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Abstract

In this paper, we use network approaches to analyze the relations between protein

sequence features for the top hierarchical classes of CATH and SCOP. We use fundamen-

tal connectivity measures such as correlation (CR), normalized mutual information rate

(nMIR), and transfer entropy (TE) to analyze the pairwise-relationships between the protein

sequence features, and use centrality measures to analyze weighted networks constructed

from the relationship matrices. In the centrality analysis, we find both commonalities and dif-

ferences between the different protein 3D structural classes. Results show that all top hier-

archical classes of CATH and SCOP present strong non-deterministic interactions for the

composition and arrangement features of Cystine (C), Methionine (M), Tryptophan (W), and

also for the arrangement features of Histidine (H). The different protein 3D structural classes

present different preferences in terms of their centrality distributions and significant

features.

Introduction

Proteins are varied with their sequences, structures, and functions, the structures are encoded

by their sequences, while the functions are decided by their structures [1–8]. Many studies

have used protein sequence homology to predict the spatial structures of proteins [1]. Typical

protein spatial structural prediction methods include artificial neural networks, nearest neigh-

bor methods and support vector machines [1], e.g. the Chou-Fasman method [9], GOR (Gar-

nier-Osguthorpe-Robson) [10], PHD [11], NNSSP [12], SymPsiPred [13] and CONCORD

[14]. Other spatial structural prediction methods include homology modelling, threading, and

ab initio methods [1]. Popular protein structural prediction servers are such as the SWISS--

MODEL [15], RaptorX [16], ROBETTA [17], I-TASSER [18]. These methods predict the pro-

tein 3D structures providing their sequences. Recent studies also focus protein structural

classification methods that can classify protein 3D structures into predefined classes [19–25].

Ding and Dubchak have used two new methods for protein fold classifications [19]. Edler and

Grassmann have proposed a new protein fold classification method based on the feed forward

neural networks (FFN) [20]. Huang et. al. have introduced three novel ideas for multiclass
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protein fold classification [21]. Jo et. al. have developed a deep learning network method

(DN-Fold) to justify whether a given query-template protein pair belongs to the same struc-

tural fold [22]. Khan et. al. have used association rule mining technique–the ACO-AC to clas-

sify SCOP proteins into their correct folds [23]. Wei et al. have proposed a novel taxonomic

method named PFPA for protein fold classification [24]. Wei and Zou have conducted a com-

prehensive review study surveying the recent computational methods, especially machine

learning-based methods, in protein fold recognition [25].

Protein sequence feature extraction is a typical pre-process in protein classification studies

[2–8]. These methods extract protein sequence features e.g amino acid composition and

sequence arrangements [5], alignment scores [26], and physical properties of amino acids [27]

into high dimensional real vectors or matrices, which are classified by spatial division methods

such as the MSE (minimum-squared-error) hyperplanes [27, 28], convex hulls [28, 29], polyge-

netic trees [2–8] and Yau-Hausdorff distances [30, 31]. Typical protein sequence feature

extraction methods are e.g. the natural vector (NV) [5], averaged property factors (APF) [27],

protein map [3, 4], k-string dictionary [8], PseAAC [32], Pse-in-One [33], PSSM [26], etc.

Protein universe, include the intensive relations between its sequences, structures, and

functions [2–8], together form a complex system, where the important behaviors of the system

can be found by analyzing the pairwise-relations between its members [34, 35]. In research of

complexity science, the systems are usually modelled as networks by abstracting the relations

between their members [34, 35]. By modelling these systems into networks, we can further use

network approaches [35] to analyze the behaviors of the systems. Bozhilova et. al. have per-

formed a study on measuring the rank robustness in scored protein interaction networks [36].

Liu et. al. have performed a comprehensive review study on the various kinds of computational

biological networks [37], where they summarize the various biological networks and network-

based approaches from recent studies and with guidelines to diverse biological applications.

In this paper, we model the protein universe using complex networks, where we believed

there exist abundant information behind the relations between the various protein sequence

features. We use classic centrality measures to analyze weighted networks constructed from

the pairwise-relations between the sequence features, and use Welch T-tests to identify the sig-

nificant features for the different types of protein 3D structures, where we find both similarities

and differences between the different types of structures. This study approaches the protein

structural analysis from a new complex network prospect, which makes up the deficiency of

tradition protein classifiers that they focus on high-dimensional divisions of feature points but

neglect the relations between these features. The methods and results of this study are useful

for future development of new protein structural predictors or classifiers by considering the

significant features for the different structures, or the exploration of significant features for

deeper protein structural levels. The results may help us gain more understanding on the influ-

ences between protein sequences and structures.

The paper is organized as follows. In the Materials and methods section, we introduce the

protein sequence feature extraction methods, connectivity and centrality measures used in our

study. In the Results section, we use protein sequence data from CATH and SCOP database to

demonstrate the centrality analysis. The similarities and differences between the different

structures and interpretations of the connectivity measures are discussed in the Discussion

section, and the conclusions are drawn in the Conclusions section.

Materials and methods

In this section, we introduce the protein sequence feature extraction methods, connectivity

and centrality measures as well as the Welch T-test used in this study.
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Protein feature extraction methods

Natural vector (NV). Natural vector (NV), introduced by Yau [5], is a 60-dimensional

real vector that uniquely characterizes the composition and sequence arrangement of a protein

sequence by [5]:

hnA; nR; . . . ; nV ; mA; mR; . . . ; mV ;D
A
2
;DR

2
; . . . ;DV

2
i: ð1Þ

where nk (N feature) is the number of the amino acid k in the protein sequence, mk ¼
Tk
nk

(μ fea-

ture) is the arithmetic mean value for the total distances of the k-type amino acids from the ori-

gin, where Tk ¼
Pnk

i¼1
s½k�½i� is the total distance of every amino acid k to the origin and s[k][i]

is the distance from the first amino acid (regarded as origin) to the i-th amino acid k in the

sequence; Dk
2

(D feature) is the 2nd order normalized central moment defined by: Dk
j ¼

Pnk
i¼1

ðs½k�½i�� mkÞ
j

nj� 1

k nj� 1
[5], j = 1,2,. . .,nk, k = A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, V rep-

resent the 20 types of amino acids (the names, classifications of the 20 types of amino acids are

shown in S1 Table).

Averaged property factor (APF). Averaged property factor (APF), introduced by Rack-

ovsky [27], is a 10-diemsional vector extracts the 10 important physical properties of amino

acids in a protein sequence [27]:

VS ¼ ðhf
ð1ÞiS; hf

ð2ÞiS; . . . ; hf ð10ÞiSÞ ð2Þ

where S denotes the protein sequence and hf ðmÞiS ¼ 1

NS

PNS
n¼1

f ðmÞn is the sequence-average of the

m-th property factor, NS is the number of residues in S, f ðmÞn is the value for the m-th property

of amino acid n, m = 1,2,. . .,10 correspond to the 10 physical properties [27, 38–44]. Details of

the 10 physical properties are shown in S2 Table, the values of these properties can be found in

Table V of [38].

Pseudo amino acid composition (PseAAC). Pseudo amino acid composition (PseAAC),

introduced by Chou [32, 45], is a 20 + λ (integer λ�0) dimensional real-vector represent the

composition and the sequence arrangements of the 20 types of amino acids in a protein

sequence [32, 45–49]:

X ¼ ½x1; � � � ; x20; x20þ1; � � � ; x20þl�
T
; ð3Þ

where

xu ¼

fu
P20

i¼1
fi þ o

Pl

j¼1
yj

; ð1 � u � 20Þ

oyu� 20
P20

i¼1
fi þ o

Pl

j¼1
yj

; ð20þ 1 � u � 20þ lÞ

8
>>>><

>>>>:

ð4Þ

fu is the normalized occurrence frequency for the 20 amino acids in the protein [45], θj is

the j-tier sequence correlation factor (computed by Eqs (2–4) in S1 Text) of the protein

sequence, λ is a non-negative integer no greater than the length of the protein sequence, w is

the weight factor for the sequence order effect e.g. w = 0.05 [45] as used in our analysis, other

w values are plausible upon user preferences.

When λ = 0, PseAAC is the original occurrence frequency for the 20 types of amino acids;

when λ>0, the first 20 components xu(1�u�20) are the composition effects modified by the

weighted terms for the sum of the λ-tier correlation term
Pl

j¼1
yj, the additional λ components
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reflect the sequence arrangement effects. The optimum choice of λ can be tested by the Covari-

ant Discriminant Algorithm (CDA) [45]. In our analysis, we test the CATH and SCOP data

with 0<λ�20 (since there are 20 types of amino acids, we consider protein sequences no

shorter than 20 amino acids residues), we find λ = 10 is optimal for SCOP, while the CATH

data admits no great differences in the CDA tests when λ varies from 1 to 20. Studies show

that the slight inaccuracies aroused by using a same optimal λ for different datasets are trivial

[45]. Hence, we consider λ = 0 and λ = 10 for both CATH and SCOP in our analysis. Details of

the PseAAC features are shown in S1 Text.

