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Abstract
To address uncertainty and hesitation of a real-life problem, interval-valued intuitionistic fuzzy sets (IVIFSs) have received
increasing interest among researchers and industrialists. In this paper, we present an advanced illustration of IVIFSs using
physical distancing during COVID-19 to understand the deep concept of IVIFSs. Due to special feature of an IVIFSs, it finds
a better decision of a real-life problem having uncertainty and hesitation. Here some important arithmetic operations between
two IVIFSs are also stated. Ranking of IVIFSs is a valuable tool and it is not easy to rank due to its ill-defined membership
and non-membership degrees, and same difficulties arise in a wide variety of real-life problems. To tackle these difficulties,
we introduce a new ranking function of IVIFSs, and it follows well to the law of trichotomy. And for its superiority, we
compare it with some existing ranking functions by taking a suitable example. Furthermore, its applicability are tested on
the basis of an IVIFSs. Further, it is very interesting to note that some unpredicted factors such as road condition, diesel
prices, traffic condition and weather condition affect to the cost of transportation, and therefore, decision makers encounter
uncertainty and hesitation to estimate cost of transportation. To resolve such issues, we consider transportation problem with
IVIFSs parameters, and for its solution, a simple computational method is developed and illustrated.

Keywords Law of trichotomy · Intuitionistic fuzzy sets · Interval-valued intuitionistic fuzzy sets · Transportation problem ·
Uncertainty

1 Introduction

At present, the role of fuzzy optimization techniques in
engineering andmanagement applications has attractedmas-
sive attention because of their high accuracy, efficiency and
adaptability that provides high-quality realistic results. Fuzzy
optimization techniques have been highly explored in health,
engineering and industrial sectors. Initially, the concept of
mathematical logic was initiated by a greatest philosopher
Aristotle. And his law of excludedmiddle becamemain tools
for proving mathematical assertions. Later Cantor invented
the set theory and this theory is presented by characteristic
function that uses 0 and 1 only. Many conventional methods
of the real-life problems based on fixed data are available in
the literature, but due to increasing complexity, the problem
based on fixed data cannot present to the situation properly.

B Shailendra Kumar Bharati
skmaths.bhu@gmail.com

1 Department of Mathematics, Kamala Nehru College,
University of Delhi, New Delhi 110049, India

The idea of fuzzy sets (FS) was invented by Zadeh [1] which
is an important tool to present the uncertainty and has been
used by researchers [2,3], etc. in engineering and manage-
ment sectors. Further, it is observed that the FS does not deal
to the situation of uncertainty and hesitation both of a real-life
problem.

Atanassov [4] has extended a fuzzy sets to intuitionistic
fuzzy sets (IFS) by incorporating an additional degree, called
non-membership degree. IFS is a very realistic and recent tool
to deal the problem having uncertainty and hesitation both.
Recently, several researchers [5–8] have used it in many sec-
tors of engineering and management. Further, it is observed
that a singlemembership degree and non-membership degree
does not state properly to the situation of uncertainty and hes-
itation in the real-life problemsdue to ill-definedmembership
and non-membership degrees, and hence, we admit a kind of
further uncertainty.

To enhance the capability of handling uncertainty and
hesitation of an IFS, Atanassov and Gargov [9] invented an
interval-valued intuitionistic fuzzy sets which is a general-
ization of IFS in which membership and non-membership
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Table 1 Comparison of ranking methods

S.no. Methods Ranking Ranking criteria

1. Nayagam and Sivaraman [13] A1 < A2 Based on new score and accuracy of IVIFSs

2. Lee ranking method [14] A1 < A2 Based on score and accuracy of IVIFSs

3. Bharati and Singh [46] A1 < A2 Based on value and ambiguity index of IVIFNs

4. Proposed ranking A1 < A2 Based on extended Yager’s function of IVIFSs

degrees are intervals rather than fixed real number. Current
researchwork has been focusing on operations of IVIFSs and
some other interesting properties of IVIFSs [10–12]. Due to
increasing complexity of many real-life optimization prob-
lem, it is often a challenge for the decision maker to provide
the values of parameters in a precise way. Therefore, sev-
eral research works have been carried out in this direction
ranking of FS and IFS. Among several generalizations of
FS, the notions of IVIFSs are an interesting and very useful
tool in modeling and making decision of real-life problems
under uncertainty and hesitation. Many ranking methods of
FS and IFS are available and widely implemented in engi-
neering, health and management sectors. And during the
study, it is found that a very limited methods are presented
in the literature [13,14], and therefore, it is very necessary
to make a ranking method for IVIFSs. In the present paper,
we introduced a new method of ranking of interval-valued
intuitionistic fuzzy sets and compared it with some existing
methods Table 1 based on an example.

Transportation problem is well-known optimization tech-
nique because of its simplicity and minimum transportation
cost. In addition, it exhibits strong performance in real-life
optimization problems. Initially, the basic structure of trans-
portation problem is presented by Hitchcock [15] that is
described well with linear programming problem. The main
objective of a transportation problem is to transport prod-
ucts from a set of supply points to a set of demand points
under minimum costs or maximum profits. There are three
methods: Northwest corner method, least cost method and
Vogel’s approximation method (VAM) [16] are often used
to determine initial basic solution (IBFS) of TP. VAM is a
most common method that used to calculate the IBFS of
a TP. The drawback of this method is to allocate items to
the dummy cells of TP table. Several researchers [17,18]
have modified VAM method of TP. In classical transporta-
tion problem, the costs of transportation were taken as fixed
real numbers, but it is very interesting to note that the cost of
transportation depends on various uncertain factors like fluc-
tuation in diesel price, road condition, weather condition, etc.
Therefore, in this situation the cost of single-objective trans-
portation problem (SOTP) cannot be predicted exactly, but
it can be estimated by developing a suitable model. Various
researchers have estimated the cost of SOTP using FS, and

some of them are: [19–21]. In these papers, only member-
ship degree is used in the calculation to get optimal decisions.
But in reality, the nature of real-life transportation problem
includes hesitation as well which is not tackled by ordinary
fuzzy sets.

A real-life transportation problem cannot be restricted
to single-objective. Therefore, a multiobjective transporta-
tion problem (MOTP) became an important optimization
technique. And several researches have been carried out on
MOTP such as [12,22–27].An IFS is expressed by amember-
ship function and a non-membership function, and therefore,
it a better tool than FS to deal the problem involving hesi-
tation and uncertainty both. Recently, many research papers
focusing on intuitionistic fuzzy transportation problems [28–
41] have been published. Recently, Bharati and Malhotra
[42] have presented a solution method of two-stage trans-
portation problem (TSTP) using IFS. Liu [43] and Bharati
[8] have studied fractional objective transportation problem
(FOTP). Further, in ordinary IFS, the degrees of member-
ship and non-membership take the values in the unit interval
[0, 1]. In reality, however, we often encounter the situation
that the degrees itself is frequently ill-defined as in the state-
ment that the membership and non-membership degrees are
“high,” “low,” “near 0.6,” “middle,” “not high,” “very low,”
etc. To explain this fact, Atanassov and Gargov IVIFS in
which membership and non-membership degrees are sub-
sets of [0, 1] rather than a point in [0, 1]. Methods based
on fuzzy and intuitionistic fuzzy sets can be improved by
assigning these parameters as IVIFSs.

