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Abstract: Interferons (IFNs) are very powerful cytokines, which play a key role in combatting
pathogen infections by controlling inflammation and immune response by directly inducing
anti-pathogen molecular countermeasures. There are three classes of IFNs: type I, type II and
type III. While type II IFN is specific for immune cells, type I and III IFNs are expressed by both
immune and tissue specific cells. Unlike type I IFNs, type III IFNs have a unique tropism where their
signaling and functions are mostly restricted to epithelial cells. As such, this class of IFN has recently
emerged as a key player in mucosal immunity. Since the discovery of type III IFNs, the last 15 years
of research in the IFN field has focused on understanding whether the induction, the signaling and
the function of these powerful cytokines are regulated differently compared to type I IFN-mediated
immune response. This review will cover the current state of the knowledge of the similarities and
differences in the signaling pathways emanating from type I and type III IFN stimulation.
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1. Introduction

Six years ago Isaacs and Lindemann made an amazing discovery when they described molecules
able to “interfere” with influenza virus replication [1]. These molecules are now referred to as
interferons (IFNs) and can protect humans and animals against a broad range of viruses and pathogens
by generating IFN-mediated innate immune responses [2]. The first interferon described was
type I IFN [1]. In humans, there are 17 subtypes of type I IFNs including 13 subtypes of IFN-α,
along with IFN-β, IFN-ε, IFN-κ, and IFN-ω [3–6]. Type I IFNs have a broad range of biological
functions including modulation of innate and adaptive immune responses, anti-proliferative functions,
and most importantly antiviral activities [5,7]. Remarkably, although all type I IFN subtypes share
limited structural similarity, they all share the same heterodimeric receptor complex constituted of one
chain of the IFN-α receptor 1 (IFNAR1) and one chain of the IFN-α receptor 2 (IFNAR2) [8].

In contrast with the type I IFN family, type II IFN family consists only of IFN-γ, which has a very
low sequence similarity with the other IFNs [9]. While IFN-γ is mainly produced by immune cells
(activated T cells, natural killer cells and macrophages) and is described as an immunomodulatory
cytokine, it also shows a response against viruses, bacteria and parasites [10]. Contrary to the other
IFNs, IFN-γ signals as a homodimer using the IFN-γ receptor (IFNGR) complex. The IFNGR ternary
complex consists of two chains of IFN-γ receptor 1 (IFNGR1) and two chains of IFN-γ receptor 2
(IFNGR2) and displays a broad tissue expression pattern [11].
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Beside type I and type II IFNs, another family of IFN was recently described by two independent
research groups and referred to as type III IFNs or IFN-λs [12,13]. In Homo sapiens, this family
contains four described members including IFN-λ1 (IL-29), IFN-λ2 (IL-28A), IFN-λ3 (IL-28B), and most
recently, IFN-λ4 [12–14]. The heterodimeric receptor used by type III IFNs to signal is different from
the receptor used by type I IFN and consist of the IFNLR1 chain (a.k.a. IL-28Rα) and the IL-10R2
chain. Importantly, the IL-10R2 chain is also part of the heterodimeric receptor of all the IL-10 family
(IL-10, IL-22 and IL-26) [3,12,13]. Expression of IFNLR1 is not ubiquitous but appears limited to cells
of epithelial origins (e.g., hepatocytes, intestinal cells and lung) and to a specific subset of immune
cells (i.e., NK cells, pDCs, and DCs) [15–22]. This limited tropism of the type III IFN receptor has led
over the years to the model where type III IFNs have unique properties at mucosal surfaces [16,21–29].

Although type I and III IFNs are non-related from both sequence and structure perspective
as well as using two different receptor complexes for their signaling, both cytokines induce
a remarkably similar panel of interferon stimulated genes (ISGs). This observation led to the
hypothesis that both cytokines were functionally redundant [29–34]. However, in the last few years,
growing evidence highlights significant differences in the mode of action and functions of type I
vs. type III IFNs [21,22,25,27,35,36]. Apart from the differences in the transcriptional regulation of
ISGs after type I versus III IFN stimulation, which has been detailed in previous reviews [37–39],
crucial differences have begun to be unraveled regarding the signaling pathways emanating from the
receptor complexes. It has been shown that there are different levels of both the type I and type III IFN
receptors at the plasma membrane and different binding affinities for each IFN [40–44]. Additionally,
the activation and regulation of the downstream signaling components and their ability to drive ISG
production is distinct to each IFN providing type I and III IFNs with unique functions. This review
will focus on the differences emanating from receptor activation to the regulations of ISG induction
following either type I or III IFN stimulation.