Data download and sequence feature extraction

Since high similarity protein sequences may get similar or repetitive feature elements, which

are redundant in the relationship analysis of feature series, therefore we use the lowest 30%

similarity protein sequences (can be filtered in Protein Data Bank) with CATH and SCOP clas-

sifications to perform the analysis. The 30% similarity is low enough to avoid the redundancy,

while ensuring sufficient data to achieve good statistics. Here, we focus on the top structural

categories of CATH and SCOP rather than other deeper levels because of two main reasons.

First, because the data covers the entire database that is in great amount and the feature vectors

are in high dimensions, it requires intensive computation for the relationship and centrality

analyses for the high dimensional large data. Secondly, the top structural categories are the

basic classifications for protein structures, explorations of deeper structural levels should be

performed on the ground of the basic categories, i.e. we need to first get the knowledge of the

top categories and then analyze the deeper levels. Results on the top categories will be the solid

foundations for future deeper level analysis.

In our study, we use the NV, APF and PseAAC to extract the protein sequence features and

use connectivity measures to analyze the relations between these features. Since different fea-

tures may get different value ranges, thus different magnitudes of the relationships, therefore

we consider features of the six types, namely the N, μ, D features of NV, the APF features, and

the PseAAC with λ = 0 and λ = 10, we separately perform the relationship analysis for the six

types of features.

Random permutation on feature series

For a set of N protein sequences, the K dimensional feature vectors together form a N×K fea-

ture matrix, where K = 20 for N, μ, D and PseAAC (λ = 0), K = 10 for APF, and K = 30 for

PseAAC (λ = 10). The rows of the feature matrix are the feature vectors of K dimensions, while

the columns are feature series X1,X2,. . .,XK for the K feature factors. For an instance, the j-th

column is the feature series Xj formed by elements from the j-th feature factor, j = 1,2,. . .,K.

The feature series are real-valued series presenting the states of specific feature factors. We

treat these feature series as real-world time series and use connectivity measures to analyze

pairwise-relations between these features. For the set of N protein sequences, all feature series

have the same length N, the i-th position of the feature series are the feature elements of the i-
th protein, i = 1,2,. . .,N. Since the protein orders are embodied by the arrangements of the

rows, and different protein orders may affect the values of the relationships, therefore to elimi-

nate this protein order effect, we randomly permute the rows of the feature matrix in order to

rearrange the orders of the proteins, the relationship and centrality analysis are performed on

every random permutation of the feature matrices. We use the average standard deviations

over the random permutations to test the robustness of the results. Since the purpose of ran-

dom permutations is to eliminate the protein order effects, therefore, larger permutation num-

ber will get better results. However, the permutation number should balance with the
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relationship and centrality computations. We have tested with a series of permutation num-

bers from 10, 20 to 100, where the average standard deviation results are shown in S3 Table,

from which results we can see that the variations of the standard deviations are small, which

prove the robustness of our results. Here, we use 100 random permutations to perform the

analysis which is large enough for our analysis.

Relationship analysis among feature series

In this section, we recall the connectivity measures that are used to analyze the relations

between protein sequence features.

Absolute correlation (CR). For a structural class of Ns proteins, we get an Ns×K dimen-

sional feature matrix, K is the feature dimension, s denotes the structural classes, s = 1,2,3 for

the mainly α, mainly β, and the mixed α and β classes of CATH or s = a, b, a/b, a+b for the all

α, all β, α/β, α+β classes of SCOP. The rows are feature vectors, while the columns are feature

series of length Ns. The j-th feature series (column) are denoted as

Xj ¼ fx1;j; x2;j; . . . ; xNs;j
g; j ¼ 1; 2; . . . ;K: ð5Þ

where xi,j is the i-th element of the j-th feature series (i = 1,2,. . ., Ns, j = 1,2,. . .,K). The K feature

series are then denoted as {X1,X2,. . .,XK}.

For each structural class, we get a K×K dimensional absolute correlation matrix:

R0 ¼

r0
11

r0
12
� � � r0

1;K

r0
21

r0
22
� � � r0

2;K

..

. ..
. . .

. ..
.

r0K;1 r0K;2 � � � r0K;K

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

ð6Þ

where r0ij ¼ jrijj; and rij ¼
CovðXi;XjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðXiÞVarðXjÞ
p ¼

E½ðXi � EXiÞðXj � EXjÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðXiÞVarðXjÞ
p is the correlation between Xi and Xj (i,

j = 1,2,. . .,K). This matrix is symmetric i.e. R = RT (T denotes matrix transpose), it depicts the

symmetric linear relations between feature series. The values of the absolute correlations are

ranged between 0 and 1, which reflect the strength of the linear relations, where higher values

indicate the stronger the linear relations.

The normalized mutual information rate (nMIR). Similar to CR, we can get a K×K

nMIR matrix for each of the structural classes:

I0 ¼

I0
11

I0
12
� � � I0

1;K

I0
21

I0
12
� � � I0

2;K

..

. ..
. . .

. ..
.

I0K;1 I0K;2 � � � I0K;K

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

; ð7Þ

where I0ij ¼
IðXi;XjÞ=Hmax; i 6¼ j;

HðXiÞ=Hmax; i ¼ j;

(

is the nMIR value between Xi and Xj (i,j = 1,2,. . .,K) [36],

Hmax ¼ maxi HðXiÞ is the maximum entropy for all Xi (i = 1,2,. . .,K), Iij ¼
IðXi; XjÞ; i 6¼ j

HðXiÞ; i ¼ j

(

is
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the mutual information rate between Xi and Xj, and

IðXi; XjÞ ¼
P

a;b
pðxi ¼ a; xj ¼ bÞlog

pðxi ¼ a; xj ¼ bÞ

pðxi ¼ aÞpðxj ¼ bÞ
; i 6¼ j; i; j ¼ 1; 2; . . . ;K; ð8Þ

when i = j it degenerates to the Shannon Entropy of Xi [50]:

H Xið Þ ¼
P

a
pðxi ¼ aÞlog

1

pðxi ¼ aÞ
¼ �

P
a
pðxi ¼ aÞlogpðxi ¼ aÞ: ð9Þ

The matrix I0 is symmetric in that I(Xi; Xj) = I(Xj; Xi), i,j = 1,2,. . .,K. The nMIR values, ran-

ged between 0 and 1, evaluate the normalized uncertainties eliminated for Xi when knowing

Xj, i.e. the “common information” shared by the two series, whereas the Shannon entropy of

Xi indicates the uncertainties of Xi itself. The nMIR is a model-free measure that evaluates

mutual relations no matter linear or not. Higher nMIR values may indicate stronger symmet-

ric relations between the feature series [50].

Transfer Entropy (TE). TE is a fundamental information transfer measure that evaluates

the asymmetric interaction between feature series [51]. It is a bivariate measure defined by

[51]:

TEXj!Xi
¼
P

α;β;gpðXnþ1;i ¼ g;X
ðkÞ
n;i ¼ α;XðlÞn;j ¼ βÞlog

pðXnþ1;i ¼ gjX
ðkÞ
n;i ¼ α;XðlÞn;j ¼ βÞ

pðXnþ1;i ¼ gjX
ðkÞ
n;i ¼ αÞ

; ð10Þ

where Xi, Xj are feature series (i,j = 1,2,. . .,K), Xn+1,i denotes the state of Xi at time n+1 (the n
+1-th element of feature series Xi), γ is the state value of Xn+1,i, X

ðkÞ
n;i ¼ ðXn;i;Xn� 1;i; . . . ;Xn� kþ1;iÞ

and XðlÞn;j ¼ ðXn;j;Xn� 1;j; . . . ;Xn� lþ1;jÞ are embedding vectors for the lagged variables of Xi, Xj, α

and β are states of XðkÞn;i and XðlÞn;i, l,k usually take values with l = k (basic requirement for infor-

mation transfer detection) are the maximum time lags for XðkÞn;i , X
ðlÞ
n;j [51]. The summation in

(10) runs over all possible combinations of the states of Xn+1, XðkÞn and YðlÞn . TE is asymmetric,

where TEY!X indicates the dependence of X on Y [51]. In practice, the values of l,k influence

not only the quality of information transfer detection, but also the computation speed. Larger

l,k may detect deeper levels of information transfers, but have longer computation times. Here,

we use the most computational efficient nearest neighbor estimator to estimate TE [53].

Although there is no fixed rules for the choices of l,k and they often depend on the data types

to be analyzed, however, a rule of thumb is to use small l,k for discontinuous observations, but

large l,k for smoothly changing flows [52, 53]. In practice, l = k = 5 is recommended for real

world data analysis. Larger l,k are feasible, but may result in more intensive computation of

TE, which is often impractical and time consuming. We take the PseAAC features (λ = 10) as

an example to illustrate the influences of l,k with changing values in {1,5,10,15,20}. The result-

ing 30×30 relationship matrices are plotted into heat-maps as shown in S1 Fig. In S1 Fig, the

heat-maps present the magnitudes of TE, where the different choices of l,k present similar rela-

tionship results. Since the feature series are real-valued discontinuous observations rather than

smoothly changing flows, l = k = 5 is enough for our analysis. Larger parameters may get simi-

lar results but longer computation time.