In this paper, our efforts is to develop an iterativemethodof
an interval-valued intuitionistic fuzzy transportation problem
(IVIFTPP). In IVIFTPP, the cost of the transportation prob-
lem is represented by triangular interval-valued intuitionistic
fuzzy numbers which includes a triangle membership func-
tion and a triangle non-membership function, and it would be
capable to tackle uncertainty and hesitation. For the optimal
solutions of IVIFTPP, a new technique of ranking is adapted
and it will be very simple computational viewpoints. The
proposed iterative method of IVIFTPP would be attracted
massive attention because of their high accuracy, efficiency
and adaptability that searches high-quality realistic solutions
than the existing methods of FS and IFS (Figs. 1 and 2).
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Fig. 1 Intuitionistic fuzzy set

Fig. 2 Triangular intuitionistic fuzzy number

2 Preliminaries

Definition 1 (Atanassov [4]). Let X be an universal set.
An intuitionistic fuzzy set A in X is a set of form Ã =
{(x, μA(x), νA(x))}, whereμA(x) : X → [0, 1] and νA(x) :
X → [0, 1] define the degree of membership and degree of
non-membership of the element x ∈ X , respectively, and for
every x ∈ X , 0 ≤ μA(x)+νA(x) ≤ 1. The value ofπA(x) =
1 − μA(x) − νA(x) is called the degree of non-determinacy
(or uncertainty) of the element x ∈ X to the intuitionistic
fuzzy set A. In IFS, if πA(x) = 0, then an IFS becomes a FS
and it takes the form A = {(x, μA(x), 1 − μA(x))}.

Definition 2 An intuitionistic fuzzy sets A = {(a, b, c),
[μ, ν]} where a, b, c ∈ R such that a ≤ b ≤ c. Then A
is called a triangular intuitionistic fuzzy number if its mem-
bership and non-membership functions are of the form:

μA(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

μ, x = b

0, x ≥ c, x ≤ a
x−a
b−aμ, a < x < b

c−x
c−bμ, b < x < c

(1)

νA(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ν, x = b

1, x ≥ c, x ≤ a

1 − (1−ν)(x−a)
b−a , a < x < b

ν − (1−ν)(x−b)
c−b , b < x < c

(2)

This study presents two main contributions: The first con-
tribution of this study is to deal with the formulation of a new
ranking function of interval-valued intuitionistic fuzzy num-
bers based on Yager’s approach. Furthermore, it is felt that
today is highly competitive market, the pressure on orga-
nizations to find better ways to create and deliver value to
customers becomes stronger. The second contribution of this
study is to deal with the formulation of a kind of trans-
portation problems, known as interval-valued intuitionistic
transportation problem that provide a powerful framework
to meet this challenge.

2.1 Interval-valued intuitionistic fuzzy sets

The uncertainty and hesitation occur in every real-life prob-
lem, and therefore, it is very necessary to explain it. Now,
suppose X represents set of 100 peoples of a village, and if
we ask about the number of people who follow physical dis-
tancing during COVID-19 pandemic, the natural answer that
we get are [30, 40], [35, 40], etc., and the number of people
who do not follow physical distancing are [5, 10], [6, 8], etc.
In the same manner, let X = {x1, x2, . . . , xN } be the set of
N people in a village. And let the number of people who
follow physical distancing during COVID-19 pandemic be
[m1(x),m2(x)] and number of people who do not follow be
[n1(x), n2(x)].
Then [m1(x),m2(x)] + [n1(x), n2(x)] ≤ N

⇒ [m1(x),m2(x)]+[n1(x),n2(x)]
N ≤ 1, sinceN > 0; hence,

the following inequalities make sense
⇒ [[m1(x),m2(x)]

N ] + [ [n1(x),n2(x)]
N ] ≤ 1

⇒ [m1(x)
N ,

m2(x)
N ] + [ n1(x)N ,

n2(x)
N ] ≤ 1

Therefore, {x ∈ X : [m1(x)
N ,

m2(x)
N ], [ n1(x)N ,

n2(x)
N ]} is an

interval-valued intuitionistic fuzzy set. Now, we shall rep-
resent the formal definition of interval-valued intuitionistic
fuzzy sets.

Definition 3 (Atanassov and Gargov [9]). Let X be an uni-
versal set. An interval-valued intuitionistic fuzzy A in X is
expressed as A = {(x, [μ−

A(x), μ+
A(x)], [ν−

A (x), ν+
A (x)]) :

x ∈ X}, where μ−
A(x) : X → [0, 1], μ+

A(x) : X → [0, 1]
define the lower and upper degrees of memberships, and
ν−
A : X → [0, 1], ν−

A : X → [0, 1] define lower and upper
degrees of non-memberships of the element x ∈ X . And for
every x ∈ X , 0 ≤ μ+

A(x) + ν+
A (x) ≤ 1.
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Fig. 3 Interval-valued intuitionistic fuzzy sets

The graphical representation of IVIFS is given in Fig. 3.

Definition 4 An interval-valued intuitionistic fuzzy number
is expressed as:
A = {(a, b, c) : [μ−, μ+], [ν−, ν+])}, where μ− : X →
[0, 1], μ+ : X → [0, 1] define the lower and upper degrees
of memberships, and ν− : X → [0, 1], ν+ : X → [0, 1]
define lower and upper degrees of non-memberships, and
these are:

μ−
A(x) =

⎧
⎪⎨

⎪⎩

μ− (x−a)
(b−a)

, a < x < b

μ−, x = b

μ− (c−x)
(c−b) , b < x < c

(3)

μ+
A(x) =

⎧
⎪⎨

⎪⎩

μ+ (x−a)
(b−a)

, a < x < b

μ+, x = b

μ+ (c−x)
(c−b) , b < x < c

(4)

ν−
A (x) =

⎧
⎪⎨

⎪⎩

1 − (1 − ν−)
(x−a)
(b−a)

, a < x < b

ν−, x = b

ν− + (1 − ν−)
(x−b)
(c−b) , b < x < c

(5)

ν+
A (x) =

⎧
⎪⎨

⎪⎩

1 − (1 − ν+)
(x−a)
(b−a)

, a < x < b

ν+, x = b

ν+ + (1 − ν+)
(x−b)
(c−b) , b < x < c

(6)

2.2 Arithmetic operations

After IFS, IVIFS became a very popular tool in decision
making due its special features. Li [44] proposed repre-

sentation theorem of IVIF and defined operations between
IVIFS. In this paper, we present arithmetic operations
for triangular interval-valued intuitionistic fuzzy numbers.
For this, let A = {(a1, b1, c1), [μ−

A , μ+
A ], [ν−

A , ν+
A ])} and

B = {(a2, b2, c2), [μ−
B , μ+

B ], [ν−
B , ν+

B ])} be two triangular
interval-valued intuitionistic fuzzy numbers, then

A ⊕ B = {(a1 + a2, b1 + b2, c1 + c2),

[min(μ−
A , μ−

B ) − min(μ+
A , μ+

B )],
[max(ν−

A , ν−
B ) − max(ν+

A , ν+
B )]} (7)

A � B = {(a1 − c2, b1 − b2, c1 − a2),

[min(μ−
A , μ−

B ) − min(μ+
A , μ+

B )],
[max(ν−

A , ν−
B ) − max(ν+

A , ν+
B )]} (8)

A 	 B =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈(a1a2, b1b2, c1c2);
[
min{μ−

A , μ−
B },min{μ+

A , μ+
B }] ,

[
max{ν−

A , ν−
B },max{ν+

A , ν+
B }]〉 if a1, a2 ∈ R

+

〈(a1c2, b1b2, c1a2);
[
min{μ−

A , μ−
B },min{μ+

A , μ+
B }] ,

[
max{ν−

A , ν−
B },max{ν+

A , ν+
B }]〉 if a1 < 0 and a2 > 0

〈(c1c2, b1b2, a1a2);
[
min{μ−

A , μ−
B },min{μ+

A , μ+
B }] ,

[
max{ν−

A , ν−
B },max{ν+

A , ν+
B }]〉 if c1 < 0 and c2 > 0

(9)

A � B =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈(
a1
c2

, b1
b2

, c1
a2

)
; [
min{μ−

A , μ−
B },min{μ+

A , μ+
B }] ,

[
max{ν−

A , ν−
B },max{ν+

A , ν+
B }]〉 if c1, c2 ∈ R

+
〈(

c1
c2

, b1
b2

, a1
a2

)
; [
min{μ−

A , μ−
B },min{μ+

A , μ+
B }] ,

[
max{ν−

A , ν−
B },max{ν+

A , ν+
B }]〉 if c1 < 0 and c2 > 0

〈(
c1
a2

, b1
b2

, a1
c2

)
; [
min{μ−

A , μ−
B },min{μ+

A , μ+
B }] ,

[
max{ν−

A , ν−
B },max{ν+

A , ν+
B }]〉 if c1 < 0 and c2 < 0

(10)

k Ȧ =
{

〈(ka, kb, kc), [μ−
A , μ+

A ], [ν−
A , ν+

A ]〉 if k > 0

〈(kc, kb, ka), [μ−
A , μ+

A ], [ν−
A , ν+

A ]〉 if k < 0
(11)