2. Canonical Type I and Type III IFN Signaling

Both type I and type III IFNs can promote signaling in an autocrine (on the secreting cells) or
paracrine (on bystander cells) manner to induce an IFN-mediated immune response. Binding of IFNs
to their respective receptors induces the formation of a receptor ternary complex mediating signal
transduction. First, binding of type I and III IFNs to the extracellular part of the IFNAR1/2 and
IFNLR1/IL10R2, respectively, induces conformational changes in the intracellular part of the receptor
subunits. Both heterodimeric receptors do not display any catalytic activity, instead, members of
the receptor-associated Janus kinases (JAK) family (JAK1, JAK2 and TYK2), which are constitutively
associated with the heterodimeric receptors, will be activated upon binding of IFNs. In turn, they
subsequently mediate the phosphorylation of tyrosine residues on the intracellular domains of the IFN
receptors. This activation allows for the recruitment of signal transducer and activator of transcription
(STAT) proteins, which are then phosphorylated by JAKs. Phosphorylation of STAT induces their
dimerization and the assembly of the IFN-stimulated gene factor 3 (ISGF3) complex, consisting of
STAT1, STAT2, and IRF9. ISGF3 and dimers of STATs act as transcription factors and upon translocation
to the nucleus regulating ISG expression (Figure 1). Regulation of this IFN-mediated signaling can
occur at multiple levels within the signal transduction pathways by 1) receptor internalization 2)
regulation of JAK/STAT activation 3) activation of JAK/STAT independent signaling pathways and 4)
regulation of promoter elements.

All the IFN receptors belong to the class II helical cytokine receptors (hCRs) family. Class II
receptors function as heterodimers and bind monomer or homodimers of ligands consisting of
six α-helices [45]. Additionally, class II receptors are characterized by a transmembrane domain
which lacks the WSXWS amino acid sequence of class I helical receptors [3,46]. For the type I IFN
heterodimeric receptor, IFNAR2 displays a high affinity for IFN binding [41,42,47–49]. Interestingly,
although IFNAR1 has a low affinity for IFN, it is responsible for the distinction of the different subtypes
of type I IFN [50,51]. It has been reported that the binding affinities between type I IFNs and IFNAR1/2
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dramatically varies and correlates with their differences in biological activity and different sensitivities
to negative regulators [42,43]. While all IFN-α’s present a similar low affinity for IFNAR1 and are
highly sensitive to the negative regulator USP18, IFN-β binds IFNAR1 more tightly and its activity
seems to be unaffected by USP18 (Figure 2) [44,52].
Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  3 of 22 

 

 

Figure 1. Type I and III interferon production following pathogen sensing. Schematic representing 
the canonical pathway of pathogen recognition receptor (PRR) sensing of intracellular pathogens. 
Pathogen associated molecular patterns (PAMPs) are recognized by PRRs leading to activation and 
phosphorylation of IRF3/7 which then translocate into the nucleus and drive the expression of both 
type I and III interferons. Both interferons are translated and secreted from the infected cell in an 
autocrine or paracrine manner. Upon binding of type I IFN to the IFNAR1/IFNAR2 and of type III 
IFN to the IFNLR1/IL-10R2 receptor, signal transductions are initiated leading to the formation of the 
ISGF3 complex (IRF9/p-STAT1/p-STAT2) which then acts as a transcription factor driving the 
expression of interferon stimulated genes. 
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Figure 2. Regulation of interferon-mediated receptor signaling. Table summarizing the current state 
of the knowledge of both interferon receptor tropism, binding affinity for interferons, 
internalization/recycling mechanism and their known regulation. 

Figure 1. Type I and III interferon production following pathogen sensing. Schematic representing
the canonical pathway of pathogen recognition receptor (PRR) sensing of intracellular pathogens.
Pathogen associated molecular patterns (PAMPs) are recognized by PRRs leading to activation and
phosphorylation of IRF3/7 which then translocate into the nucleus and drive the expression of both
type I and III interferons. Both interferons are translated and secreted from the infected cell in an
autocrine or paracrine manner. Upon binding of type I IFN to the IFNAR1/IFNAR2 and of type III IFN
to the IFNLR1/IL-10R2 receptor, signal transductions are initiated leading to the formation of the ISGF3
complex (IRF9/p-STAT1/p-STAT2) which then acts as a transcription factor driving the expression of
interferon stimulated genes.

Similar to the type I IFN receptor, the type III IFN receptor also displays different affinities
for IFN in a chain-specific manner however, the overall binding affinity for type III IFNs is much
lower compared to type I IFNs [53,54]. The IFNLR1 chain corresponds to the high binding affinity
subunit, while the IL-10R2 displays a low affinity for type III IFNs (Figure 2) [46,47]. Unlike IFNAR1
and IFNAR2 which are strictly involved in mediating type I IFN signaling, the IL-10R2 chain of the
heterodimeric type III IFN receptor is also involved in mediating IL-10, IL-22 and IL-26 signaling.
Importantly, this shared receptor subunit has been described to mediate a potential crosstalk between
IL-22, IL-10 and type III IFNs. Type III IFN activity is inhibited in the presence of IL-10 and it has been
suggested that this is due to a competition of type III IFNs with IL-10 for the IL-10R2 receptor [55].
Interestingly, IL-22 was shown to act in a synergistic manner with type III IFNs leading to an increase
in STAT1 activation which then leads to an increase in the type III IFN dependent ISG expression [24].
It is unclear how interactions with one IL-10 family member lead to a decrease in IFN activity while
the other member increases its activity. However, as type III IFNs themselves induce the production of
IL-10 (as an ISG) this may serve as a negative feedback to control its activity. On the contrary, IL-22
will serve as a positive feedback loop on type III IFN-mediated signaling in the intestinal mucosa.
In this environment, intestinal epithelial cells, in response to pathogen challenges, will secrete IL-1α
which in turn will activate intestinal specific innate lymphoid immune cells (ILC3) promoting the
secretion of IL-22. Similarly, DCs sensing the lumenal content of the gut will secrete IL-23 which in
turn will activate ILC3 again promoting IL-22 secretion to signal on intestinal epithelial cells. As such,
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the IL-22 feedback loop can be seen as a strategy to further boost the antipathogen protection at times
of infection and tissue damages and local inflammation [24,56].
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Figure 2. Regulation of interferon-mediated receptor signaling. Table summarizing the current
state of the knowledge of both interferon receptor tropism, binding affinity for interferons,
internalization/recycling mechanism and their known regulation.