Time-shifted surrogatesmutual information rate (nMIR). Information transfer mea-

sures often contain bias in the information transfer detection [53–56], thus bias-correction is

necessary to amend the TE values. The bias-correction is to make a significance threshold,

where information transfers surpass this threshold are deemed valid. In practice, the bias is

often deducted from the information transfer value by using the threshold, the remain value is
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used as the corrected information transfer value. Time-shifted surrogate is a popular technique

for bias-correction [53, 56]. Let Xi, Xj be two feature series, we shuffle the index of Xi while

keeping Xj unchanged in order to obtain a surrogate of Xi [53–56]. Then, apply TE on Xj and

the surrogate of Xi, we get TEXj!Xi
ðqÞ, q is the surrogates’ index. The bias-corrected TE is given

by [54, 55]

TEC;Xj!Xi
¼ TEXj!Xi

� max
q
fTEXj!Xi

ðqÞg: ð11Þ

We use typical parameter q = 10 [54, 55] for all TE computations. The threshold

maxqfTEXj!Xi
ðqÞg is varied between series to series. The principle of this threshold is to filter

TE, specific threshold values are ineffective, but the information transfers surpass this thresh-

old matter. In practice, we set TEC;Xj!Xi
¼ 0 when TEC;Xj!Xi

< 0, this means that there is no

significant information transfer from Xj to Xi. The final K×K bias-corrected TE matrix is given

by

TEC ¼

TEC;1!1 TEC;1!2 � � � TEC;1!K

TEC;2!1 TEC;2!2 � � � TEC;2!K

..

. ..
. . .

. ..
.

TEC;K!1 TEC;K!2 � � � TEC;K!K

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

ð12Þ

where K is the feature dimension, and TEC,j!i is the bias-corrected TE for Xj!Xi, i,j = 1,2,. . .,K.

Independence of the three measures. We use CR, nMIR and TE to analyze the pairwise-

relations between the features. The three measures are mutually independent with each other.

CR and nMIR measure the symmetric relations between feature series, while TE evaluates the

asymmetry information transfers between the series. Both CR and nMIR are scaled between 0

and 1, where CR indicates symmetric linear dependence between feature series, while nMIR is

a model-free measure that evaluates symmetric relations no matter linear or not. TE is a

directed information transfer measure whose value is independent with CR and nMIR. A posi-

tive TE value indicates the existence of directed influences from one series to another, where

the dependence is usually non-deterministic. TE will be vanished for deterministic relations.

In fact, a high symmetric value may not correspond with a high asymmetric value, and vice

versa. Detailed discussions of these measures are shown in the Discussion section.

Network construction and centrality analysis

In this study, we use the relationship matrices for different features to construct weighted net-

works, where we use CR and nMIR matrices to construct undirected networks, and use TE

matrices to construct directed networks. For a network of K nodes, the nodes are the protein

sequence features, while the links are the relations between these features. Since there are 100

random permutations of feature series, we will get 100 matrices for each kind of relations. For

an example of the K×K dimensional CR matrix R0 (K is the number of features), we set A = R0

as the adjacency matrix, a link is drawn between the node i (the i-th feature) and j (the j-th fea-

ture) with weight r0ij if aði; jÞ ¼ r0ij > 0, otherwise no link is drawn between nodes i and j (i6¼j,i,
j = 1,2,. . .,K). The networks of nMIR relations are similarly constructed. Since CR and nMIR

matrices are symmetric, the CR and nMIR networks are all undirected. However, the TE net-

works are directed, a link is drawn from node j (the j-th feature) to node i (the i-th feature)

with weight TEC,j!i if a(i,j) = TEC,j!i>0; otherwise, there is no link from node j to node i (i6¼j,
i,j = 1,2,. . .,K). We use this method to construct weighted networks for all top hierarchical
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classes of CATH and SCOP and for all types of features. In the networks of N, μ, D and

PseAAC (λ = 0) features, there are 20 nodes correspond to the features of the 20 amino acids,

while the networks of APF and PseAAC (λ = 10) features separately contain 10 and 30 nodes,

correspond to the 10 physical properties and the 30 dimensional PseAAC features (1–20

dimensions: proportional compositions of the 20 amino acids, 21–30 dimensions: the 10-tier

correlations for the sequence order effects).

We use classic centrality measures with weighted adjacency matrices to analyze the impor-

tance of the features (nodes). For a network of K nodes and weighted adjacency matrix A =

(aij)K×K, the centrality vector is represented by y = (y1.� � �,yk)T, where yj is the centrality of the

node j, j = 1,2,. . .,K. Since the centralities evaluate the importance of the nodes, specific values

of centrality are ineffective, but the comparisons over all magnitudes matter [35]. Nodes with

higher centralities than others are deemed as more important. Here, we consider both undi-

rected and directed networks, where we use degree and eigenvector centralities for undirected

networks, and use in and out degree centrality, Katz centrality and PageRank for directed

networks.

Centrality measures for undirected networks. Degree centrality. For undirected net-

works, the adjacency matrices are symmetric. The degree centrality of weighted networks is

defined by the sum of the weights for the links connecting to the node. Let A = (aij)K×K be the

weighted adjacency matrix for an undirected network, the degree centrality is given by

yj ¼
PK

i¼1
aij ¼

PK
i¼1

aji; j ¼ 1; 2; . . . ;K: ð13Þ

where aij is the weight of the link connects nodes i and j. Since A is symmetric, aij = aji, the

degree centrality of a node j equals both the sum of the j-th column and the sum of the j-th

row of A [35].

Eigenvector centrality. Degree centrality is the simplest centrality measure, which does not

consider the influences of the neighbors. The eigenvector centrality of a node j is defined as

the sum of the eigenvector centralities of its neighbors [35]:

yj ¼ k� 1

1

PK
i¼1

ajiyi ¼ k� 1

1

PK
i¼1

aijyi; j ¼ 1; 2; . . . ;K: ð14Þ

In matrix notation, the eigenvector centrality y satisfies Ay = k1y, where k1 is the leading

eigen value of the weighted adjacency matrix A, y is the right leading eigenvector of A [35].

Theoretically, eigenvector centrality can be used for both undirected and directed networks,

but in practice, it is easier to apply for undirected networks [35], because, in directed networks,

the adjacency matrix is asymmetric, which have both left and right eigenvectors that result in

two leading eigenvectors for each directed network. Although right eigenvectors are more

appropriate to be used as centralities [35], but we still need to justify which type of eigenvectors

should be used when dealing with directed networks. Moreover, in directed networks, there

are also problems for the nodes without in-going links, which may get inappropriate zero cen-

tralities no matter how many out-going links it has [35]. Therefore, the eigenvector centrality

is usually used for undirected networks, and we use it for only undirected network in our

analysis.

Centrality measures for directed networks. In and out degree centralities. In directed net-

works, the links are directed and the adjacency matrices are asymmetric. The direction of the

adjacency matrix is indicated from the columns to the rows, e.g. the adjacency element aij is

the weight for the link from node j to node i. In weighted networks, the in-degree centrality is

defined as the sum of the weights for all in-going links point to the node, which is represented
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by

yin
j ¼

PK
i¼1

aji; j ¼ 1; 2; . . . ;K: ð15Þ

where aji is the weight of the link from node i to node j. Similarly, the out-degree is defined as

the sum of the weights for all out-going links from this node to the other nodes:

yout
j ¼

PK
i¼1

aij; j ¼ 1; 2; . . . ;K: ð16Þ

Katz centrality. In and out degree centralities are the simplest centrality measures for

directed networks, which do not account the neighbor effects. Similar to the eigenvector central-

ity, Katz centrality considers the centralities of the neighbors. Katz centrality is an improvement

of the eigenvector centrality when applying for directed networks, which is defined by [35].

y ¼ ðI � aAÞ� 1β; ð17Þ

I is the K×K dimensional identity matrix, α is a real positive value empirically slightly smaller

than the leading eigenvalue of the weighted adjacency matrix A, β is a K-dimensional vector as

the “free” centrality given in the iterative process when solving the problems of eigenvector cen-

trality in directed networks [35]. If we use β = 1 (a K-dimensional 1-vector), the expression of

Katz centrality is reduced to [35].

y ¼ ðI � aAÞ� 1
1: ð18Þ

PageRank. Katz centrality also has drawbacks. If a node of very high centrality points to a great

number of neighbors, the out-neighbors of the high centrality node will inherit improper high

centralities by Katz [35]. This issue is solved by the PageRank. PageRank is a centrality measure

for directed networks, which can be expressed by [35]:

y ¼ DðD � aAÞ� 1
1; ð19Þ

where D = (dii)K×K is a diagonal matrix with diagonal element dii ¼ maxð1; kout
i Þ, here kout

i is the

out-degree (sum of the weights for all out-going links) of the i-th node.

