective value. Fig 12(b) also shows that PIPS-NLP achieves nearly perfect strong scaling

(speedup increases linearly with the number of cores).

In rMAP-based uncertainty quantification, the main computational challenge was the

repetitive solution of the optimization problems. However, such challenge can be overcome by

using the existing solution information. The required number of iterations in NLP solver can

be greatly reduced when a good starting point (initial guess of the solution) is available (often

referred to as warm start). Since only small modifications are made to the original problem to

formulate the rMAP problem, the NLP solution of rMAP problem is very similar to that of the

original problem. Thus, by warm-starting the NLP with the original NLP solution, the compu-

tational efforts to solve rMAP problem can be significantly reduced. In particular, most rMAP

sampling problem was solved in less than 10 NLP iterations while the original problem

required 78 NLP iterations.

We also assessed computational capability in estimation problems with the larger number

of species in the microbial community (which increases the number of differential equations

and parameters). Here, we generated synthetic data using simulations for larger communities.

The generated data are summarized in Table 2. The number of the parameters and of data

points scales nearly quadratically with respect to the size of the community. The computation

times are shown in Fig 13. The results indicate that, by using PIPS-NLP, one can solve esti-

mation problems with up to 48 species in less than 15 minutes and 40 NLP iterations (using 12

parallel computing cores). We highlight that, to the best of our knowledge, problem S4 is the

largest estimation problem reported in computational biology literature. This problem con-

tains 2,304 differential equations, 2,352 parameters, and 20,352 data points. The corresponding

NLP contains 1.3 million variables and constraints.

Discussion

The high computational efficiency achieved with the proposed framework can enable kinetic

modeling of complex biological systems ranging from biomolecular networks to high-dimen-

sional microbial communities [74]. Indeed, the proposed framework can be used to construct

and analyze high-fidelity models of whole-cells or microbiomes [75, 76]. In particular, these

methods can be applied to develop predictive dynamic models of multi-gene synthetic circuits

Fig 13. Computational scalability with larger communities (S1-S4, Model 1). (a) Number of variables against

community size (total number of species). (b) The computation times for problems S1-S4 (see Table 2). The problems

were solved with PIPS-NLP on 12 parallel cores (Intel(R) Xeon(R) CPU E5-2698 v3 processor running at 2.30GHz).

https://doi.org/10.1371/journal.pcbi.1006828.g013
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interacting with host-cell processes for accurately predicting cell growth and synthetic circuit

activity [77] or kinetic models of metabolite transformations driving community dynamics.

The proposed framework can also be used to handle more sophisticated models that arise in

biological systems such as delay differential equations, differential and algebraic equations,

and partial differential equations. Dynamic biological models with embedded metabolic flux

formulations (giving rise to non-smooth behavior) can be handled with the proposed frame-

work by using reformulations [78]. Estimation problems for stochastic differential equations

(such as stochastic chemical kinetics models) cannot be handled with the proposed framework

and remain a challenging class of problems [79].

The methods provided in this work will advance our capability of integrating mechanistic

modeling frameworks with large-scale experimental data. Furthermore, uncertainty quantifi-

cation and observability analysis can provide valuable information to guide and accelerate

experimental data collection. These capabilities are also essential in diagnosing structural

model errors. The proposed framework uses state-of-the-art and easy-to-use modeling and

solution tools that can be broadly applied to diverse biological systems and accessible to a wide

range of users. In the future, the proposed framework can be interfaced with systems biology

markup languages such as SBML [80] and CellML [81] to allow broader applicability.

Together, these advances can ultimately transform biology into a predictive and model-guided

discipline.
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48. Wächter A, Biegler LT. On the implementation of an interior-point filter line-search algorithm for large-

scale nonlinear programming. Mathematical Programming. 2006; 106(1):25–57. https://doi.org/10.

1007/s10107-004-0559-y

49. Byrd RH, Nocedal J, Waltz RA. KNITRO: An integrated package for nonlinear optimization. In: Large-

scale nonlinear optimization. Springer; 2006. p. 35–59.

50. Zavala VM, Biegler LT. Nonlinear programming strategies for state estimation and model predictive

control. In: Nonlinear model predictive control. Springer; 2009. p. 419–432.