In general the regulation of receptor cell surface levels by internalization and degradation,
is considered to be the most specific and rapid cellular strategy to regulate and to limit their
signaling [57]. After IFN binding, the ternary IFNAR1/2 complex is internalized by clathrin-mediated
endocytosis [58,59]. Interestingly while IFNAR1 is rapidly routed for lysosomal degradation [60,61],
IFNAR2 can be either recycled back to the cell surface or degraded [62,63]. In particular, a linear
tyrosine based sequence in IFNAR1 serves as an endocytic motif, which is recognized by the
clathrin-adapter protein AP-2 endocytic complex. Upon recognition of this motif AP-2 is recruited
to the plasma membrane and begins to further recruit the clathrin-machinery [58,59]. This leads
to the formation of the clathrin-coated vesicles and internalization of the ternary IFNAR complex.
In basal conditions, this tyrosine motif is constitutively associated with TYK2 and remains masked from
AP-2 [58,59]. Upon stimulation, phosphorylation of this motif decreases its binding with TYK2 and
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facilitates its exposure to AP-2 explaining the importance of TYK2 for IFNAR1 cell surface stability [64].
As such, the fate of type I IFN signaling is tightly linked to the internalization and degradation of
the ternary IFNAR1/2 complex, which is regulated by tyrosine endocytic sorting motifs in IFNAR1.
Importantly, IFNAR1 levels can also be controlled in a ligand independent manner through the
viral induced activation of the unfolded protein response leading to the subsequent ubiquitination,
internalization, and down regulation of the IFNAR1 signal (Figure 2) [60,65].

To date, there is no literature available concerning the molecular mechanisms underpinning
the IFNLR1/IL-10R2 ternary complex internalization and recycling. However, the basal levels of
its most closely related family member, IL-22R, displays a similar restricted expression in epithelial
cells [66,67] and its expression is regulated through ubiquitination, leading to a fast turnover of
the receptor [68]. Importantly, phosphorylation by GSK-3β leads to a stabilization of the receptor
and modulates its activity. Comparably, the IL-10R2 receptor levels are also modulated through
ubiquitination leading to its internalization and degradation [69]. Similar to IFNAR1 expression
IL-10R2 levels can also be modulated in a ligand-independent manner through pattern recognition
sensing leadings to its downregulation [70]. Interestingly, while its ligand dependent internalization
has not been characterized, it has been shown that IFNLR1 surface levels can be modulated by virus
infection, where rotavirus leads to the down regulation of both receptors in a lysosomal dependent
manner [71].

3. Regulation of JAK/STAT Activation

3.1. JAK Activation/Inactivation

Besides the direct regulation of receptor levels, one of the primary mechanisms by which cells can
regulate IFN-mediated signaling is through regulation of IFNAR1/2 and IFNLR1/IL-10R2 interactions
with downstream signaling molecules (e.g., JAK family members). TYK2 and JAK1 are constitutively
bound to IFNAR1 and IFNAR2, respectively. Upon type I IFN binding, structural rearrangements of
the two subunits of the type I IFN receptor induce the juxtaposition of the two kinases located in TYK2
and JAK1. This results to their auto phosphorylation and their transphosphorylation of the amino acid
Y1022 and Y1023 on JAK1 and Y1054 and Y1055 on TYK2 [72,73]. Activated JAKs, in turn, mediate
the phosphorylation of both IFN receptor chains creating multiple binding sites for both STAT1 and
STAT2 through their SH2 domain. While the functions of all phosphorylation sites remain elusive,
amino acids Y337 and Y512 are known to be important for STAT1 and STAT2 recruitment [74], while
the IFNAR1 tyrosine Y466 has been shown to be important for STAT2 activation [75]. Additionally,
residues 525 to 544 of IFNAR1 have been shown to be critical for its regulation. IFNAR1 constructs
lacking amino acids 525-544 show an increased sensitivity to IFN suggesting that theses residues could
be sites where negative regulators bind to control its activity [76]. In addition, in mouse cells tyrosine
residues Y510 and Y335 on IFNAR2 were shown to be critical for IFN dependent ISG induction as their
absence lead to a reduced ability to activate STAT1 and possibly STAT2 [77].