Normalization of centrality values. We compute the centrality values for the weighted

networks of all features and all top hierarchical class of CATH and SCOP. To make fair com-

parison of the centralities, the original centrality values are normalized by dividing the maxi-

mum centrality value in the same networks. By this normalization, all centrality values are

scaled between 0 and 1, where the maximum centrality value is normalized to 1. The higher

the normalized centralities approximate 1, the more important the nodes (features).

Standard deviation analysis

The centralities are computed for every random permutation of feature series. To evaluate the

robustness of the results, we compute the average standard deviations for the normalized cen-

trality results over all random permutations. Take the degree centrality in the CR network of N

features (CATH) as an example. The CATH data has three top hierarchical classes, which cor-

respond to three CR networks. For each structural class, the networks contain 20 nodes for the

N features of the 20 amino acids. For every random permutation, we get a 20-dimensional cen-

trality vector for each structural class. Therefore, we get 100 such vectors for the 100 random

permutations. The standard deviation is computed for the normalized centrality over the 100

permutations, which results in a 20-dimensional vector vσ = (σ1,σ2,� � �,σ20) for the standard

deviations, σi is the standard deviation of the node i. We compute the average of the vectors vσ

for all structural classes, which result in sR;D as the final mean standard deviation value for the
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degree centrality of the CR networks. The mean standard deviations are computed for all types

of networks and centralities. The results are shown in Tables 1–4.

Table 1. The mean standard deviation results for the centralities of undirected networks (CATH).

Centrality measures Mean standard deviations in undirected CR and nMIR networks (by features)

N μ D APF PseAAC (λ = 0) PseAAC (λ = 10)

Degree centrality (σR;D ) 1.08×10−15 1.26×10−15 1.28×10−15 9.45×10−16 7.52×10−16 7.09×10−16

Eigenvector centrality (σR;E ) 1.20×10−15 1.26×10−15 1.34×10−15 1.01×10−15 8.47×10−16 6.98×10−16

Degree centrality (σI;D ) 7.71×10−16 9.89×10−16 8.62×10−16 8.22×10−16 7.70×10−16 8.25×10−16

Eigenvector centrality (σI;E ) 8.56×10−16 1.00×10−15 8.57×10−16 8.07×10−16 7.50×10−16 8.20×10−16

This table shows the mean standard deviation results for the normalized degree and eigenvector centralities of the undirected CR and nMIR networks. The sR;D and sR;E

denote the mean standard deviations for the degree and eigenvector centralities in CR networks, while sI;D and sI;E denote the mean standard deviations for the degree

and eigenvector centralities in nMIR networks.

https://doi.org/10.1371/journal.pone.0248861.t001

Table 4. The mean standard deviation results for the centralities of directed networks (SCOP).

Centrality measures Mean standard deviations in directed TE networks (by features)

N μ D APF PseAAC (λ = 0) PseAAC (λ = 10)

In degree centrality (σT;DIN ) 1.33×10−1 1.80×10−1 1.92×10−1 2.84×10−1 2.07×10−1 5.96×10−2

Out degree centrality (σT;DOUT ) 1.33×10−1 1.87×10−1 1.89×10−1 2.83×10−1 2.00×10−1 6.74×10−2

Katz centrality (σT;Katz ) 1.19×10−1 1.77×10−1 1.77×10−1 2.72×10−1 1.86×10−1 6.72×10−2

PageRank centrality (σT;PR ) 1.34×10−1 1.64×10−1 1.63 ×10−1 2.45×10−1 1.70×10−1 6.12×10−2

This table shows the mean standard deviations for the normalized in and out degree centrality, Katz and PageRank centralities of the directed TE networks. The

notations are similarly defined in Table 2.

https://doi.org/10.1371/journal.pone.0248861.t004

Table 2. The mean standard deviation results for the centralities of directed networks (CATH).

Centrality measures Mean standard deviations in directed TE networks (by features)

N μ D APF PseAAC (λ = 0) PseAAC (λ = 10)

In degree centrality (σT;DIN ) 1.09×10−1 2.06×10−1 2.07×10−1 2.87×10−1 2.14×10−1 5.88×10−2

Out degree centrality (σT;DOUT ) 1.07×10−1 2.03×10−1 2.08×10−1 2.90×10−1 2.14×10−1 6.65×10−2

Katz centrality (σT;Katz ) 9.61×10−2 2.10×10−1 2.01×10−1 2.73×10−1 1.99×10−1 6.63×10−2

PageRank centrality (σT;PR ) 8.99×10−2 1.93×10−1 1.93×10−1 2.47×10−1 1.79×10−1 6.01×10−2

This table shows the mean standard deviation results for the normalized in (sT;DIN ) and out (sT;DOUT ) degree centralities, Katz (sT;Katz ) and PageRank (sT;PR ) centralities

of the directed TE networks.

https://doi.org/10.1371/journal.pone.0248861.t002

Table 3. The mean standard deviation results for the centralities of undirected networks (SCOP).

Centrality measures Mean standard deviations in undirected CR and nMIR networks (by features)

N μ D APF PseAAC (λ = 0) PseAAC (λ = 10)

Degree centrality (σR;D ) 9.85×10−16 1.10×10−15 1.13×10−15 7.94×10−16 7.20×10−16 7.24×10−16

Eigenvector centrality (σR;E ) 1.08×10−15 1.22×10−15 1.19×10−15 9.19×10−16 8.01×10−16 7.15×10−16

Degree centrality (σI;D ) 7.04×10−16 9.51×10−16 7.99×10−16 9.32×10−16 7.60×10−16 7.74×10−16

Eigenvector centrality (σI;E ) 9.21×10−16 9.64×10−16 8.03×10−16 1.03×10−15 8.19×10−16 7.87×10−16

This table shows the mean standard deviation results for the normalized degree and eigenvector centralities of the undirected CR and nMIR networks. The notations are

similarly defined as in Table 1.

https://doi.org/10.1371/journal.pone.0248861.t003
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Significance of centralities

Centralities depict the importance of the nodes in networks. To identify the significant central-

ities among the features, we perform pairwise Welch T-tests between these features. Since the

relationship and centrality analysis are performed for the 100 random permutation of feature

series, we get 100 centrality results for each node in the different networks. For a network of K

features, Yi denotes the centrality of feature i, the 100 centrality values of feature i can be

viewed as 100 samples for Yi. Since the sample size ni = 100 is large, these samples can be

viewed as follow normal distribution Nðmi; s
2
i Þ, where μi and s2

i are the expectation and stan-

dard deviations of centrality Yi. To test the significant differences between these features, we

first use the Levene-test to check the homogeneity of the variance for the different centralities.

For the network of K features (nodes), the Levene-test uses F-statistics [52]:

F ¼
ðN � KÞ

PK
i¼1

niðZi � ZÞ2

ðK � 1Þ
Pg

i¼1

Pni
s¼1

niðZis � ZiÞ
2
� F v1; v2ð Þ ð20Þ

with null and alternative hypotheses H0 : s2
1
¼ s2

2
¼ � � � ¼ s2

K and H1: “Not all variances are

homogeneous” (i.e. s2
i 6¼ s

2
j for some i6¼j,i,j = 1,2,. . .,K), here v1 = K−1, v2 = N−K are the

degrees of freedom for the F-statistics, N ¼
PK

i¼1
ni, K is the number of features in the net-

work, ni = 100 is the sample size, Zis ¼ jYi;s � Y ij, where Y i is the mean of the sample values Yi,

s of centrality Yi (i = 1,2,. . .,K, s = 1,. . .,100). Substitute the centrality values into the F statistics,

if F 2 F1� y
2
ðv1; v2Þ; Fy

2
ðv1; v2Þ

� �
, H0 is accepted and all variances are deemed to be homoge-

neous, otherwise, i.e. F=2 F1� y
2
ðv1; v2Þ; Fy

2
ðv1; v2Þ

� �
, H1 is accepted (P<θ), the variances are

deemed non-homogeneous. We have tested the variance homogeneity for significant levels θ2
{0.25, 0.1, 0.05, 0.025, 0.01, 0.005}, results of all θ values indicate that the variances are non-

homogeneous. This is possible, because for the normalized centrality values, the structural

independent features (common features for all structural classes) attain persistent high or low

centralities for all random permutations, these will get smaller variances than others. Since we

aim to compare the significant differences between the features, the centrality differences will

be sensitive to the significance tests, thus we do not do data-transformations to fit for the vari-

ance homogeneity requirement for general hypothesis corrections, but use pairwise Welch T-

tests which are independent of the homogeneity of variances to detect the significant differ-

ences between the features. Since we focus on the centrality differences (i.e. high and low infer-

ences) rather than their equalities, we use the unilateral hypotheses in the Welch T-tests.