A−1 =
{(

1

c
,
1

b
,
1

a

)

[μ−
A , μ+

A ], [ν−
A , ν+

A ]
}

if a > 0 (12)

(i). Triangular intuitionistic fuzzy number:
For a triangular intuitionistic fuzzy number, μ−

A =
μ+

A = μA and ν−
A = ν+

A = νA. Relations from (7) to
(12) become:For this, let A = {(a1, b1, c1); {μA, νA}}
and B = {(a2, b2, c2); {μB, νB}} be two triangular
intuitionistic fuzzy numbers, then
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A ⊕ B = {(a1 + a2, b1 + b2, c1 + c2); {min(μA, μB),max(νA, νB)}} (13)

A � B = {(a1 − c2, b1 − b2, c1 − a2); {min(μA, μB),max(νA, νB)}} (14)

A 	 B =

⎧
⎪⎨

⎪⎩

〈(a1a2, b1b2, c1c2); {min(μA, μB),max(νA, νB)}〉 if a1, a2 ∈ R
+

〈(a1c2, b1b2, c1a2); {min(μA, μB),max(νA, νB)}〉 if a1 < 0 and a2 > 0

〈(c1c2, b1b2, a1a2); {min(μA, μB),max(νA, νB)}〉 if c1 < 0 and c2 > 0

(15)

A � B =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

〈(
a1
c2

, b1
b2

, c1
a2

)
; {min(μA, μB),max(νA, νB)}

〉
if c1, c2 ∈ R

+
〈(

c1
c2

, b1
b2

, a1
a2

)
; {min(μA, μB),max(νA, νB)}

〉
if c1 < 0 and c2 > 0

〈(
c1
a2

, b1
b2

, a1
c2

)
; {min(μA, μB),max(νA, νB)}

〉
if c1 < 0 and c2 < 0

(16)

k Ȧ =
{

〈(ka, kb, kc), {μA, νA}〉 if k > 0

〈(kc, kb, ka), {μA, νA}〉 if k < 0
(17)

A−1 =
{(

1

c
,
1

b
,
1

a

)

; {μA, νA}
}

if a > 0 (18)

(ii). Triangular fuzzy number:
For fuzzy number, μ−

A = μ+
A = 1 and ν−

A = ν+
A = 0.

Relations from (7) to (12) become:
For this, let A = {(a1, b1, c1); {1, 0}} and B =
{(a2, b2, c2); {μB, νB}} be two triangular intuitionis-
tic fuzzy numbers, then

A ⊕ B = {(a1 + a2, b1 + b2, c1 + c2)}} (19)

A � B = {(a1 − c2, b1 − b2, c1 − a2)} (20)

A 	 B =

⎧
⎪⎨

⎪⎩

〈(a1a2, b1b2, c1c2) if a1, a2 ∈ R
+

〈(a1c2, b1b2, c1a2) if a1 < 0 and a2 > 0

〈(c1c2, b1b2, a1a2) if c1 < 0 and c2 > 0

(21)

A � B =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

〈(
a1
c2

, b1
b2

, c1
a2

)
if c1, c2 ∈ R

+
〈(

c1
c2

, b1
b2

, a1
a2

)
if c1 < 0 and c2 > 0

〈(
c1
a2

, b1
b2

, a1
c2

)
if c1 < 0 and c2 < 0

(22)

k Ȧ =
{

〈(ka, kb, kc)〉 if k > 0

〈(kc, kb, ka) if k < 0
(23)

A−1 =
{(

1

c
,
1

b
,
1

a

)}

if a > 0 (24)

2.3 (˛,ˇ)-level sets

Let α ∈ R such that α ∈ (0, 1). Then for A = {(a, b, c) :
[μ−, μ+], [ν−, ν+])} the α− cut of that TIVIFN is defined
as:

μ−
A(x) ≥ α

⇒ μ− (x−a)
(b−a)

≥ α

⇒ (x−a)
(b−a)

≥ α
μ−

⇒ (x − a) ≥ α
μ− (b − a)

⇒ x ≥ a + α
μ− (b − a)

Now, μ−
A(x) ≥ α

⇒ μ− (c−x)
(c−b) ≥ α

⇒ (c−x)
(c−b) ≥ α

μ−

⇒ (c − x) ≥ α
μ− (c − b)

⇒ x ≤ c − α
μ− (c − b)

⇒ x ∈
[
a + α

μ− (b − a), c − α
μ− (c − b)

]

Hence, we get

[

a + α

μ− (b − a), c − α

μ− (c − b)

]

(25)

Similarly,

μ+
A(x) ≥ α

⇒ μ+ (x−a)
(b−a)

≥ α

⇒ (x−a)
(b−a)

≥ α
μ+

⇒ (x − a) ≥ α
μ+ (b − a)

⇒ x ≥ a + α
μ+ (b − a)

Now, μ+
A(x) ≥ α

⇒ μ+ (c−x)
(c−b) ≥ α

⇒ (c−x)
(c−b) ≥ α

μ+
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⇒ (c − x) ≥ α
μ+ (c − b)

⇒ x ≤ c − α
μ+ (c − b)

⇒ x ∈
[

a + α

μ+ (b − a), c − α

μ+ (c − b)

]

Further, ν−
A (x) ≤ 1 − α

⇒ 1 − (1 − ν−)
(x−a)
(b−a)

≤ 1 − α

⇒ (1 − ν−)
(x−a)
(b−a)

≥ α

⇒ (x−a)
(b−a)

≥ α
(1−ν−)

⇒ (x − a) ≥ (b − a) α
(1−ν−)

⇒ x ≥ a + (b − a) α
(1−ν−)

ν−
A (x) ≤ 1 − α

⇒ ν− + (1 − ν−)
(x−b)
(c−b) ≤ 1 − α

⇒ (1 − ν−)
(x−b)
(c−b) ≤ 1 − ν− − α

⇒ (x−b)
(c−b) ≤ 1 − α

1−ν−
⇒ (x − b) ≤ c − b − α

1−ν− (c − b)

⇒ x ≤ c − α
1−ν− (c − b)

⇒ x ∈
[

a + (b − a)
α

(1 − ν−)
, c − α

1 − ν− (c − b)

]

Similarly,

x ∈
[

a + (b − a)
α

(1 − ν+)
, c − α

1 − ν+ (c − b)

]

.

3 A new ranking

In this section, we extend Yager’s function [45] to help in the
ranking of interval-valued intuitionistic fuzzy numbers. This
function is the integral of themean of the level sets associated
with lower and upper memberships, and similarly with lower
non-membership and upper non-memberships. We also ver-
ified some properties of the introduced functions. The merit
of this function is that it does not require convexity, nor does
it require normality of the interval-valued intuitionistic fuzzy
sets ranked. Let Alμ

α and Auμ
α be level sets corresponding to

lower and upper membership functions, respectively.
Similarly, let Alν

β and Auν
β be level sets corresponding to

lower and upper non-membership functions, respectively.
Let m(Alμ

α ) and m(Auμ
α ) be means of level sets of lower

and upper memberships, respectively.