Similar to the type I IFN pathway, TYK2 and JAK1 have been found to be associated with IL-10R2
and IFNLR1, respectively. While it is clear that type III IFNs require JAK1 for their downstream
signaling pathways, they are able to signal in the absence of TYK2 [78]. This ability of type III IFN
to signal in the absence of TYK2 was first recognized by evaluating multiple patients who displayed
TYK2 deficiencies. These patients often showed signs of skin disorders and bacterial infections but
only displayed a mild susceptibility to viral infection [79]. Further investigation showed that the lack
of TYK2 impacted the ability of type I IFNs to clear viral infection while type III IFNs maintained
their antiviral capacities showing that TYK2 is dispensable for the type III IFN mediation signaling of
IL-10R2. While TYK2 is clearly associated with the IL-10R2 receptor but appears to be not important
for type III IFN mediated signaling, TYK2 plays a key role for the signaling of other IL-10 family
members such as IL-10 itself [78]. These observations are interesting and raise further questions about
JAK signaling downstream type III IFN receptor activation. As it has been shown that JAK1 and TYK2
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trans-activate each other upon type I IFN binding of IFNAR1/2, it will be interesting to understand,
through further studies, whether the loss of this trans-activation by JAK1 leads to the differences seen in
the downstream signaling following type III IFN stimulation. Although the IFNLR1 phosphorylation
has not been investigated in as much detail as the IFNAR1/2 receptors, two amino acids on IFNLR1
(the tyrosine Y343 and Y517) are critical for STAT2 activation. Particularly, the motif surrounding
the Y343 in IFNLR1 strongly resembles the motif surrounding the Y466 of IFNAR1. Similarly, the
sequence surrounding the Y517 of IFNLR1 displays some degree of resemblance with the C-terminal
part of IFNAR2 containing the Y512 [80,81]. Importantly, although these motifs reflect some degree of
similarity in the STAT2 docking sites between the IFNLR and the IFNAR complexes, their intracellular
regions are dramatically different. Due to these differences it is not surprising that differences in the
TYK2 requirements and in the kinetics of STAT activation by type I and III IFN mediated signaling
have been reported [31,78].

As the signal transduction downstream of both type I and type III IFN receptors is mostly
based on phosphorylation, several phosphatases have been described to modulate IFN-mediated
signaling. Specifically, the protein-tyrosine phosphatase 1B (PTPB1) has been shown to bind directly to
the IFNAR1 subunit and modulate its AP-2 dependent endocytosis by removing the phosphate on
Y466 thereby activating its uptake [82]. This regulation has only been shown in human cells where
TYK2 binding modulates Y466 phosphorylation thereby maintaining basal levels of IFNAR1 at the
cell surface. Mouse cells do not require TYK2 for the stable surface expression of IFNAR1 and are
therefore insensitive to the presence of PTPB1 [82]. TYK2 and JAK2 can also be modulated by PTPB1.
In the absence of PTPB1, JAK2 becomes hyperphosphorylated leading to excessive IFN signaling
(Figure 2) [83]. Interestingly, another related phosphatases T cell protein-tyrosine phosphatase (TCPTP)
shows a similar ability to modulate JAK2 activity and mice lacking either PTPB1 or TCPTP display
similar over activations of IFN-mediated signaling [84]. Additionally, the transmembrane PTPase
CD45 has also been shown to serve as a JAK phosphatase in a type I IFN dependent manner [85].
The expression and role of these phosphatases have mostly been studied in hematopoietic cells where
type I and II IFNs play a key role for signaling but type III IFN receptors are not expressed. Additionally,
these phosphatases have been shown to bind members of the JAK family, however what activates
their recruitment to bind JAKs is still unclear. Further work is needed to determine whether these
phosphatases will also regulate type III IFN mediated signaling and what signals are needed to drive
their negative regulation of type I mediated signaling.

While the regulation of phosphorylation plays a key role in JAK activation other regulators, which
compete for the binding of JAK to the IFNAR1/2 complex, have been identified. The ubiquitin-specific
protease USP18, binds to IFNAR2 and prevents its interaction with JAK1 (Figure 2) [86].
This association seems to be ligand dependent, as it inhibits specific signaling from IFN-α subtypes,
which bind IFNAR2 with lower affinity than IFN-β [44,52,87]. USP18 dependent inhibition of
IFN-α responses, could be an explanation for the shorter duration of IFN-α responses compared
to IFN-β [32,33]. High USP18 levels are also suggested to be the reason that many hepatitis C patients
show a refractory phenotype to IFNα based antiviral therapy [52]. USP18 does not play a role in
regulating the response by type III IFNs under normal conditions as the type III IFN receptor complex
lacks consensus sites for USP18 binding [87]. Although, a recent study showed that in a mouse
mammary tumor model, the loss of USP18 lead to an increase in type III IFN signaling which lead to a
lower tumor burden. This suggests that USP18 can act on type III IFN signaling, however this was in a
tumor model and it is unclear if there whether other parts of the signaling cascade were disrupted
in this model or if USP18 was expressed at higher than normal levels [88]. Additionally, a possible
explanation for the USP18 dependent regulation of IFNLR1 could be due to a crosstalk occurring
between the IFNAR1 and IFNLR1 receptors, where USP18 could directly affect IFNAR1 and this could
lead to changes in IFNLR1 signaling.