For a network of K features (nodes), we use the hypotheses H0: μi�μj, H1: μi>μj and H0
0

:

mi � mj; H2: μi<μj to test whether the centrality Yi is significantly higher (hypotheses H0, H1)

or lower (hypotheses H0
0
;H2) than Yj (i6¼j, i,j = 1,2,. . .,K). The Welch T-tests use T-statistics

[53]:

T ¼
Y i � Y j
ffiffiffiffiffiffiffiffiffiffiffiffi
S2

i
ni
þ

S2
j

nj

r � T vð Þ; ð21Þ

with the v ¼
ðS2

i =niþS2
j =njÞ

2

ðS2
i =niÞ

2

ni � 1
þ
ðS2

j =njÞ
2

nj � 1

degree of freedom, Yi and Yj represent the centralities of features i and

j, S2
i ; S

2
j are the usual estimates of sample variance of Yi and Yj, ni = nj = 100 are the sample

sizes of Yi and Yj (i6¼j,i,j = 1,2,. . .,K). Substitute in the centrality values, if T�Tθ(v) (P<θ), then

H1: μi>μj is accepted and the centrality Yi is deemed significantly higher than the centrality Yj;
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otherwise, H0: μi�μj is accepted, we need to further check H0
0

and H2. When H0 is accepted, we

check if T�−Tθ(v) (P<θ), then H2: μi<μj is accepted, the centrality Yi is deemed significantly

lower than the centrality Yj; otherwise, H0
0

: mi � mj is accepted, both H0: μi�μj and H0
0

: mi �

mj hold, the centralities Yi and Yj are deemed to have no significant differences. We use Welch

T-tests between each pair of features, all features are thus ordered by the significance of the

centralities. We use these ordered results to discuss the significant high and low centralities in

our analysis. We use standard significance levels θ2{0.25, 0.1, 0.05, 0.025, 0.01, 0.005} (as in

any statistical text books) for the Welch T-tests, where all θ values get similar ordered results.

However, as θ decreases, the rejection regions of H0 and H0
0

become narrow, thus less signifi-

cant differences will be detected for smaller θ. Larger θ values such as θ = 0.25, 0.1, 0.05 may

get wider rejection regions for the null hypothesis, which result in more significant differences

to be identified, and thus better ordered results. To balance for both the significant differences

and the proportions of significances, we consider all θ2{0.25, 0.1, 0.05, 0.025, 0.01, 0.005}.

Results

We use the 30% similarity representative protein sequences in the entire CATH and SCOP

databases to perform the analysis. The CATH data contains 8321 proteins, each of the top hier-

archical classes contain 1673 (mainly α class), 1772 (mainly β class), and 4876 (mixed α and β
class) proteins. The SCOP data contains 4836 proteins, and the four top hierarchical classes

separately contain 960 (all α class), 1030 (all β class), 1490 (α/β class), 1356 (α+β class) pro-

teins. The PDB IDs of the CATH and SCOP data are shown in the S1 and S2 Datasets. We use

the NV, APF and PseAAC to extract protein sequence features for each of the structure classes,

and use CR, nMIR and TE relationship matrices to construct weighted networks to compute

the normalized centralities for the different networks. The centrality results are shown in S3

and S4 Datasets, and the averaged standard deviation results for the normalized centralities are

shown in Tables 1–4. In these Tables, the standard deviations are low, especially for undirected

networks. This proves the robustness of the results. The normalized centrality results are

shown in Figs 1–12. We use pairwise Welch T-tests to test the significant differences between

the centralities, as θ varies in {0.25, 0.1, 0.05, 0.025, 0.01, 0.005}, all θ values present similar

ordered results, but as θ decreases more features are judged with no significant differences,

larger θ values such as θ2{0.25, 0.1, 0.05} identify more significant differences hence better

ordered results, smaller θ values get more rigorous rejection regions for the null hypothesis,

thus better identification for the true significance. In this paper, we consider significant cen-

tralities for all θ values, where majority of the results hold for the most rigid significance level θ
= 0.005 (P<0.005), except for a few cases the results hold for θ�0.01. Nevertheless, all the sig-

nificance results hold for θ = 0.05 (P<0.05). In the Results and Discussion sections, the signifi-

cant high and low centralities are referred to the significant results with θ = 0.05 (P<0.05)

according to the pairwise Welch T-tests. Sample results of the centrality orders with θ = 0.05

are shown in S2 and S3 Texts, the complete results for all θ values are shown in S5 Dataset.

Figs 1 and 2 show the centrality results for the networks of N features. In the undirected CR

and nMIR networks (upper plots), all top hierarchical classes of CATH and SCOP show signif-

icant high centralities for the N features of Aspartic acid (D), Leucine (L), Valine (V), Serine

(S), Threonine (T), but significant low centralities for Cystine (C), Methionine (M) and Tryp-

tophan (W), Lysine (K), Histidine (H), particularly for Cystine (C), Methionine (M) and Tryp-

tophan (W). These imply that all structural classes contain significant strong symmetric

relations between the numbers of Aspartic acid (D), Leucine (L), Valine (V), Serine (S), Threo-

nine (T) and other features, while the numbers of Cystine (C), Methionine (M), Tryptophan

(W), Lysine (K), Histidine (H) show significant weak symmetric relations with other features.
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These features are common for all protein structural classes that may not have great influences

in differentiating the different types of structures.

Except for these commonalities, the different structural classes have different preferences of

the significant centralities. The α structures (mainly α and all α classes) present significant low

centralities for Glutarnine (Q), while the β structures (mainly β and all β classes) present signif-

icant high centralities for Phenylalanine (F), Glycine (G). The mixed structural classes (mixed

α and β class and the α/β, α+β classes) show significant high centralities for Glycine (G), while

the α/β class presents significant low centralities for Arginine (R) in the nMIR networks, the α
+β class presents significant high centralities for Proline (P), but significant low centralities for

Glutarnine (Q) in nMIR networks. These imply that the α structures contain significant weak

symmetric feature relations for the numbers of Glutarnine (Q), while the β structures prefer

significant strong symmetric feature relations for the numbers of Phenylalanine (F), Glycine

(G), the mixed structures admit significant strong symmetric relations for the numbers of Gly-

cine (G). Moreover, the α/β class prefers significant weak symmetric nonlinear relations with

the numbers of Arginine (R), while the α+β class prefers significant strong symmetric relations

for the numbers of Proline (P), but significant weak symmetric nonlinear relations with the

numbers of Glutarnine (Q). The mixed structures may contain significant features from either

α or β structures.

In the directed networks of N features (bottom plots of Figs 1 and 2), all protein structural

classes admit significant high centralities for the N features of Histidine (H) and Tryptophan

(W), but significant low centralities for Lysine (K), Alanine (A), Leucine (L). The top

Fig 1. Centrality analysis for the networks of N features (CATH). This figure shows the centrality results for the

networks of N features (CATH data). The normalized centralities are plotted against the features (represented by the

amino acid abbreviations). In the CR and nMIR networks, the red curves represent the degree centralities, while the

green curves represent the eigenvector centralities. In the TE networks, the red curves present the in and out degree

centralities, the blue and black curves represent the Katz and PageRank centralities.

https://doi.org/10.1371/journal.pone.0248861.g001
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hierarchical classes of CATH also admit significant high centralities for Asparagine (N),

Aspartic acid (D). These imply that the strong asymmetric relations for the numbers of Tryp-

tophan (W), Histidine (H), and weak asymmetric relations for the numbers of Lysine (K), Ala-

nine (A), Leucine (L) are structural independent that may not have great influences in

differentiating the different types of structures. The α structures (mainly α and all α classes)

also admit significant high centralities for Proline (P), Threonine (T), but significant low cen-

tralities for Glutamic acid (E), Arginine (R). The β structures (mainly β and all β classes) admit

significant high centralities for Methionine (M), Phenylalanine (F), Tyrosine (Y). The mainly

β class also admits significant low centralities for Cystine (C), while the all β class admits signif-

icant weak centralities for Threonine (T), Glycine (G), Serine (S). The mixed structural classes

show significant centrality preferences from both α and β structures. The mixed α and β class

admit significant high centralities for Phenylalanine (F), Tyrosine (Y), Proline (P), but signifi-

cant low centralities for Cystine (C), Isoleucine (I); the α/β class admits significant high cen-

tralities for Cystine (C), Glutarnine (Q), but significant low centralities for Glycine (G); the α
+β class admits significant high centralities for Proline (P), Tyrosine (Y), but significant low

centralities for Glutamic acid (E), Glycine (G). These imply that the α structures contain signif-

icant strong asymmetric relations for the numbers of Proline (P), Threonine (T) but significant

weak asymmetric relations for Glutamic acid (E), Arginine (R). The β structures admit signifi-

cant strong asymmetric relations for the numbers of Methionine (M), Phenylalanine (F), Tyro-

sine (Y), the mainly β class prefers significant weak asymmetric relations for Cystine (C), while

the all β class prefers significant weak asymmetric relations for Glycine (G), Threonine (T),

Serine (S). The mixed α and β class shows significant weak asymmetric relations for the

Fig 2. Centrality analysis for the networks of N features (SCOP). This figure shows the centrality results for the

networks of the N features (SCOP data).

https://doi.org/10.1371/journal.pone.0248861.g002
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numbers of Cystine (C), Isoleucine (I); the α/β shows significant strong asymmetric relations

for Cystine (C), Glutarnine (Q) but significant weak asymmetric relations for Glycine (G); the

α+β shows significant strong asymmetric relations for Proline (P), Tyrosine (Y), but significant

weak asymmetric relations for Glutamic acid (E), Glycine (G).