Similarly, let m(Alν
β ) and m(Auν

β ) be means of level sets of
lower and upper non-memberships, respectively. Then,

f μ
l (A) =

∫ max μ

0
m(Aμ

α )dα

= 1

2

∫ μ−

0
a + α

μ− (b − a) + c − α

μ− (c − b)dα

= 1

4
(a + 2b + c)μ −

f μ
l (A) = 1

4
(a + 2b + c)μ−

Similarly for upper membership:

f μ
u (A) =

∫ max μ

0
m(Aμ

α )dα

= 1

2

∫ μ+

0
a + α

μ+ (b − a) + c − α

μ+ (c − b)dα

= 1

4
(a + 2b + c)μ+

f μ
u (A) = 1

4
(a + 2b + c)μ+

Fμ(Aμ
α ) = σ f μ

l (A) + (1 − σ) f μ
u (A), σ ∈ [0, 1]

Since average represents a good choice, we take σ = 0.5

Fμ(Aμ
α ) = 1

8
(a + 2b + c)(μ− + μ+) (26)

In the same manner, we can proceed for non-memberships

f ν
l (A) =

∫ 1

ν−
m(Aν

β)dβ,

=
∫ 1

ν−
a + 1 − β

1 − ν− (b − a) + b

+
(

1 − β − ν−

1 − ν−

)

(c − b)dβ

= 1

4
(a + 2b + c)(1 − ν−)

f ν
l (A) = 1

4
(a + 2b + c)(1 − ν−)

× f ν
u (A) =

∫ 1

ν+
m(Aν

β)dβ,

=
∫ 1

ν+
a + 1 − β

1 − ν+ (b − a) + b

+
(

1 − β − ν+

1 − ν+

)

(c − b)dβ

= 1

4
(a + 2b + c)(1 − ν+)

f ν
u (A) = 1

4
(a + 2b + c)(1 − ν+).
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Fν(Aν
α) = σ f ν

l (A) + (1 − σ) f ν
u (A), σ ∈ [0, 1]

Since average represents a good choice, we take σ = 0.5

Fν(Aν
α) = 1

8
(a + 2b + c)(2 − ν− − ν+) (27)

3.1 Properties of F� and F�

Property 1 Let A = (a) be a crisp number then Fμ(a) = a

Proof For a crisp number, max μ = μ− = μ+ = 1,
max ν = ν− = ν+ = 0,

Aμ
α = a

Fμ(A) =
∫ max μ

0
m(Aμ

α )dα =
∫ 1

0
adα = a

So, Fμ(a) = a and Fν(a) = 0. �
Property 2 If A is an ordinary subset of R, then Fμ(A) =
m(A) ( Fν does not make sense).

Proof Let A = [a, b] be a subset of R, then m(A) = a+b
2 .

Fμ(A) =
∫ max μ

0
m(Aμ

α )dα =
∫ 1

0

a + b

2
dα

= a + b

2
= mean of A.

�
Property 3 If A = (p : μ(p) = q). Then Fμ(A) = pq.

Proof Clearly Aμ
α = p and max μ = q. Then by definition

Fμ(A) = ∫ max μ

0 m(Aμ
α )dα = ∫ q

0 pdα = pq. �
Property 4 Let A be interval-valued intuitionistic fuzzy
number and a be a crisp number such that a ≥ 1. Then
Fμ

( A
a

) = Fμ(A)
a .

Proof Let B = A
a and B = ([μ−(x),μ+(x)],[ν−(x),ν+(x)])

x
a

.

If z ∈ A, then x
a ∈ Aμ

α and x
a ∈ Bν

α .

Therefore, Fμ( A
a ) = ∫ 1

0
1
a A

μ
αdα = 1

a

∫ 1
0 Aμ

αdα = Fμ(A)
a

(Fig. 4).
According to the law of trichotomy, every x, y ∈ R either
x < y or x > y or x = y. It is pointed out that the law of
trichotomy holds in classical logic, and it does not hold in
fuzzy logic. In this paper, we introduce a new function R :
ℵ(R) → R that assigns each interval-valued intuitionistic
fuzzy number to a real number. The ranking function which
is based on (26) and (27) is defined by

R(A) = ηFμ(Aμ
α ) + (1 − η)Fν(Aν

β),

η ∈ [0, 1], α + β < 1. (28)

Fig. 4 Interval-valued intuitionistic triangular fuzzy number

Fig. 5 Ranking function of interval-valued intuitionistic fuzzy sets

Figure 5 shows the ranking function of a collection of
interval-valued intuitionistic fuzzy sets of real numbers.

ℵ(R) denotes the collections of all interval-valued intu-
itionistic fuzzy numbers onR,Therefore, ranking of interval-
valued intuitionistic fuzzy sets is redefined as in the following
manner

R(A) = ηFμ(Aμ
α ) + (1 − η)Fν(Aν

β), η ∈ [0, 1]

η = 0.5 represents best compromise choice, and thus, we
take the same. �
Lemma Let A and B be two interval-valued intuitionistic
fuzzy numbers, and R(A) = (a+2b+c)(μ−+μ++2−ν−−ν+)

16 .

Then exactly one of the following is true:

(i) If R(A1) < R(A2), then A1 < A2.
(ii) If R(A1) > R(A2), then A1 > A2.
(iii) If R(A1) = R(A2), then A1 = A2.

Some remarks on proposed ranking function:

Remark 1 If A is an intuitionistic fuzzy number, then

R(A) = (a + 2b + c)(μ + μ + 2 − ν − ν)

16

R(A) = (a + 2b + c)(2μ + 2 − 2ν)

16

R(A) = (a + 2b + c)(μ + 1 − ν)

8
.
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Remark 2 If A is a triangular fuzzy number, then R(A) =
(a+2b+c)μ

4 .

To see this, let A be a triangular fuzzy number. We can
express A in interval-valued intuitionistic fuzzy sense as
A = {(a, b, c), [μ,μ], [1 − μ, 1 − μ]}. For fuzzy set,
μ + ν = 1 or ν = 1 − μ.

Then

R(A) = (a + 2b + c)(μ + μ + 2 − (1 − μ) − (1 − μ))

16

R(A) = (a + 2b + c)(μ + μ + 2 − 1 + μ) − 1 + μ))

16

R(A) = (a + 2b + c)(4μ)

16

R(A) = (a + 2b + c)μ

4

which is a very famous ranking of fuzzy numbers that have
been utilized by several researchers.

Remark 3 If A = a is a fixed real number, then R(A) = a.

To see this, let A be a fixed real number. We can express
any fixed real number in interval-valued intuitionistic fuzzy
sense as A = {(a, a, a), [1, 1], [0, 0]}. Then

R(A) = (a + 2a + a)(1 + 1 + 2 − 0 − 0)

16

R(A) = (16a)

16
.

R(A) = a.

4 Comparison

In this section, the proposed ranking function that is defined

by R(A) = (a+2b+c)(μ−+μ++2−ν−−ν+)
16 with some existing

ranking function of interval-valued intuitionistic fuzzy sets.
Nayagam and Sivaraman [13] presented an ranking function
to rank IVIF sets, and that is defined as
Let A = {[a, b], [c, d]} be an interval-valued intuitionistic
fuzzy sets, then the ranking of A is defined as LG(A) =
membership degree+δhesitancy degree

2 , δ ∈ [0, 1]. After simplifica-
tion, we get

LG(A) = (a + b)(1 − δ) + δ(2 − (c + d))

2
, δ ∈ [0, 1]. (29)

Lee [14] introduced the concept of novel score and devia-
tion of interval-valued intuitionistic fuzzy sets. Further, he
proposed a ranking methodology to rank a collection of
interval-valued intuitionistic fuzzy sets based on novel score
and deviation and the method are:

Let A = {[a, b], [c, d]} be an interval-valued intuitionistic
fuzzy sets then novel score S(A) and deviation D(A) are

S(A) = 2 + a + b − c − d

3 − a − b − c − d
(30)

D(A) = b + d − a − c (31)

For the comparison,we take two interval-valued intuitionistic
fuzzy subsets of real numbers A1 = {(1, 2, 3), [0.1, 0.2],
[0.3, 0.5]} and A2 = {(1, 4, 7), [0.1, 0.2], [0.2, 0.3]}.
Proposed ranking function:

R(A) = (a + 2b + c)(2 + μ− + μ+ − (ν− + ν+))

16

R(A1) = (1 + 2(2) + 3)(2 + 0.1 + 0.2 − (0.3 + 0.5))

16

R(A1) = (8)(1.5))

16
R(A1) = 0.75

and

R(A2) = (1 + 2(4) + 7)(2 + 0.1 + 0.2 − (0.2 + 0.3))

16

R(A2) = (16)(1.8))