51. Bard Y. Nonlinear parameter estimation. 1974.

52. Lopez C D C, Wozny G, Flores-Tlacuahuac A, Vasquez-Medrano R, Zavala VM. A Computational

Framework for Identifiability and Ill-Conditioning Analysis of Lithium-Ion Battery Models. Industrial &

Engineering Chemistry Research. 2016; 55(11):3026–3042. https://doi.org/10.1021/acs.iecr.5b03910

Scalable NLP framework for parameter estimation in dynamic biological system models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006828 March 25, 2019 27 / 29

https://doi.org/10.1021/ie00050a015
https://doi.org/10.2514/3.56670
https://doi.org/10.1023/B:MUBO.0000042931.61655.73
https://doi.org/10.1023/B:MUBO.0000042931.61655.73
https://doi.org/10.1016/j.cep.2006.06.021
https://doi.org/10.1016/j.cep.2006.06.021
https://doi.org/10.1007/s12532-012-0043-2
https://doi.org/10.1080/00031305.1995.10476177
https://doi.org/10.1137/130934805
https://doi.org/10.1137/16M1060625
https://doi.org/10.1137/140964023
https://doi.org/10.21314/JOR.2000.038
https://doi.org/10.1016/S0378-4266(02)00271-6
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1007/s11590-013-0713-7
https://doi.org/10.1016/j.ces.2007.05.022
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1021/acs.iecr.5b03910
https://doi.org/10.1371/journal.pcbi.1006828


53. McLean KA, McAuley KB. Mathematical modelling of chemical processes–obtaining the best model

predictions and parameter estimates using identifiability and estimability procedures. The Canadian

Journal of Chemical Engineering. 2012; 90(2):351–366. https://doi.org/10.1002/cjce.20660

54. Kang J, Chiang N, Laird CD, Zavala VM. Nonlinear programming strategies on high-performance

computers. In: Decision and Control (CDC), 2015 IEEE 54th Annual Conference on. IEEE; 2015.

p. 4612–4620.

55. Cao Y, Laird CD, Zavala VM. Clustering-based preconditioning for stochastic programs. Computational

optimization and applications. 2016; 64(2):379–406. https://doi.org/10.1007/s10589-015-9813-x

56. Wan W, Eason JP, Nicholson B, Biegler LT. Parallel cyclic reduction decomposition for dynamic optimi-

zation problems. Computers & Chemical Engineering. 2019; 120:54–69. https://doi.org/10.1016/j.

compchemeng.2017.09.023

57. Emerick AA, Reynolds AC. Investigation of the sampling performance of ensemble-based methods with

a simple reservoir model. Computational Geosciences. 2013; 17(2):325–350. https://doi.org/10.1007/

s10596-012-9333-z

58. Gao G, Zafari M, Reynolds AC, et al. Quantifying uncertainty for the PUNQ-S3 problem in a Bayesian

setting with RML and EnKF. In: SPE reservoir simulation symposium. Society of Petroleum Engineers;

2005.

59. Dunning Iain, Huchette Joey, Lubin Miles. JuMP: A modeling language for mathematical optimization.

SIAM Review. 2017; 59(2):295–320. https://doi.org/10.1137/15M1020575

60. Jalving J, Abhyankar S, Kim K, Hereld M, Zavala VM. A graph-based computational framework for sim-

ulation and optimisation of coupled infrastructure networks. IET Generation, Transmission & Distribu-

tion. 2017; 11(12):3163–3176.

61. Hart WE, Laird CD, Watson JP, Woodruff DL, Hackebeil GA, Nicholson BL, et al. Pyomo–optimization

modeling in python. vol. 67. 2nd ed. Springer Science & Business Media; 2017.

62. Hart WE, Watson JP, Woodruff DL. Pyomo: modeling and solving mathematical programs in Python.

Mathematical Programming Computation. 2011; 3(3):219–260. https://doi.org/10.1007/s12532-011-

0026-8

63. Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT, et al. Structure, function

and diversity of the healthy human microbiome. Nature. 2012; 486(7402):207. https://doi.org/10.1038/

nature11234

64. Tropini C, Earle KA, Huang KC, Sonnenburg JL. The Gut microbiome: connecting spatial organization

to function. Cell host & microbe. 2017; 21(4):433–442. https://doi.org/10.1016/j.chom.2017.03.010

65. Earle KA, Billings G, Sigal M, Lichtman JS, Hansson GC, Elias JE, et al. Quantitative imaging of gut

microbiota spatial organization. Cell host & microbe. 2015; 18(4):478–488. https://doi.org/10.1016/j.

chom.2015.09.002

66. Venturelli OS, Carr AC, Fisher G, Hsu RH, Lau R, Bowen BP, et al. Deciphering microbial interactions

in synthetic human gut microbiome communities. Molecular Systems Biology. 2018; 14(6). https://doi.

org/10.15252/msb.20178157 PMID: 29930200

67. Lotka AJ. Elements of physical biology. Science Progress in the Twentieth Century (1919-1933). 1926;

21(82):341–343.

68. Volterra V. Variations and fluctuations of the number of individuals in animal species living together.

ICES Journal of Marine Science. 1928; 3(1):3–51. https://doi.org/10.1093/icesjms/3.1.3

69. Stein RR, Bucci V, Toussaint NC, Buffie CG, Rätsch G, Pamer EG, et al. Ecological modeling from
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