The asymmetric relations are independent of the symmetric relations. For instance, the α/β,

α+β classes show significant strong symmetric relations for the numbers of Glycine (G), but

significant weak asymmetric relations for Glycine (G), which imply that the relations between

the numbers of Glycine (G) and other amino acids are symmetric (probably deterministic)

rather than asymmetric (probably non-deterministic).

Figs 3–6 show the results for the μ and D features. In these figures, all top hierarchical clas-

ses of CATH and SCOP show significant high centralities for the μ and D features of Alanine

(A), Aspartic acid (D), Leucine (L), Serine (S), Threonine (T), Valine (V), but significant low

centralities for Cystine (C), Methionine (M), Tryptophan (W), Histidine (H) in the undirected

networks, and also significant high centralities for the μ and D features of Cystine (C), Histi-

dine (H), Methionine (M), Tryptophan (W) in directed networks. These imply that the

arrangement features of Cystine (C), Methionine (M), Tryptophan (W), Histidine (H) attain

weak symmetric but strong asymmetric relations with other amino acids, while the arrange-

ments of Alanine (A), Aspartic acid (D), Leucine (L), Serine (S), Threonine (T), Valine (V)

attain significant strong symmetric relations with other amino acids. These significant feature

relations are common for all top hierarchical classes of CATH and SCOP, which may not be

critical in differentiating the different types of structures. The arrangement features of Serine

(S) and Threonine (T) also show significant high centralities, but the magnitudes are

Fig 3. Centrality analysis for the networks of μ features (CATH). This figure shows the centrality results for the

networks of μ features (CATH data).

https://doi.org/10.1371/journal.pone.0248861.g003
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significantly low than that of Alanine (A), Aspartic acid (D), Leucine (L), Valine (V). The α
structures (mainly α and all α classes) also show significant strong (high centralities) symmet-

ric relations for the arrangement features of Glutamic acid (E), while the β structures (mainly

β and all β classes) also show significant strong symmetric relations for the arrangement fea-

tures of Glycine (G). The mixed structural classes contain both α and β structures (mixed α
and β class and α/β, α+β classes) show significant strong symmetric relations for the arrange-

ment features of both Glutamic acid (E) and Glycine (G). The significant strong relations for

the arrangements of Glutamic acid (E) and Glycine (G) are the key features for the α and β
structures, respectively.

The centrality distributions for the APF networks are shown in Figs 7 and 8. In Figs 7 and

8, all top hierarchical classes of CATH and SCOP show significant high centralities for “Side-

chain size” (P2), but significant low centralities for “Amino acid composition” (P6), “Flat

extended preference” (P7), “Occurrence in α region” (P8) in CR networks, which imply that all

top hierarchical classes of CATH and SCOP admit significant strong symmetric linear rela-

tions for “Side-chain size” (P2), but weak symmetric linear relations for “Amino acid composi-

tion” (P6), “Flat extended preference” (P7) and “Occurrence in α region” (P8). All these

features are structural independent that are common for all top hierarchical classes of CATH

and SCOP. However, there are also significant differences between the different protein struc-

tural classes. The α structures (mainly α and all α classes) show significant strong (high central-

ities) symmetric relations for “Side-chain size” (P2), “Extended structure preference” (P3),

“Hydrophobicity” (P4), and strong symmetric linear relations for “Alpha-helix/bend prefer-

ence” (P1), as well as significant weak symmetric linear relations for “Amino acid composition”

Fig 4. Centrality analysis for the networks of μ features (SCOP). This figure shows the centrality results for the

networks of μ features (SCOP data).

https://doi.org/10.1371/journal.pone.0248861.g004
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(P6). The mainly α class also shows significant weak symmetric linear relations for “pk” (P9), the

all α class shows significant strong symmetric nonlinear relations for “Alpha-helix/bend prefer-

ence” (P1), “Flat extended preference” (P7), “Surrounding hydrophobicity in β–structure” (P10).

The β structures (mainly β and all β classes) show significant strong symmetric relations for

(P1), “Side-chain size” (P2), “Extended structure preference” (P3), “pk” (P9), “Surrounding

hydrophobicity in β–structure” (P10), but weak symmetric relations for “Hydrophobicity” (P4),

“Amino acid composition” (P6), “Occurrence in α region” (P8), and weak symmetric linear rela-

tions for “Double-bend preference” (P5). The big difference between the mainly β and all β clas-

ses is that, the symmetric nonlinear relations for “Double-bend preference” (P5) is significantly

strong in all β class, but weak in the mainly β class. The mixed structural classes admit signifi-

cant strong symmetric relations for “Double-bend preference” (P5), and strong symmetric lin-

ear relations for “Surrounding hydrophobicity in β–structure” (P10). The mixed α and β class

also shows significant strong symmetric nonlinear relations for “Side-chain size” (P2), “Sur-

rounding hydrophobicity in β–structure” (P10), and strong linear relations for “Hydrophobic-

ity” (P4), but weak symmetric relations for “Amino acid composition” (P6), “Flat extended

preference” (P7), “Occurrence in α region” (P8). The α/β class admits significant strong sym-

metric nonlinear relations for “Surrounding hydrophobicity in β−structure” (P10), but weak

symmetric relations for “pk” (P9); the α+β class admits significant strong relations for “Hydro-

phobicity” (P4), and strong symmetric nonlinear relations for “Flat extended preference” (P7),

but significant weak symmetric relations for “Occurrence in α region” (P8), and weak symmet-

ric nonlinear relations for “Surrounding hydrophobicity in β−structure” (P10).

Fig 5. Centrality analysis for the networks of D features (CATH). This figure shows the centrality results for the

networks of D features (CATH data).

https://doi.org/10.1371/journal.pone.0248861.g005
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The mixed structural classes (mixed α and β class, α/β, α+β) show not only significant fea-

tures for the α and β structures, but also special features for the “Double-bend preference”

(P5). The “Double-bend preference” (P5) attain significant high centralities in the mixed struc-

tural class, but medium or even low centralities in the α or β structures. Unlike regular α or β
structures, the “Double-bend” have conformations like chain reversals occurring over three

residues [41], the “Double-bend preference” (P5) evaluates the normalized frequency of these

double bends identified by the opposite signs of two successive dihedral angles, this is a key

feature that well differentiate the mixed structural classes from the α or β structures.

In the directed networks of APF features, all structural classes show similar distribution for

the centralities, but there are still differences between the different types of structures. By the

Welch T-tests, the α structures show significant high centralities for “Side-chain size” (P2), the

β structures show significant high centralities for “Extended structure preference” (P3). The

mixed α and β class admits significant high centralities for both “Side-chain size” (P2) and

“Extended structure preference” (P3). The α/β class admits significant high centralities for

“Double-bend preference” (P5) and “Flat extended preference” (P7). The α+β class admits sig-

nificant high centralities for “Hydrophobicity” (P4).

Figs 9–12 show the PseAAC feature networks with λ = 0 and λ = 10. Figs 9 and 10 present

the centralities for the proportional composition of the 20 amino acids (λ = 0), while Figs 11

and 12 present the composition of amino acids normalized by weights from the sequence

order effects (λ = 10). In Figs 11 and 12, the 10-tier correlations for the amino acid sequence

order effects show high centralities (undirected networks) for all structural classes, which

imply that the sequence order effects are important for all types of structures.

Fig 6. Centrality analysis for the networks of D features (SCOP). This figure shows the centrality results for the

networks of D features (SCOP data).

https://doi.org/10.1371/journal.pone.0248861.g006
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In Figs 9 and 10 (PseAAC, λ = 0), all top hierarchical classes of CATH and SCOP present

significant high centralities for the PseAAC features of Lysine (K), but low centralities for

Aspartic acid (D), Cystine (C), Glutarnine (Q), Histidine (H), Methionine (M), Tryptophan

(W) in undirected networks, as well as significant high centralities for Methionine (M), Tryp-

tophan (W) in directed networks. There are also significant high centralities for the PseAAC

features of Asparagine (N) and Arginine (R) in undirected networks, but these centralities are

significantly lower than the centralities of Lysine (K). Moreover, the all β, α/β, α+β classes of

SCOP show significant high centralities for Cystine (C) in directed networks. These imply that

significantly strong symmetric relations for the proportional composition of Lysine (K),

Asparagine (N), Arginine (R), and the significant weak symmetric relations for the propor-

tional composition of Aspartic acid (D), Cystine (C), Glutarnine (Q), Histidine (H), Methio-

nine (M), as well the significant the strong asymmetric relations for proportional composition

of Methionine (M) and Tryptophan (W) are the common features for all structural classes.