16
R(A2) = 1.8

Clearly, R(A1) < R(A2).
Therefore, A1 < A2.
Nayagam and Sivaraman ordering (29):

LG(A1) = (0.1 + 0.2)(1 − δ) + δ(2 − (0.3 + 0.5))

2

LG(A1) = 0.3(1 − δ) + δ(1.2)

2

LG(A2) = (0.1 + 0.2)(1 − δ) + δ(2 − (0.2 + 0.3))

2

LG(A2) = 0.3(1 − δ) + δ(1.5)

2

It is very clear that LG(A1) < LG(A2) for every δ ∈ [0, 1].
Therefore, A1 < A2.
Using Lee ranking (30), we get

S(A1) = 2 + 0.1 + 0.2 − 0.3 − 0.5

3 − 0.1 − 0.2 − 0.3 − 0.5
= 3.1

1.2
= 0.78

S(A2) = 2 + 0.1 + 0.2 − 0.2 − 0.3

3 − 0.1 − 0.2 − 0.2 − 0.3
= 1.5

1.2
= 0.81

and

D(A1) = 0.2 + 0.5 − 0.1 − 0.3 = 0.3

D(A2) = 0.2 + 0.3 − 0.1 − 0.2 = 0.2
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Since S(A1) < S(A2), A1 < A2.
Finally we conclude that the proposed ranking function

agrees with Nayagam and Sivaraman ranking function and
Lee ranking, and themain difference between proposed func-
tion and existing function is: In the proposed ranking based
on Yager’s function, where as in Nayagam and Sivaraman
and Lee function based on score and accuracy of interval-
valued intuitionistic fuzzy sets, Bharati and Singh ranking
is based on value and ambiguity indices of interval-valued
intuitionistic fuzzy sets.

5 Interval-valued intuitionistic fuzzy
transportation problem

An IVIFTPP is a very special case of interval-valued intu-
itionistic fuzzy linear programming problem (IVIFLPP),
and IVIFLPP is solved by using simplex method. Sim-
plex method provides a very weak initial basic solution to
IVIFTPP, and it takes large time of computation. There-
fore, for the basic feasible solutions of IVIFTPP, we may
use one of the three methods: interval-valued intuitionistic
fuzzy northwest corner method (IVIFNWCM), interval-
valued intuitionistic fuzzy least cost method (IVIFLCM) and
interval-valued intuitionistic fuzzy Vogel’s approximation
method (IVIFVAM). And its interval-valued intuitionistic
fuzzy optimal solution is obtained by using interval-valued
intuitionistic fuzzy u–v method. In this paper, we consider
an IVIFTPP with m supplies and n demands.
Let c = {(ci j1 , ci j2 , ci j3 ), [μ

ci jl
, μ

ci ju
], [ν

ci jl
, ν

ci ju
]} be a interval-

valued intuitionistic fuzzy numbers representing to the cost
of transportation to send one unit of thing from i th place to
j th place. Let ai = {(ai j1 , ai j2 , ai j3 ), [μ

ai jl
, μ

ai ju
], [ν

ai jl
, ν

ai ju
]},

and b j = {(bi j1 , bi j2 , bi j3 ), [μ
bi jl

, μ
bi ju

], [ν
bi jl

, ν
bi ju

]} represent
supplies and demands, respectively. Then IVIFTP is pre-
sented as:

Minimize z̃ =
m∑

i=1

n∑

j=1

{(ci j1 , ci j2 , ci j3 ), [μ
ci jl

, μ
ci ju

], [ν
ci jl

, ν
ci ju

]}xi j

S.t.
n∑

j=1

xi j ≈ {(ai1, ai2, ai3), [μail
, μaiu

], [νail , νaiu ]},

i = 1, 2, . . . ,m
m∑

i=1

xi j ≈ {(b j
1 , b

j
2 , b

j
3), [μb j

l
, μ

b j
u
], [ν

b j
l
, ν

b j
u
]}

xi j ≥ 0, i = 1, 2, . . . ,m; j = 1, 2, . . . , n.

(32)

Table 2 Uncertain transportation

Destinations→
Sources↓ D1 D2 D3 ai

S1 c̃11 c̃12 c̃13 ã1

S2 c̃21 c̃22 c̃23 ã2

S3 c̃31 c̃32 c̃33 ã3

b̃ j b̃1 b̃2 b̃3

Hitchcock [15] invented the basic transportation problem
with fixed parameters, and it was modeled by standard lin-
ear programming without uncertainty and hesitation. After
Zadeh’s fuzzy sets, several transportation models have
appeared in the literature in which uncertainty was a main
problem to deal. In this paper, we tackle uncertainty and
hesitant of transportation problem that are coming from all
directions. All uncertainty and hesitation are dealt well using
interval-valued intuitionistic fuzzy sets. Therefore, we focus
on interval-valued intuitionistic fuzzy transportation problem
(Table 2), and in sort, we call it IVIFTP problem. Here, we
can classify interval-valued intuitionistic fuzzy transporta-
tion problem into four types that are discussed below:

5.1 Interval-valued intuitionistic fuzzy
transportation problem of type 1

A transportation problem where costs are interval-valued
intuitionistic fuzzy numbers, demands and supplied are real
numbers is called IVIFTP of type 1. This type of transporta-
tion problem occurs because the cost of the transportation
depends on various uncontrollable factors such as weather
condition, road condition and traffic. Mathematically, a
IVIFTP of type 1 is represented in the following way:

Minimize z̃ =
m∑

i=1

n∑

j=1

{(ci j1 , ci j2 , ci j3 ), [μ
ci jl

, μ
ci ju

], [ν
ci jl

, ν
ci ju

]}xi j

S.t.
n∑

j=1

xi j = ai , i = 1, 2, . . . ,m,

m∑

i=1

xi j = b j , j = 1, 2, . . . , n,

xi j ≥ 0, i = 1, 2, . . . ,m; j = 1, 2, . . . , n.

(33)

5.2 Interval-valued intuitionistic fuzzy
transportation problem of type 2

A transportation problem is that in which the demands
and supplies are represented by interval-valued intuitionistic
fuzzy numbers and cost of transportation is treated as fixed
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real numbers and that type of transportation problem is called
IVIFTP of type 2.

Let ai = {(ai j1 , ai j2 , ai j3 ), [μ
ai jl

, μ
ai ju

], [ν
ai jl

, ν
ai ju

]}, b j =
{(bi j1 , bi j2 , bi j3 ), [μ

bi jl
, μ

bi ju
], [ν

bi jl
, ν

bi ju
]} and ci j be the cost

that spend to transport a product xi j from the i th origin to the
j th destination. The reason that appeal IVIFTP of type 2 is
due to various uncontrollable factors such as storage capacity
and public demand.

Minimize z̃ =
m∑

i=1

n∑

j=1

ci j xi j

S.t.
n∑

j=1

xi j = {(ai1, ai2, ai3), [μail
, μaiu

], [νail , νaiu ]},

i = 1, 2, . . . ,m,

m∑

i=1

xi j = {(b j
1 , b

j
2 , b

j
3), [μb j

l
, μ

b j
u
], [ν

b j
l
, ν

b j
u
]},

j = 1, 2, . . . , n,

xi j ≥ 0, i = 1, 2, . . . ,m; j = 1, 2, . . . , n.

(34)

5.3 Interval-valued intuitionistic fuzzy
transportation problem of type 3

A transportation problem is that in which all costs of
transportation, demands and supplies are interval-valued
intuitionistic fuzzy numbers. Let {(ai1, ai2, ai3), [μail

, μaiu
],

[νail , νaiu ]}, i = 1, 2, . . . ,m be the quantity available at i th

origin, {(b j
1 , b

j
2 , b

j
3), [μb j

l
, μ

b j
u
], [ν

b j
l
, ν

b j
u
]}, j = 1, 2, . . . , n

be the quantity needed at j th destination and {(ci j1 , ci j2 , ci j3 ),

[μ
ci jl

, μ
ci ju

], [ν
ci jl

, ν
ci ju

]} be the transportation cost require to

send xi j from i th origin to j th destination. The cost of the
transportation as in type 1 and type 2.