In addition to competing for binding of the JAK family members to the IFN receptors, other
negative regulators are known to directly interact with these JAK proteins to negatively regulate
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their activation. The suppressor of cytokine signaling (SOCS) (e.g., SOCS1 and SOCS3) are
considered the most potent negative regulators as they can directly interact with TYK2 interfering
with its activation [89,90]. SOCS1 knock-out mice show uncontrolled IFN signaling leading to an
inflammatory state. SOCS1 has been shown to exert its effect specifically on the IFNAR1 receptor
while IFNAR2 regulation is independent of SOCS1. SOCS1 does not bind to the IFNAR1 receptor
directly but modulates it activity through TYK2 (Figure 2). SOCS1 binds to TYK2 leading to its
ubiquitination-dependent destabilization, which subsequently drives IFNAR1 downregulation [90,91].
Additionally, unlike USP18, SOCS1 regulates type III IFN mediated signaling. Overexpression of
SOCS1 in hepatic cells lines has been shown to reduce the type III IFN mediated induction of p-STAT1
and ISGs as well as interferon sensitive response elements (ISRE)-activation [92,93]. Importantly,
these in vitro observations were confirmed in vivo where SOCS1 knock-out mice also show increased
ISG induction in response to type III IFNs [87]. These results are interesting given the observation
that TYK2 is not necessary for type III IFN signaling and SOCS1 typically acts through regulation of
TYK2. While the observations that SOCS1 regulates type III IFN signaling were mainly performed in
mouse hepatocytes, the TYK2-independent type III IFN signaling observations were mainly made in
human cells. This may speak for tissues and/or species specific differences in the regulation of the
downstream IFN signaling pathways.

Importantly, as USP18 and SOCS are ISGs, the timing of their induction may determine the
negative feedback loop seen in both type I and III IFN signaling [93]. A sustained upregulation of
SOCS1 by type III IFNs has been shown in hepatocytes and is proposed to be responsible for the
long lasting regulation of SOCS1 on IFNλ1 mediated response [87], while IFNα causes a rapid and
transient induction of SOCS1 which may be responsible for the early inhibition of IFNα signaling and
the short duration of IFNαmediated ISG responses [87,91,94]. Similarly, in human intestinal epithelial
cells, it was reported that SOCS1 is induced early upon addition of type I IFN (3-6h) while type III
requires 24 h for its induction [29] further supporting the idea of a quick regulation of type I IFN
signaling and a long lasting activity of type III IFN signaling due to a delay in the transcription of
the negative regulator SOCS1. Additionally, it has been shown that in murine hepatocytes, USP18 is
induced late after IFN stimulation and its protein levels increased over time, correlating with the long
lasting refractoriness of hepatocytes to IFNα signaling [44,87,94]. A significant delay in the kinetics of
USP18 expression has also been observed in human intestinal epithelial cells treated with type I and
type III IFNs, respectively [29]. However, further investigation is required to determine whether there
is a direct correlation between the kinetics of induction of USP18 (and SOCS1) with the kinetics of ISGs
induction in type I versus type III IFN treatment in human cell lines.

3.2. Regulation of STATs

In the canonical type I and type III IFN signaling pathway, the proteins responsible for signal
transduction downstream both type I and III IFN receptors and JAKs are STAT1, STAT2 and IRF9.
As these proteins are interferon-stimulated gene themselves, transcriptional regulation of their
expression represents an important feedback loop regulating IFN signaling. For example, it has
been shown that multiple cell types secrete low levels of IFN-β under homeostatic conditions which
mediates basal levels of STAT1, STAT2 and IRF9 [95]. The origin of this basal secretion of type I IFN
is not fully understood but, in the gut, it has been proposed that under homeostatic conditions,
both epithelial and immune cells can sense the commensal flora leading to a controlled production
of low levels of IFNs [96]. Contrary to these homeostatic conditions where low levels of IFNs are
secreted by cells, the presence of pro-inflammatory signals such as TNF-α and IL-6 can lead to higher
expression levels of STAT1 and IRF9 which ultimately result in a prolonged ISG expression and
sustained antiviral protection [97–99]. For type I IFNs, in addition to STAT1/2, STAT3-6 have been
shown to be transcriptionally upregulated, in turn enhancing the antiviral and anti-proliferative actions
of these IFNs [100–103]. While STAT1, STAT2 and STAT3 are induced downstream type I IFNs in most
all cell types, STAT4, STAT5 and STAT6 are induced in a cell type dependent manner and results in
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unique signaling complexes in these cell types (e.g., STAT5 activation along with the CrkL adapter lead
to the induction of a specific subset of ISGs) [104]. Similar to type I IFNs, STATs 1-5 have been described
to be induced downstream the type III IFN receptor [80,92,105]. However, whether activation of STAT
3, 4, 5 following type III stimulation is associated with cell type specific functions and gene inductions
remains to be fully addressed (Figure 3).
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Figure 3. Signal transduction downstream type I and III interferon. Upon binding of type I IFN to
the IFNAR1/IFNAR2 and of type III IFN to the IFNLR1/IL-10R2 receptor transactivation of JAK1
and TYK2 leads to the phosphorylation of STATs. Upon phosphorylation STAT molecules form
three main complexes 1) STAT5/CrkL, 2) STAT homo- or heterodimers and 3) the ISGF3 complex
(IRF9/p-STAT1/p-STAT2). All of these complexes act as transcription factors driving the production
of interferon stimulated genes through the binding of specific motifs in their promoter sequences:
GAS and ISRE elements.

Beside the canonical ISGF3 transcriptional complex made of STAT1:STAT2 heterodimer and
of IRF9, almost all combination of STAT homo- and heterodimers can be found: STAT1:STAT1,
STAT3:STAT3, STAT4:STAT4, STAT5:STAT5, STAT6:STAT6, STAT1:STAT2, STAT1:STAT3, STAT1:STAT4,
STAT1:STAT5, STAT2:STAT3 STAT5:STAT6 [12,30,92,100,106,107]. ISGF3 binds a specific sequence
denoted as the IFN sensitive response element (ISRE) in the promoter region of ISGs. The STAT
homo- and heterodimers show a binding affinity for the IFN-γ activated site (GAS) element within
the promoters of ISGs. Importantly, in the promoter region of ISGs multiple combinations of STAT
binding elements can be found such as ISRE’s alone, GAS elements alone or both ISRE and GAS
elements together (Figure 3). This abundance of transcription factors and multiplicity of binding
sites within the promoter regions of ISGs is likely to allow for a fine regulation of gene expression
and to permit the expression of different subsets of ISGs by differential induction of STAT-containing
complexes [100,106–108].