For the undirected networks of PseAAC (λ = 0), there are also significant high centralities

for the PseAAC features of Glutamic acid (E) and Leucine (L) in both α and β structures. The

α structures (mainly α and all α classes) admit significant low centralities for Threonine (T),

and significant high centralities for Glycine (G) in CR networks, and for Valine (V) in nMIR

networks. The mainly α class admits significant high centralities for Alanine (A), Proline (P)

in CR networks, while the all α class admits significant high centralities for Isoleucine (I) in

both CR and nMIR networks. The β structures (mainly β and all β classes) admit significant

high centralities for Threonine (T) and Glycine (G) in both CR and nMIR networks, and for

Serine (S) and Phenylalanine (F) in nMIR networks, but significant low centralities for

Fig 7. Centrality analysis for the networks of APF features (CATH). This figure shows the centrality results for the

networks of APF features (CATH data). The normalized centralities are plotted against the features (represented by the

indices of the properties as listed in S2 Table).

https://doi.org/10.1371/journal.pone.0248861.g007
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Phenylalanine (F) in CR networks. The mixed structural classes (mixed α and β class, α/β and

α+β classes) admit significant high centralities for Alanine (A), Asparagine (N), Isoleucine (I),

Arginine (R), but significant low centralities for Threonine (T). These imply that the propor-

tional compositions of Glutamic acid (E) and Leucine (L) attain strong symmetric relations in

both α and β structures, and the strong symmetric relations for the proportional compositions

of Glycine (G), Threonine (T), the strong nonlinear symmetric relations for Phenylalanine (F),

Serine (S), are key features for the β structures. The significant weak and strong symmetric

relations for the proportional compositions of Threonine (T) respectively in the α and β struc-

tures, is the big difference between the α and β structures. Additionally, the medium centrali-

ties for Aspartic acid (D) in nMIR networks but significant low centralities for Aspartic acid

(D) in CR networks for the α structures, indicates that the proportional composition of Aspar-

tic acid (D) attains intensive nonlinear rather than linear symmetric interactions with other

amino acids in the α structures. This is different from the β structures, where in β structures,

the proportional composition of Aspartic acid (D) has low centralities in both CR and nMIR

networks.

In Figs 11 and 12 (PseAAC features with λ = 10), all top hierarchical classes of CATH and

SCOP admit significant high centralities for the PseAAC features of Arginine (R), Serine (S),

Threonine (T) in both CR and nMIR networks, and for Glutamic acid (E) (particularly in

nMIR networks), Asparagine (N) (particularly in CR networks), but significant low centralities

for Aspartic acid (D), Histidine (H), Methionine (M), Phenylalanine (F), Tyrosine (Y) in the

CR networks, and significant low centralities for Cystine (C) in nMIR networks, as well as sig-

nificant high centralities for Cystine (C), Methionine (M), Tryptophan (W) in the directed net-

works. In the undirected networks, the α structures (mainly α and all α classes) show

Fig 8. Centrality analysis for the networks of APF features (SCOP). This figure shows the centrality results for the

networks of APF features (SCOP data).

https://doi.org/10.1371/journal.pone.0248861.g008
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significant high centralities for Valine (V) and Lysine (K) in nMIR networks. The mainly α
class admits significant low centralities for Glutarnine (Q) in nMIR networks, while the all α
class admits significant high centralities for Isoleucine (I) in nMIR networks. The β structures

(mainly β and all β classes) present significant high centralities for Threonine (T), and for

Valine (V) in nMIR networks, and for Alanine (A) in CR networks. The mainly β class admits

significant high centralities for Glycine (G), while the all β class shows significant high centrali-

ties for Lysine (K). The big differences between the α and β structures are that, the α structures

admit significant higher centralities for Threonine (T) than Serine (S), while β structures

admit the opposite trends by the Welch T-tests (P<0.05). We also note that the centralities of

Glycine (G) rank higher in the β structures than in the α structures. The mixed structural clas-

ses (mixed α and β class and the α/β, α+β classes) present significant high centralities for

Lysine (K) and Isoleucine (I) in the nMIR networks, and for Alanine (A) in CR networks. We

can see that, except for the common features for all structural classes, the strong symmetric

interactions for the proportional compositions of Glutamic acid (E), Lysine (K), Arginine (R),

Leucine (L), particularly for Glutamic acid (E), are the key similarities for the α and β struc-

tures. Moreover, the proportional compositions of Glycine (G), Threonine (T) are special fea-

tures for β structures, and the different trends for the symmetric relations with Threonine (T)

and Serine (S) is a key difference between the α and β structures.

Discussion

In this study, we treat the protein universe as a complex system, where we use time series con-

nectivity measures to model the relations between sequence features into networks, and use

Fig 9. Centrality analysis for the networks of PseAAC features with λ = 0 (CATH). This figure shows the centrality

results for the undirected CR and nMIR networks (upper plots) and the directed TE networks (bottom plots) for the

PseAAC features with λ = 0 (CATH data).

https://doi.org/10.1371/journal.pone.0248861.g009
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fundamental centrality measures and Welch T-test to identify significant features for the dif-

ferent types of protein structures. By performing the centrality analysis, we find both similari-

ties and differences between the different protein structural classes. In our analysis, all top

hierarchical classes of CATH and SCOP show strong symmetric relations for the numbers and

arrangement features of Aspartic acid (D), Leucine (L), Serine (S), Threonine (T), Valine (V),

and for the proportional compositions of Arginine (R), Lysine (K), Serine (S), Threonine (T),

Glutamic acid (E), Asparagine (N), the arrangement features of Alanine (A) (non-polar), as

well as the physical property “Side-chain size” (P2). These strong symmetric probably deter-

ministic relations are common for all structural classes of proteins. Except for these strong

relations, there are also weak symmetric relations for the composition and arrangements of

Cystine (C), Histidine (H), Methionine (M), Tryptophan (W), and weak symmetric linear rela-

tions for the proportional compositions of Aspartic acid (D), Glutarnine (Q), Phenylalanine

(F), Tyrosine (Y) and physical properties “Amino acid composition” (P6), “Flat extended pref-

erence” (P7) and “Occurrence in α region” (P8). Moreover, all structural classes also admit

strong asymmetric relations for the composition and arrangement features of Cystine (C),

Methionine (M), Tryptophan (W), and the arrangement features of Histidine (H), but weak

asymmetric relations for the composition numbers of Lysine (K), Alanine (A), Leucine (L),

which indicate that these features are highly interactive with other features, and these asym-

metric interactions may probably be non-deterministic interactions. All these common fea-

tures significant for all top hierarchical classes of CATH and SCOP might be the structural

independent features that may not have critical influential in encoding the different types of

structures.

Fig 10. Centrality analysis for the networks of PseAAC features with λ = 0 (SCOP). This figure shows the centrality

results for the undirected CR and nMIR networks (upper plots) and the directed TE networks (bottom plots) for the

PseAAC features with λ = 0 (SCOP data).

https://doi.org/10.1371/journal.pone.0248861.g010
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The different protein 3D structural classes also show different feature preferences. The α
structures prefer significant strong symmetric relations for the proportional compositions of

Isoleucine (I), Glutamic acid (E), Leucine (L), the arrangement features of Glutamic acid (E),

and physical properties “Side-chain size” (P2), “Extended structure preference” (P3), “Hydro-

phobicity” (P4), and strong symmetric linear relations with “Alpha-helix/bend preference”

(P1) and nonlinear relations with the proportional compositions of Valine (V), and weak sym-

metric relations for the composition numbers of Glutarnine (Q) and the proportional compo-

sitions of Threonine (T), “Amino acid composition” (P6), and strong asymmetric relations for

the numbers of Proline (P), Threonine (T). We may suggest that these significant features may

have great influences in encoding the α structures.