Minimize z̃ =
m∑

i=1

n∑

j=1

{(ci j1 , ci j2 , ci j3 ), [μ
ci jl

, μ
ci ju

], [ν
ci jl

, ν
ci ju

]}xi j

S.t.
n∑

j=1

xi j ≈ {(ai1, ai2, ai3), [μail
, μaiu

], [νail , νaiu ]},

i = 1, 2, . . . ,m
m∑

i=1

xi j ≈ {(b j
1 , b

j
2 , b

j
3), [μb j

l
, μ

b j
u
], [ν

b j
l
, ν

b j
u
]}

x̃i j ≥ 0̃, i = 1, 2, . . . ,m; j = 1, 2, . . . , n.

(35)

5.4 Interval-valued intuitionistic fuzzy
transportation problem of type 4

A transportation problem is that in which all the cost of
transportation, demands and supplies are interval-valued
intuitionistic fuzzy numbers, and decision variables are
interval-valued intuitionistic fuzzy numbers as well. This
type of transportation is called a fully interval-valued intu-
itionistic fuzzy transportation problem a fully IVIFTPP.
Recently, Kumar and Hussain [47] have studied fully intu-
itionistic fuzzy transportation problems. For the mathemati-
cal formulation, let {(ai1, ai2, ai3), [μail

, μaiu
], [νail , νaiu ]}, i =

1, 2, . . . ,m be the quantity available at the i th origin,
{(b j

1 , b
j
2 , b

j
3), [μb j

l
, μ

b j
u
], [ν

b j
l
, ν

b j
u
]} be the quantity needed

at the j th destination and {(ci j1 , ci j2 , ci j3 ), [μ
ci jl

, μ
ci ju

],
[ν

ci jl
, ν

ci ju
]} be the cost to transport x̃i j from the i th origin

to the j th destination.

Minimize z̃ =
m∑

i=1

n∑

j=1

{(ci j1 , ci j2 , ci j3 ), [μ
ci jl

, μ
ci ju

],

[ν
ci jl

, ν
ci ju

]}{̇(xi j1 , xi j2 , xi j3 ), [μ
xi jl

, μ
xi ju

], [ν
xi jl

, ν
xi ju

]}

S.t.
n∑

j=1

x̃i j ≈ {(ai1, ai2, ai3), [μail
, μaiu

], [νail , νaiu ]},

i = 1, 2, . . . ,m
m∑

i=1

x̃i j ≈ {(b j
1 , b

j
2 , b

j
3), [μb j

l
, μ

b j
u
], [ν

b j
l
, ν

b j
u
]}

{(xi j1 , xi j2 , xi j3 ), [μ
xi jl

, μ
xi ju

], [ν
xi jl

, ν
xi ju

]} ≥ 0̃,

i = 1, 2, . . . ,m; j = 1, 2, . . . , n. (36)

5.5 Balanced interval-valued intuitionistic fuzzy
transportation problem

An IVIFTPP in which sum of all demands is equal to the sum
of all supplies and all these are done after taking ranking is
called balanced IVIFTPP, mathematically if

m∑

i=1

R(ãi ) =
n∑

j=1

R(b̃ j ). (37)

Otherwise, it is called unbalanced interval-valued intuition-
istic transportation problem.

5.6 Interval-valued intuitionistic fuzzy optimal
solution

A basis feasible solution that minimizes to the cost of
transportation or that maximizes the profit of transportation
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Table 3 Uncertain transportation

Destinations→
Sources↓ D1 D2 D3 ai

S1 R(c̃11) R(c̃12) R(c̃13) R(ã1)

S2 R(c̃21) R(c̃22) R(c̃23) R(ã2)

S3 R(c̃31) R(c̃32) R(c̃33) R(ã3)

R(b̃ j ) R(b̃1) R(b̃2) R(b̃3)

problem is called an interval-valued intuitionistic fuzzy opti-
mal solution (IVIFOS).

6 Computational method

The steps of the computational method are given below:

Step 1: In this step, the cost of transportation is expressed
as triangular interval-valued intuitionistic fuzzynumbers.
Step 2: Write IVIFTPP in tabular form as in below,
where in the table all the parameters are represented by
triangular interval-valued triangular intuitionistic fuzzy
numbers.

c̃i j = {(ci j1 , ci j2 , ci j3 ), [μ
ci jl

, μ
ci ju

], [ν
ci jl

, ν
ci ju

]},
ãi = {(ai1, ai2, ai3), [μail

, μaiu
], [νail , νaiu ]},

i = 1, 2, . . . ,m,

b̃ j = {(b j
1 , b

j
2 , b

j
3), [μb j

l
, μ

b j
u
], [ν

b j
l
, ν

b j
u
]},

j = 1, 2, . . . , n.

Step 3: Using proposed ordering, we transform to the
interval-valued intuitionistic fuzzy transportation prob-
lem (8) into its crisp form (Table 3), we get
Step 4: Now check whether it is balanced or not.

If (
m∑

i=1
R(ãi ) =

n∑

j=1
R(b̃ j )), then TP is balanced.

If (
m∑

i=1
R(ãi ) �=

n∑

j=1
R(b̃ j )), then TP is unbalanced.

Step 5: If the given TP is balanced, then go to step 5
otherwise make it balanced by adding dummy rows or
columns as required.
Step 6: In this step, we search the initial basic feasible
solutions of the crisp transportation problemby using one
of the following methods and methods are given below:

6.1 Interval-valued intuitionistic fuzzy least cost
method

Step 1: In this step, the cost of transportation is expressed
as interval-valued intuitionistic fuzzy numbers, particu-
larly triangular interval-valued intuitionistic fuzzy num-
bers.
Step 2: Search a smallest c̃i j in the IVIFS cost matrix of
the transportation problem. Suppose it be c̃i j . Allocate
x̃i j = min(ãi , b̃ j ) in the cell (i, j).
Step 3: If x̃i j = ãi cross off the i th row of transportation
table and decrease b̃ j by ãi . Go to next step.

If x̃i j = b̃ j cross off the j th column of the transporta-
tion table and decrease ãi by b̃ j . Go to next step.
If x̃i j = ãi = b̃ j cross off either the ith row or jth
column, but not both.

Step 4: Repeat steps 1 and 2 for the resulting reduced
transportation table until all the requirements are satis-
fied.

6.2 Interval-valued intuitionistic fuzzy northwest
corner method

Step 1: In this step, the cost of transportation is expressed
as interval-valued intuitionistic fuzzy numbers, particu-
larly triangular interval-valued intuitionistic fuzzy num-
bers.
Step 2: Select a northwest (upper left-hand) corner cell
of the IVIF transportation table and allocate as much as
possible so that either the capacity of the first row is
exhausted or the destination requirement of the first col-
umn is satisfied, i.e., x̃11 = min(ã1, b̃1).
Step 3: If b̃1 > ã1, then we move down vertically to the
second row and make second allocation of magnitude
x̃21 = min(ã2, b̃1) − x̃11) in cell (2, 1).

If Rb̃1 < ã1, we move right horizontally to the
second column and make the second allocation of
magnitude x̃12 = min(ã1) − x̃11, b̃2) in cell (2, 1).
If b̃1 = ã1, there is a tie for the second allocation.
One can make the second allocation of magnitude.
x̃12 = min(ã1 − ã1, b̃1) = 0 in the cell (1, 2), or
x̃21 = min(ã2, b̃1 − b̃1) = 0 in the cell (2, 1).

Step 4: Repeat step 1 and step 2 moving down towards
the lower/right corner of the transportation table until all
the requirement satisfied.
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6.3 Interval-valued intuitionistic fuzzy Vogel’s
approximationmethod

[16] Vogel’s approximation method (VAM) is the most com-
mon method used to search initial basic feasible solution of
TP. The demerit of this method is that VAM usually assigns
items to the dummy cells before other cell in the table. Fur-
ther, it was modified by several researchers such as: [17,18].