Phosphorylation of STAT1 (Y701) and STAT2 (Y609) by JAK leads to their dimerization and nuclear
translocation. In addition to these tyrosine residues, numerous additional modifications have been
shown to also positively regulate STAT activation. Serine S727 phosphorylation of STAT1 and STAT3
by specific kinases upon type I IFN stimulation have been shown to enhance their transcriptional
activity without being required for their translocation to the nucleus [109,110]. Protein kinase C (PKC)
family members [32,111,112], cyclin-dependent kinase 8 [113,114] and p38-MAPKinases [115] have
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been also reported to mediate S727 phosphorylation following type I IFN treatment. Additionally, S708
phosphorylation of STAT1 by NF-kB kinase-e (IKKe) was shown to enhance antiviral activity through
promoting ISGF3 formation and transcriptional activity enhancement [116,117]. Similarly, a study
by Bolen and co-workers, has observed phosphorylation of S727 on STAT1 following stimulation of
IFNλ1, λ2 and λ3 in hepatocytes suggesting that it will also act in a positive manner for type III IFN
mediated signaling however this enhanced transcriptional activity has not yet been directly tested [32].

In parallel to these mechanisms of positive regulation of IFN signaling, numerous negative
regulators interfering with STATs activation and functions have been identified. The main negative
regulators are members of the protein tyrosine phosphatase (PTP) family [118]. For example,
upon type I IFN stimulation, the Src Homology phosphatase 2 (SHP-2) (constitutively associated
with IFNAR2) becomes activated and tunes down the signaling cascade by interfering with the
phosphorylation of STAT1, STAT2 and JAK1 [82,119,120]. Apart from the phosphatase-dependent STAT
deactivation, phosphorylation at non-canonical residues (S287 and T387 on STAT2) has been linked
to the negative regulation of the type I IFN-mediated transcriptional, antiviral and anti-proliferative
actions [121,122]. Protein inhibitors of activated STAT (PIAS) family members can also negatively
regulate STAT1 by binding this transcription factor and as a consequence blocking its transcriptional
activity. In addition, STAT1 is also sumoylated by PIAS1 [123,124], but the functional importance of
this modification for IFNAR-induced gene activation needs to be further elucidated. Additionally,
acetylation and methylation sites on STATs have been reported and are proposed as sites for further
important post-translational modifications in their regulated architecture [125–127]. Whether these
negative modifications are induced upon type III IFN stimulation has not yet been addressed. However,
it will be interesting for future studies to compare the acetylation, methylation and sumoylation pattern
of STATs downstream IFNAR1/2 and IFNLR1/IL-10R2 activation and determine their contribution to
ISG induction.

In addition to the formation of the canonical ISGF3 complex, in certain conditions the
formation of alternative non-canonical ISGF3 complex containing unphosphorylated STATs has been
reported [128,129]. As STAT1, STAT2 and IRF9 are ISGs, they are produced in large amounts following
stimulation by both type I and III IFNs. These unphosphorylated components form the U-ISGF3.
This U-ISGF3 binds to unique ISREs and produces a set of around 30 ISGs [130]. These ISGs are
able to remain in the cell for days after the initial IFN stimulation, long after p-STAT1 and p-STAT2
have returned to basal levels. It has been suggested that the canonical ISGF3 is responsible for the
rapid response to IFNs while the U-ISGF3 persists and keeps the cells protected for days [128,130].
While most of the ISGs produced by the U-ISGF3 are antiviral there are a few key genes produced
which protect the cells from DNA damage [130]. In addition, other non-canonical forms of ISGF3 have
been reported: the ISGF3II complex including phosphorylated STAT1, unphosporylated STAT2 and
IRF9, and the ISGF3-like complex formed by STAT2 and IRF9 have been shown to be assembled mainly
upon type I and II IFN treatment leading to prolonged ISG induction [117,131–134].

4. Alternative Signaling Pathways Downstream Type I and III IFNs

Apart from the classical JAK-STAT signaling axis, there is growing evidence linking IFN
stimulation to a JAK-STAT independent transcription of ISGs through pathways such as the Crk-like
protein (CrkL)–Ras related protein 1 (RAP1) pathway [106,107,135–138], the phosphatidyl-inositol
3-kinase (PI3K)-signaling pathway [139] and the mitogen-activated protein kinase (MAPK)
pathway [30,140–142].