The β structures prefer strong symmetric relations for the proportional compositions of

Glutamic acid (E), Leucine (L), Threonine (T), Glycine (G), the compositions and arrange-

ment features of Glycine (G), and the composition numbers of Phenylalanine (F), and physical

properties “Alpha-helix/bend preference” (P1), “Side-chain size” (P2), “Extended structure

preference” (P3), “pk” (P9), “Surrounding hydrophobicity in β structures” (P10), and strong

symmetric nonlinear relations with the proportional compositions of Phenylalanine (F),

Valine (V), and weak symmetric relations for the proportional compositions of Aspartic acid

(D), physical properties “Hydrophobicity” (P4), “Amino acid composition” (P6), “Occurrence

in α region” (P8), and weak symmetric linear relations with “Double-bend preference” (P5), as

well as strong asymmetric relations for the composition numbers of Methionine (M), Phenyl-

alanine (F), Tyrosine (Y). These imply that the β structures prefer strong deterministic (sym-

metric) relations with the features of Asparagine (N), Glycine (G), Serine (S), Threonine (T),

Fig 11. Centrality analysis for the networks of PseAAC features with λ = 10 (CATH). This figure shows the

centrality results for the networks of PseAAC features with λ = 10 (CATH data). The normalized centralities are

plotted against the features (represented by the amino acid abbreviations and the indices of the λ-tier correlations).

https://doi.org/10.1371/journal.pone.0248861.g011
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and “Alpha-helix/bend preference” (P1), “pk” (polarity parameters of solutes with certain

degree of dissociation in aqueous solution) (P9), “Surrounding hydrophobicity in β structures”

(P10), but weak deterministic relations with “Amino acid composition” (P6). We may suggest

that these significant features are influential in encoding the β structures, which make senses,

because the physical properties such as the “Surrounding hydrophobicity in β structures” (P10)

is a set of hydrophobic indices regarding the β−structures [44], which should have critical

influences in β structures. Particularly, a key difference between the α and β structures is that

the β structures prefer weak symmetric relations for “Hydrophobicity” (P4) but strong sym-

metric interactions for Threonine (T), while the α structures present the opposite trends for

these features.

The mixed hierarchical classes show strong symmetric relations for the arrangements of

Glutamic acid (E), the composition and arrangements of Glycine (G), the proportional com-

positions of Alanine (A), Arginine (R), Isoleucine (I), Asparagine (N), and physical properties

“Hydrophobicity” (P4), “Double-bend preference” (P5), and significant strong symmetric non-

linear relations for “Surrounding hydrophobicity” (P10), but weak symmetric relations for the

proportional compositions of Threonine (T) and physical property “Occurrence in α region”

(P8). The mixed α and β class (CATH) also shows significant strong symmetric relations for

“Side-chain size” (P2), significant strong asymmetric interactions for the numbers of Phenylal-

anine (F), Tyrosine (Y), Proline (P), and significant weak asymmetric interactions for the com-

position numbers of Cystine (C), Isoleucine (I), Glycine (G). The α/β (SCOP) shows weak

symmetric relations for “pK” (P9) and weak nonlinear relations with the numbers of Arginine

(R), as well as significant strong asymmetric relations for the numbers of Proline (P), Tyrosine

(Y), but significant weak asymmetric relations for the numbers of Glutamic acid (E), Glycine

Fig 12. Centrality analysis for the networks of PseAAC features with λ = 10 (SCOP). This figure shows the

centrality results for the networks of PseAAC features with λ = 10 (SCOP data).

https://doi.org/10.1371/journal.pone.0248861.g012
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(G). The α+β class (SCOP) presents significant strong symmetric relations for the numbers of

Proline (P) and nonlinear relations for “Flat extended preference” (P7), but significant weak

symmetric relations for “Occurrence in α region” (P8) and nonlinear relations for Glutarnine

(Q), as well as strong asymmetric relations for the numbers of Cystine (C), Glutarnine (Q),

and significant weak asymmetric relations for the numbers of Glycine (G). Most of the signifi-

cant features for the mixed structural classes are inherited from the α and β structures. How-

ever, the strong symmetric relations for the “Double-bend preference” (P5) is a key factor for

the mixed structural classes rather than the α and β structures.

From this analysis, we find the key differences between the α and β structures are the signif-

icant relations for the features of Serine (S), Threonine (T), Phenylalanine (F), Glycine (G),

Glutarnine (Q), “Hydrophobicity” (P4), “pk” (P9), “Surrounding hydrophobicity in β struc-

tures” (P10). The α structures prefer significant strong symmetric relations for the arrange-

ments of Glutamic acid (E), and “Hydrophobicity” (P4), but significant weak symmetric

relations for the compositions of Threonine (T), Glutarnine (Q) and significant weak symmet-

ric linear relations for “pk” (P9), “Surrounding hydrophobicity in β structures” (P10); while the

β structures prefer significant strong symmetric relations for the compositions of Threonine

(T), the compositions and arrangements of Glycine (G), the numbers of Phenylalanine (F),

“pk” (P9), “Surrounding hydrophobicity in β structures” (P10), but significant weak symmetric

relations for “Hydrophobicity” (P4). Moreover, the α structures show significant stronger sym-

metric relations for Serine (S) than Threonine (T), while the β structures show an opposite

trend for these features.

We should note that the different amino acid features have different meanings. Both N and

PseAAC features indicate amino acid compositions, the former account the discrete numbers

of amino acids, while the latter account the proportions of compositions. Amino acids with

the same N features may not have the same PseAAC features, and vice versa. The μ and D fea-

tures interpret the sequence arrangement of amino acids, which show similar trends in the

centrality analysis. The PseAAC features with λ = 10 also account for the sequence order

effects, where the proportional compositions of amino acids are normalized by a weight from

the 10-tier correlations of the sequence order effects.

As to the connectivity measures, both CR and nMIR indicate symmetric probably deter-

ministic relations, while TE indicates asymmetric and probably non-deterministic relations.

For an instance of a system X, both CR and nMIR get value 1 (for the deterministic relations)

between X and itself, while TE gets 0 for this deterministic relation [54–58]. For another

instance of the non-deterministic interactions in linear autoregressive models [54–58], the

series are highly interactive but none of them are totally determined by each other, TE will get

high positive values on interactive directions, while CR and nMIR will get 0 on all these inter-

active directions. The interactions captured by significant high positive TE values are symmet-

ric and non-deterministic. In fact, TE will be vanished for deterministic relations. These

indicate that high symmetric relations captured by CR and nMIR may not correspond with

high asymmetric relations (described by TE), and vice versa. These can be seen from our analy-

sis that the Cystine (C), Methionine (M), Tryptophan (W) get weak symmetric relations in

undirected networks, but strong asymmetric relations in directed networks. These imply that

there exist strong probably non-deterministic relations between these and other features.

The CR and nMIR also get differences in the symmetric relations. CR indicates the symmet-

ric linear relations, while nMIR presents “model-free” symmetric relations that are no matter

linear or not. If relations get low CR but high nMIR values, these mean that these symmetric

relations are probably nonlinear. For instances of the β structures, the N features of Phenylala-

nine (F) show low centralities in CR networks, but high centralities in nMIR networks. These

indicate that there exist strong nonlinear rather than linear relations for the numbers of
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Phenylalanine (F) in β structures. These nonlinear relations are not weird in real-world biolog-

ical systems.

In this study, we use network methods to analyze significant relations between protein

sequence features. We managed to identify significant features and interactions preferred by

each type of the protein 3D structures. From these results, we can further explore the sequen-

tial influences to deeper protein structural levels, and also develop new tools for future protein

structural classifications and predictions by considering the significant features identified for

the different protein 3D structures. This analysis approaches the protein structural studies

from a new relationship and network prospect, where all measures are fundamental and effi-

cient, and the methods are exemplary for future protein structural or functional studies, or

even genetic studies on virus and bacteria by adjusting the sequence features to gene features.

Conclusions

In this paper, we use relationship and network approaches to analyze the complicated relations

between protein sequence features, where we find both similarities and differences in terms of

the significant features between the different protein 3D structural classes. The methods and

results of this study can also be used for future protein structural or functional analysis, or

other related protein or genetic studies.
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different parameters of TE present similar results.

(TIF)

S1 Dataset. PDB IDs for the CATH data. This file contains the PDB IDs for the 30%

sequence similarity CATH data. The PDB IDs for the three protein structural classes are stored

in the variables named ‘PID_A’, ‘PID_B’, ‘PID_M’.

(MAT)

S2 Dataset. PDB IDs for the SCOP data. This file contains the PDB IDs for the 30% sequence

similarity SCOP data. The PDB IDs for the four protein structural classes are stored in the vari-

ables named ‘PID_1’, ‘PID_2’, ‘PID_3’, ‘PID_4’.

(MAT)

S3 Dataset. Centrality results for the CATH data. This file stores the centrality results for the

CATH data.

(MAT)

S4 Dataset. Centrality results for the SCOP data. This file stores the centrality results for the

SCOP data.

(MAT)

S5 Dataset. Datasets for the centrality orders. This file stores the centrality orders (by fea-

tures) for the CATH and SCOP data. The data structures “CATH” and “SCOP” store the cen-

trality orders by features, where ‘C1_ud’ and ‘C1_d’ store the results for the α structures in

undirected and directed networks, respectively. The notations for the other structural classes

are similarly defined. The “FeatureOrders” in deeper levels stores the centrality orders

(descending order) by their significance. The “Scores” stores the scores of features (the num-

bers of features have significantly lower centralities than this feature) in descending order. Fea-

tures with higher scores attain significantly higher centralities than features with lower scores,

while features with the same scores admit no significant centrality differences by the Welch T-

tests. The results are for all θ2{0.25, 0.1, 0.05, 0.025, 0.01, 0.005}.

(MAT)
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