Step 1: In this step, the cost of transportation is expressed
as interval-valued intuitionistic fuzzy numbers, particu-
larly triangular interval-valued intuitionistic fuzzy num-
bers.
Step 2: For each row and column of the IVIF transporta-
tion table, identify the smallest and next smallest IVIFS
cost with the help of the proposed ranking. And then cal-
culate the penalty pi , p j , i = 1, 2, · · ·m; j = 1, 2, · · · n
between them for each row and column.
Step3: Identify the largest penalty pi , p j , i = 1, 2, · · ·m;
j = 1, 2, · · · n among all the rows and columns. If a tie
occurs, then choose any arbitrary cell. Let the greatest
penalty occur corresponding to kth, 1 ≤ k ≤ m row
and let c̃k j ) be the smallest cost in the kth row. Allocate
the minimum of ãi and b̃ j or xk j = min(ãi , b̃ j ) in the
(k, j)th cell, and cross either the kth row and j th column
in the usual manner.
Step 4: Update the column and row penalties for the
reduced transportation table and go to step 2. Repeat the
procedure until all the requirements are satisfied.
Step 5: In this step, dual variables ũi and ṽ j corre-
sponding to the i th row and j th column are defined,
respectively, such that ũi + ṽ j = c̃i j for each basic cell
(i, j).
Step 6:Define Z̃ i j = ũi + ṽ j for all non-basic variables.
Calculate Z̃ i j − c̃i j , there are two cases occurred:

i. Z̃ i j − c̃i j ≤ 0, for all (i, j); then, current solution is
optimal solution to the interval-valued intuitionistic
fuzzy transportation problem and stop the process.
ii. Z̃ i j − c̃i j > 0, for at least one (i, j). Go to next
step.

Step 7: Assign quantity τ in the cell (i, j) for which
Z̃ i j − c̃i j is most positive and make a loop as follows:
Step 8: Start from τ− cell and move alternatively hori-
zontally and vertically to the nearest basic cell with the
restriction that end point of the loop must not lie in any
non-basic cell except τ− cell. In this way, return to τ cell
to complete loop.
Step 9: Move along loop of τ− cell. Add and subtract
τ successively to/from the allocations in the cell lying at
the turning points of the loop. Take the value of τ to be
minimum of xi j from which τ subtracted.

Step10: Inserting the value of τ in the above step, the next
basic feasible solution is obtained which improves the
interval-valued intuitionistic cost. While inserting value
of τ , a cell assumes 0 value. This cell becomes non-basic.
This gives us the improved basic feasible solutions.
Step 11: The optimal value of the objective function is
calculated by Z̃ = c̃i j ∗ X̃0.

7 Illustration

In this section, numerical example of [34] is taken to verify
the proposed computational method of the interval-valued
intuitionistic fuzzy transportation problem. Here, cost of
transportation is represented by triangular interval-valued
intuitionistic fuzzy numbers. It is very interesting to see that
cost obtained fromproposed approach isminimum that exist-
ing.

Step 1: The cost of transportation varies due to various
uncertain situation like weather condition, traffic con-
dition, petroleum price, etc. The value of cost cannot
deal the situation properly; to address this situation, we
express parameter by TIVIFNs (Table 4).
Step 2: Identify smallest element and next smallest ele-
ment in each row and each column (Tables 5, 6).

R(c11) < R(c13) < R(c22) ⇒ c11 < c13 < c22,
smallest cost and next cost are: c11, c13
R(c21) < R(c22) < R(c23) ⇒ c21 < c22 < c23,
smallest cost and next cost are: c21, c22
R(c31) < R(c32) < R(c33) ⇒ c31 < c32 < c33,
smallest cost and next cost are: c31, c32

Similarly for column

R(c31) < R(c11) < R(c21) ⇒ c31 < c11 < c21,
smallest cost and next cost are: c31, c11
R(c22) < R(c12) < R(c32) ⇒ c22 < c12 < c32,
smallest cost and next cost are: c22, c12
R(c13) < R(c23) < R(c33) ⇒ c13 < c23 < c33,
smallest cost and next cost are: c13, c23

Step 3: Row penalties:
First row rp1 :
{(4, 6, 16), [0.3, 0.4], [0.03, 0.07]}

�, {(1, 4, 9), [0.1, 0.5], [0.01, 0.03]}
= {(−5, 2, 15), [0.1, 0.4], [0.03, 0.07]}

Second row rp2 :
{(5, 10, 15), [0.2, 0.5], [0.01, 0.04]}

�{(4, 5, 7), [0.3, 0.4], [0.01, 0.02]}
= {(−2, 5, 11), [0.2, 0.4], [0.01, 0.04]}
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Table 4 Interval-valued intuitionistic fuzzy transportation problem

D1 D2 D3 ai

S1 {(1, 4, 9); [0.1, 0.5], [0.01, 0.03]} {(3, 13, 14), [0.2, 0.4]; [0.02, 0.04]} {(4, 6, 16); [0.3, 0.4], [0.03, 0.07]} 7

S2 {(4, 5, 7); [0.3, 0.4], [0.01, 0.02]} {(5, 10, 15); [0.2, 0.5], [0.01, 0.04]} {(7, 16, 24); [0.3, 0.5], [0.02, 0.03]} 15

S3 {(1, 3, 6); [0.4, 0.5], [0.01, 0.02]} {(5, 13, 21); [0.3, 0.4], [0.03, 0.04]} {(8, 18, 27); [0.4, 0.5], [0.05, 0.05]} 10

b j 8 6 18

Table 5 Interval-valued intuitionistic fuzzy transportation problem cont. . . .

D1 D2 D3 ai

S1 (1, 4, 9), [0.1, 0.5], [0.01, 0.03] (3, 13, 14), [0.2, 0.4], [0.02, 0.04] (4, 6, 16), [0.3, 0.4], [0.03, 0.07] 7

S2 (4, 5, 7), [0.3, 0.4], [0.01, 0.02] (5, 10, 15), [0.2, 0.5], [0.01, 0.04] (7, 16, 24), [0.3, 0.5], [0.02, 0.03] 15

S3 (1, 3, 6), [0.4, 0.5], [0.01, 0.02] (5, 13, 21), [0.3, 0.4], [0.03, 0.04] (8, 18, 27), [0.4, 0.5], [0.05, 0.05] 10

b j 8 6 18

The selected elements are represented by bold

Table 6 Interval-valued intuitionistic fuzzy transportation problem cont. . . .

D1 D2 D3 ai

S1 (1, 4, 9), [0.1, 0.5], [0.01, 0.03] (3, 13, 14), [0.2, 0.4], [0.02, 0.04] (4, 6, 16), [0.3, 0.4], [0.03, 0.07] 7

S2 (4, 5, 7), [0.3, 0.4], [0.01, 0.02] (5, 10, 15), [0.2, 0.5], [0.01, 0.04] (7, 16, 24), [0.3, 0.5], [0.02, 0.03] 15

S3 (1, 3, 6), [0.4, 0.5], [0.01, 0.02] (5, 13, 21), [0.3, 0.4], [0.03, 0.04] (8, 18, 27), [0.4, 0.5], [0.05, 0.05] 10

b j 8 6 18

The selected elements are represented by bold

Table 7 Basic feasible solutions

D1 D2 D3 ai

S1 (1, 4, 9), [0.1, 0.5], [0.01, 0.03] (3, 13, 14), [0.2, 0.4], [0.02, 0.04] (4, 6, 16), [0.3, 0.4], [0.03, 0.07] (7) 7

S2 (4, 5, 7), [0.3, 0.4], [0.01, 0.02] (5, 10, 15), [0.2, 0.5], [0.01, 0.04] (6) (7, 16, 24), [0.3, 0.5], [0.02, 0.03] (9) 15

S3 (1, 3, 6), [0.4, 0.5], [0.01, 0.02] (8) (5, 13, 21), [0.3, 0.4], [0.03, 0.04] (8, 18, 27), [0.4, 0.5], [0.05, 0.05] (2) 10

b j 8 6 18

The selected elements are represented by bold

Third row rp3 :

{(5, 13, 21), [0.3, 0.4], [0.03, 0.04]}
�{(1, 3, 6), [0.4, 0.5], [0.01, 0.02]}
= {(−1, 10, 20), [0.3, 0.4], [0.03, 0.04]}