4.1. CrkL-RAP1 Pathway in Interferon Signaling

The major role of type I IFNs is the production of an antiviral state within cells. However, they
also play a role in the proliferation of both hematopoietic and non-hematopoietic cells through the
activation of the CrkL [106]. It has been shown that STAT5 is constitutively associated with the
IFNAR1/2 complex through its interaction with TYK2. Upon Tyk2 phosphorylation, STAT5 becomes
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phosphorylated which produces a docking site for CrkL. This forms a complex of STAT5:CrkL which
translocates into the nucleus and binds to GAS elements driving the production of growth inhibitory
genes (Figure 3) [137,138]. Additionally, independent of STAT, CrkL phosphorylation by IFNAR bound
CBL has been shown to promotes its association with C3G, the guanine exchange factor for Rap-1.
This interaction leads to the activation of Rap-1 further promoting its tumor suppressor activity [143].
Multiple type I IFNs have been shown to activate CrkL suggesting that it is a universal mechanism
leading to changes in the growth properties of the cell. So far there have not been any reports linking
type III IFN stimulation with CrkL activation.

4.2. Phosphatidyl-Inositol 3-Kinase (PI3K)-Signaling Pathway

The PI3K pathway has been shown to have a dual role in IFN signaling. It not only acts upon
the production of antiviral effectors but also regulates the transcription and translation of ISGs [106].
The best characterized IFN-dependent PI3K signaling cascade initiates through the activation of the
insulin receptor substrate (IRS)-1 [144]. The binding of type I IFNs, IFNα, IFNβ and IFNω, leads to the
rapid but transient phosphorylation of IRS-1. Activated IRS-1 is capable of binding to the catalytic p85
subunit of PI3K which subsequently leads to the activation of the regulatory p110 subunit of PI3K [145].
Importantly cells which lack the catalytic subunit of PI3K are deficient in the production of a subset of
ISGs, Akt-dependent mTOR activation and mRNA translation, demonstrating the crucial role of PI3K
in multiple IFN-dependent signaling pathways [146]. Upon type III IFN treatment, phosphorylation
of Akt has been shown, which was blocked with the use of a PI3K inhibitor [92]. However further
studies are needed to validate the involvement of the PI3K pathway in type III IFN signaling. The inter
connections of each of these pathways and their effects on the cells are still under debate.

4.3. MAP Kinases in Type I and Type III IFN-Mediated Signaling

The extracellular signal-regulated kinase (ERK), the c-Jun N-terminal kinase (JNK) and the p38
MAP kinases have been shown to be activated by type I IFN treatment in multiple cell lines [30,140–142].
p38 kinase has been the most thoroughly characterized and was shown to be critical for the antiviral
functions of type I IFN in specific cell lines and in vivo mouse models [140,147–150]. Within the signal
transduction pathway downstream type I IFN, the RAC1 guanine-nucleotide-exchange (GEF) factor
VAV gets activated by JAKs [151–153]. After the VAV-dependent RAC1 induction, RAC1 mediates the
activation of the MAP kinase kinase 3 (MKK3) and MAP kinase kinase 6 (MKK6) [154]. Subsequently,
these kinases phosphorylate and activate p38. Multiple downstream targets of p38 have been shown
to be activated. For example, the mitogen- and stress-activated kinase 1 (MSK1) and MSK2, the
MAPK-activated protein kinase 2 (MAPKAPK2), MAPKAPK3 and MAPK-interacting protein kinase 1
(MNK1) which in turn appear to play an important role in establishing and/or regulating the type I IFN
responses [107]. Contrary to the p38 signaling pathway, the type I IFN dependent activation of ERK
and JNK has not been investigated thoroughly. Only fragmented information is available where
some reports describe a cell specific activation of ERK upon IFN-α stimulation [155,156] and even
less information is available concerning the involvement of JNK during type I IFN-mediated antiviral
response [157].

Analogous to type I IFNs, type III IFN treatment of cells has been reported to activate MAP
kinases in multiple cell types [28,30,92,158]. Interestingly, it was shown that the response of epidermal
fibroblasts to type III IFN is MAP kinase dependent and leads to ISG induction and TGF-β induced
collagen production. This recent study is an indication for a specific role of IFNLR-dependent MAP
kinases activation in antiviral protection and repair processes of epidermal tissue [158]. Additionally,
it has been recently shown that MAPKs are important for type III but not type I IFN mediated antiviral
protection in human intestinal epithelial cells (IECs) [28]. While both type I and III IFNs were able to
activate p38, ERK and JNK in IECs, inhibition of their activation only affected the ability of type III IFNs
to protect against viral infection. Together these data strongly suggest that type I and III IFNs have
different downstream signaling pathways leading to their antiviral state.
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5. Modulation of ISG Expression

5.1. Role of Additional Transcription Factors in ISG Expression

Members of the interferon regulatory factor (IRF) family (e.g., IRF-1) are transcriptionally
upregulated upon IFN stimulation of cells. These transcription factors, in turn induce the transcription
of a subset of ISGs by binding to specific promoter regions (IRF-E sites) which overlap with the
ISRE sequence [159–162]. It is believed that the combinatorial action of both ISGF3 and IRFs on the
promoter regions of ISGs can improve/regulate their transcription. On the contrary, it was shown
that by competing for the same DNA binding sites, IRF-2 competes with IRF-1 and IRF-9 and act as
a suppressor of type I IFN response [163–166]. In addition, it was shown that expression of certain
ISGs (e.g., MxA, GBP, MHC class I and B2M in immune cells) can be activated directly by IRFs in a
STAT independent manner [167] [168]. Furthermore, upon IFN or virus stimulation, IRF-7 expression
amplifies various ISGs including IFN-α itself, which further enhances IFN responses through a positive
feedback loop [169,170]. Type III IFN has been shown to induce IRF-7 in a similar manner to type I IFNs
suggesting some overlap in the amplification of IFN signaling [30]. In addition, IRF-1 has been shown
to be required for the production of type III IFN downstream peroxisomal MAVS stimulation following
viral infection suggesting a critical role for this factor in the production and amplification of type III IFN
response [171]. Interestingly, IRF-1 has been recently shown in human respiratory cells to be uniquely
induced by type I IFN [172]. Type III IFN induces very low or weak levels of IRF-1 transcript and
protein in human respiratory cells further showing that each interferon drives a unique antiviral
program [173].