Column penalties:
First column cp1 :

{(1, 4, 9), [0.1, 0.5], [0.01, 0.03]}
�, {(1, 3, 6), [0.4, 0.5], [0.01, 0.02]}
= {(−5, 1, 8), [0.1, 0.5], [0.01, 0.03]}

Second column cp2 :

{(3, 13, 14), [0.2, 0.4], [0.02, 0.04]}
�{(5, 10, 15), [0.2, 0.5], [0.01, 0.04]}
= {(−12, 3, 9), [0.2, 0.4], [0.02, 0.04]}

Third column cp3 :

{(7, 16, 24), [0.3, 0.5], [0.02, 0.03]}
�{(4, 6, 16), [0.3, 0.4], [0.03, 0.07]}
= {(−9, 10, 20), [0.3, 0.4], [0.03, 0.07]}

Step 4: Choose row or column having larger penalty.
Third has maximum penalty, and third row is selected
for allocation. Continuing in the same ways, we get basic
feasible solutions (Table 7).
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x13 = 7, x22 = 6, x23 = 9, x31 = 8, x33 = 2. Now
we shall use interval-valued intuitionistic fuzzy ũi − ṽ j

method to get interval-valued intuitionistic fuzzy optimal
solutions,
Here, we calculate interval-valued intuitionistic fuzzy net
evaluations (i.e., zi j − ci j ) for all non-basic cell.
Step 5:
Put ũ1 = 0 (Table 8), we get

ũ2 = {(−9, 10, 20); [0.3, 0.4][0.03, 0.07]}
ũ3 = {(−8, 12, 23); [0.3, 0.4][0.05, 0.07]}
ṽ1 = {(−22, 9, 14); [0.3, 0.4][0.05, 0.07]}
ṽ2 = {(−15, 0, 24); [0.2, 0.4][0.03, 0.07]}
6ṽ3 = {(4, 6, 16); [0.3, 0.4][0.03, 0.07]}

Net evaluations corresponding to all non-basic cells

z̃11 − c̃11 = ũ1 + ṽ1 − c̃11

= 0 + {(−22,−9, 14); [0.3, 0.4][0.05, 0.07]}
−{(1, 4, 9), [0.1, 0.5], [0.01, 0.03]}

= {(−31,−13, 13), [0.1, 0.5], [0.01, 0.03]} < 0

∴ z̃11 − c̃11 < 0

z̃12 − c̃12 = ũ1 + ṽ2 − c̃12

= 0 + {(−15, 0, 24); [0.2, 0.4][0.03, 0.07]}
−{(3, 13, 14), [0.2, 0.4], [0.02, 0.04]}

= {(−29,−13, 21), [0.2, 0.4], [0.03, 0.07]} < 0

∴ z̃12 − c̃12 < 0

z̃21 − c̃21 = ũ2 + ṽ1 − c̃21

= {(−9, 10, 20); [0.3, 0.4][0.03, 0.07]}
+{(−22,−9, 14); [0.3, 0.4][0.05, 0.07]}
−{(4, 5, 7), [0.3, 0.4], [0.01, 0.02]}

= {(−31,−1, 13); [0.3, 0.4], [0.03, 0.07]}
−{(4, 5, 7); [0.3, 0.4], [0.01, 0.02]}

= {(−38,−6, 4); [0.3, 0.4], [0.03, 0.07]} < 0

∴ z̃21 − c̃21 < 0

z̃32 − c̃32 = ũ3 + ṽ2 − c̃32

= {(−8, 12, 23); [0.3, 0.4][0.05, 0.07]}
+{(−15, 0, 24); [0.2, 0.4][0.03, 0.07]}
−{(5, 13, 21); [0.3, 0.4], [0.03, 0.04]}

= {(−23, 12, 47); [0.3, 0.4], [0.03, 0.07]}
−{(5, 13, 21); [0.3, 0.4], [0.03, 0.04]}

= {(−44,−1, 42); [0.3, 0.4], [0.03, 0.07]} < 0

∴ z̃32 − c̃32 < 0

Step6:Finally,weget for all non-basic cells: z̃i j−c̃i j < 0
Stop the process here. Therefore, we skip steps 7-9 and
we shall go last step (i.e, step 11). Ta
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Table 9 Comparison with
existing method

S.no. Researchers Fuzzy values

1. Kumar and Hussain [47] {(137, 292, 502); (12, 292, 961)}
2. Proposed method {(145, 306, 520); [0.2, 0.4], [0.03, 0.07]}

Step 11: Therefore, x13 = 7, x22 = 6, x23 = 9, x31 =
8, x33 = 2 are optimal solutions and minimum cost is :

7 ∗ {(4, 6, 16); [0.3, 0.4], [0.03, 0.07]}
+6 ∗ {(5, 10, 15), [0.2, 0.5], [0.01, 0.04]}
+9 ∗ {(7, 16, 24); [0.3, 0.5], [0.02, 0.03]}
+8 ∗ {(1, 3, 6); [0.4, 0.5], [0.01, 0.02]}
+2 ∗ {(8, 18, 27), [0.4, 0.5], [0.05, 0.05]}
= {(145, 306, 520); [0.2, 0.4], [0.03, 0.07]}

Interval-valued intuitionistic fuzzy cost is: z0 = {(145,
306, 520); [0.2, 0.4], [0.03, 0.07]}.

8 Conclusions

One of the very interesting problems of decision science
is the ranking of interval-valued intuitionistic fuzzy sets.
Also, it is very hard to develop a ranking function to rank
interval-valued intuitionistic fuzzy sets. In the present paper,
we use the law of trichotomy to order interval intuitionis-
tic fuzzy sets, and for this, we introduce a transformation
that is called ranking function. The proposed ranking func-
tion depends on both value of variable and interval-valued
intuitionistic fuzzy degrees, and this is a beauty of proposed
ranking function. Also, it distinguishes proposed ranking to
existing ranking function. In the present paper, a compu-
tational methodology which is based on ranking function
is developed and applied to an interval-valued intuitionistic
fuzzy transportation problem to get a compromise solution.
Further, it is very interesting to note that the proposed com-
putation method predicts a minimum transportation cost as
compared to the existing approach (see Tables 9 and 10),
and interval-valued intuitionistic fuzzy degree of transporta-
tion cost is given in Fig. 6. To check the performance and
superiority of the proposed ranking function, an illustrative
example is presented (see Table 1). Also we compare our
ranking function with existing ranking function and it shows
that presented ordering function follows to the existing rank-
ing function.
Due to the appearance of interval-valued intuitionistic fuzzy
sets in real-life problems such as decision making, mul-
tiattribute decision making with incomplete weight, fuzzy
forecasting, risk analysis, etc., clustering and artificial intel-

Table 10 Solution approach of a transportation problem

S.no. Researchers Problem Approach

1. Das et al. [23] MOTP INs

2. Li and Lai [12] MOTP FSs

3. Zangiabadi and Maleki [24] MOTP FSs

4. Wahed and Lee [25] MOTP FSs

5. Liu and Kao [21] SOTP FSs

6. Wahed [26] MOTP FSs

7. Hussain and Kumar [30] SOTP IFSs

8. Singh and Yadav [31] SOTP TIFNs

9. Ebrahimnejad and Verdegay [32] SOTP IFNs

10. Mahmoodirad et al. [33] SOTP IFNs

11. Kumar [34] SOTP IFNs

12. Roy [35,36] SOTP IFNs

13. Kumar [37] SOTP TIFNs

14. Jana [38] SOTP IFNs

15. Singh and Yadav [39] SOTP IFNs

16. Ebrahimnejad and Verdegay [40] SOTP IFNs

17. Kour et al. [41] SOTP IFNs

18. Liu [43] FOTP FNs

19. Bharati [8] FOTP IFNs

20. Bharati and Malhotra [42] TSTP IFNs

21. Proposed method SOTP IVIFNs

Fig. 6 Interval-valued intuitionistic fuzzy sets total cost

ligence, the proposed method will be high performance and
efficient.
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