5.2. Epigenetic Regulation of IFN and ISGs

Epigenetic regulation of gene expression has been proposed as an additional mechanism, which
helps to regulate cell type specific gene profiles driving unique IFN transcript and ISG profiles.
Currently there are more than a dozen post-translational modifications that have been shown to be
present on the tails of histones, which include methylation, acetylation, ubiquitination, sumoylation
and phosphorylation [174]. Except for methylation, all other modifications have been shown
to lead to loosening of the histone/DNA complex due to changes in the charge on the histone
molecules resulting in gene expression activation [174]. Methylation can lead to both activation and
repression of transcription depending on whether the methylation is mono-, di or tri. Di-methylated
histone 3 lysine 9 (H3K9me2) has been associated with transcriptional repression [174]. Interestingly,
professional immune cells (i.e., DCs) in both mice and humans show decreased levels of the H3K9me2
repression markers at both the IFNβ gene as well as ISGs such as Mx1 and IFIT1 in comparison to
“non-professional” immune sensing cells (i.e., mouse embryonic fibroblasts). It was shown that this
difference was due to the differential level of G9a expression, a lysine methyl transferase, in both DCs
and fibroblast. When MEFs were depleted of G9a function they lost this repressive mark at the IFN
and ISG promoters and became capable of inducing much higher IFN and ISG levels in response to
pathogen stimuli. Interestingly, the activation marker H3K4me2 is also highly present at both IFN and
ISG promoters in DCs. This is characteristic of poised transcription, allowing these specific genes to
be ready for quick transcription following release of the “poised program” [175]. Additionally, many
viruses target epigenetic markers and modify them during their infection to subvert the IFN induced
antiviral program of infected cells (e.g., Influenza has been shown to change total DNA methylation
levels and to down regulate histone deacetylate activity) [176].

The role of epigenetic changes downstream of type III IFN is currently less well understood.
It was recently shown in mouse intestinal epithelial cells, that the histone deacetylase (HDAC) activity
controlled the amount of type III IFN responsive cells within a population. In this study, Bhushal et al.,
showed that under normal conditions type III IFN was only able to induce ISG expression in a subset
of stimulated intestinal epithelial cells. This restriction was seen even at high doses of type III IFN.
Interestingly, when HDAC inhibitors were added to the cells, type III IFN was capable of inducing ISG
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levels in a larger percentage of intestinal epithelial cells. This phenotype was unique to type III IFN
signaling as type I IFN was insensitive to HDAC inhibitor treatment suggesting that type I and III
IFN have different requirements for chromatin activation and ISG induction [177]. Additionally, the
IFNLR1 receptor itself has been shown to be modulated by HDACs. It was shown that the addition of
HDAC inhibitors lead to the induction of IFNLR1 gene levels which correlated with a gain of function
in both antiviral and anti-proliferative properties in previously non-responsive cells [178].

Apart from histone markers, variants of histones exist within cells. The best-characterized variant
is H3.3, which is known to contribute to epigenetic memory during development [179]. Interestingly,
type I IFN treatment of cells has been shown to lead to the accumulation of H3.3 in the promoters of
ISGs [180]. This incorporation then leads to a transcriptional memory affect, which allows for greater
p-STAT1 and Pol II recruitment during subsequent IFN treatments [181]. Whether H3.3 is also induced
under type III IFN treatment has currently not been addressed.

In addition to histone modifications, many proteins act to modulate chromatin through
remodeling. The chromatin modulators ATP-dependent nucleosome remodeling complexes
SWI/SNF-A (BAF) and SWI/SNF-B (PBAF) have been shown to promote remodeling of the promoter
regions of ISGs [182–186]. Furthermore, members of the histone acetyltransferases (HAT) family such
as binding protein p300 [187], cAMP-responsive-element-binding protein (CREB)-binding protein
(CBP) [188], and general control non-depressible 5 (GCN5) protein [189] mediate transcriptional
activation through interactions with STAT1 and STAT2 directly on ISG promoters. While activation
of these chromatin “remodelers” downstream type III IFN has currently not been investigated it is
tempting to speculate that they will play a similar role like type I IFN treatment as STAT1 and STAT2
are critical regulators of type III dependent ISG induction. However, it may be that subtle differences in
the kinetics or extent of action of the remodelers on chromatin might explain the differences observed
in ISG kinetics expression between type I and III IFNs.

6. Conclusions

Over the past 15 years since the discovery of type III IFNs much work has been devoted to
understanding whether they are redundant to type I IFNs. As more work emerges it becomes clear
that while they have many similarities each IFN signaling cascade is finely tuned to allow for a unique
antiviral environment. While more work is needed to characterize the type III IFN signaling cascade to
a comparable level of type I IFNs, we already have a good view of this powerful new class of IFNs and
their importance at mucosal surfaces.
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