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Abstract
Background: The half-life of a protein is regulated by a range of system properties, including the abundance of
components of the degradative machinery and protein modifiers. It is also influenced by protein-specific properties,
such as a protein’s structural make-up and interaction partners. New experimental techniques coupled with powerful
data integration methods now enable us to not only investigate what features govern protein stability in general, but
also to build models that identify what properties determine each protein’s metabolic stability.

Results: In this work we present five groups of features useful for predicting protein stability: (1) post-translational
modifications, (2) domain types, (3) structural disorder, (4) the identity of a protein’s N-terminal residue and (5) amino
acid sequence. We incorporate these features into a predictive model with promising accuracy. At a 20% false positive
rate, the model exhibits an 80% true positive rate, outperforming the only previously proposed stability predictor. We
also investigate the impact of N-terminal protein tagging as used to generate the data set, in particular the impact it
may have on the measurements for secreted and transmembrane proteins; we train and test our model on a subset of
the data with those proteins removed, and show that the model sustains high accuracy. Finally, we estimate
system-wide metabolic stability by surveying the whole human proteome.

Conclusions: We describe a variety of protein features that are significantly over- or under-represented in stable and
unstable proteins, including phosphorylation, acetylation and destabilizing N-terminal residues. Bayesian networks are
ideal for combining these features into a predictive model with superior accuracy and transparency compared to the
only other proposed stability predictor. Furthermore, our stability predictions of the human proteome will find
application in the analysis of functionally related proteins, shedding new light on regulation by protein synthesis and
degradation.

Keywords: Protein stability, Degradation, Machine learning, Post-translational modifications, Bayesian networks,
Support vector machines, Prediction

Background
Innovative proteomics technologies promise to chart pro-
tein degradation on a large scale [1-3]. The resulting
data sets present an opportunity to further our under-
standing of metabolic protein stability through informed
data analysis and the development and testing of com-
putational models. The present study makes use of Yen
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and colleagues’ [1] extensive data set which measures the
metabolic stability of about 8000 human proteins. We use
this data set to (a) identify the underlying properties that
appear to influence protein half-life, (b) develop a predic-
tive model that integrates a number of different relevant
data sets and is able to explain its predictions, (c) chart the
metabolic stability of the full human proteome in silico,
and therefore (d) infer what features influence stability on
a global scale.

High-throughput methods for measuring protein
degradation typically involve either metabolic labeling or
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protein tagging. Of the four largest data sets currently
available, three were generated in human cells, one using
labeling [2], and two using a tagging approach [1,3], while
the fourth data set was generated using protein tagging in
yeast [4].

Doherty and colleagues used stable isotope labeling with
amino acids in cell culture (SILAC) coupled with mass
spectrometry, (MS) to measure the degradation rate of
576 proteins [2]. Cells were grown in medium containing
[13C6]arginine before being transferred to [12C6]arginine
medium. MS was used to measure the shrinking abun-
dances of [13C6] labeled proteins over several time points
and a degradation rate was calculated by fitting the abun-
dances to a single exponential curve. One advantage of
this method is that metabolic labeling causes minimal cell
perturbation. However, by nature of using mass spectrom-
etry, the measurements will be biased to highly abundant,
and theoretically more stable proteins [5].

Belle and colleagues used tandem affinity purification
(TAP) tagging along with cycloheximide inhibition of
transcription and western blotting to measure the half-life
of over 3000 yeast proteins [4]. The most recent tag-
based method is called “bleach chase” and was used to
measure the half-life of 100 proteins from H1229 cells
[3]. Proteins were tagged with yellow fluorescent protein
and their half-lives were inferred from “bleaching” some
cells with a pulse of light and measuring the difference
in fluorescent decay between bleached and non-bleached
cells.

Another tag-based approach implemented in human
HEK293T cells used a dual-fluorescent tagging method
called global protein stability profiling (GPSP) [1]. The
GPSP method uses two fluorescent proteins, enhanced
green fluorescent protein (EGFP) and Discosoma sp. red
(DsRed), which are expressed on a single mRNA tran-
script. The DsRed protein acts as a control, while EGFP is
expressed as an N-terminal fusion with a protein of inter-
est. Coupling this approach with fluorescence activated
cell sorting (FACS) and microarray analysis, the authors
were able to measure the stability of approximately
8000 human proteins, and it is this data set we use in
our study.

An important consideration of N-terminal fusion is the
interference that the EGFP tag could have on the func-
tion of N-terminal signal sequences. A recent review on
the use of fluorescent protein tagging points out that
approximately one third of human protein-coding genes
contain position-dependent sequence information [6]. In
the case of proteins with N-terminal signal peptides, or
signal anchors, the fusion of a fluorescent protein to the
N-terminus is likely to interfere with normal localization.
Indeed, Yen and colleagues [1] found that unstable pro-
teins contained an enrichment of membrane protein gene
ontology (GO) terms but remark that it is unclear what

effect fluorescent tagging will have upon the measurement
of global degradation rates.

Huang and colleagues recently explored a range of pre-
dictive features in the GPSP data set and indicated that a
simple associative model can classify protein stability with
a reasonable accuracy – as evaluated using the same data
set [7]. However, without paying attention to the poten-
tial bias caused by N-terminal tagging, a computational
model may contain the same biases. Therefore, our paper
presents a protein stability model based on the largest of
the present protein degradation data sets with emphasis
on minimising experimental bias. Indeed, it may be possi-
ble to discount the influence of experimental artefacts by
first exploring and understanding their impact on models.

We created a method for classifying proteins as having a
high metabolic stability (i.e. long half-life) or low stability.
We developed this method using the GPSP stability data
set, which is by far the most extensive available, and thus
easiest to cross-reference to other complementary data
resources. We considered that this data set may contain a
bias portraying proteins with N-terminal signal peptides
and anchors as metabolically unstable due to interference
caused by the experimental technique. Consequently, we
developed and tested models on two sets of proteins: a full
set, and a trimmed set with secreted and transmembrane
proteins removed.

Using complementary resources, including the Human
Protein Reference Database (HPRD), a wide range of pre-
dictive features were explored. We identified groups of
features that are statistically enriched in both stable and
unstable proteins, ultimately to understand if they may be
used to infer metabolic stability levels. We subsequently
designed a model that explicitly recognizes and integrates
known factors of the relevant processes and employed
machine learning to optimise its ability to generalize to
novel proteins. Finally, to illustrate metabolic stability on
a system scale, we used the model to score the stability of
all proteins contained in the HPRD.

Features relevant to protein stability
Protein degradation via the proteasome is mediated
through poly-ubiquitination [8]. However, there are a
number of other post-translational modifications (PTMs)
for which a role in either targeting proteins to or pro-
tecting proteins from the degradative machinery has been
suggested. These modifications include phosphorylation,
prolyl hydroxylation, glycosylation and small ubiquitin-
related modifier (SUMO) conjugation [9]. For example,
phosphorylation can either promote or inhibit ubiquiti-
nation by regulating the E3 ligases responsible for ubiq-
uitination [10]. Glycosylation is used as a form of protein
quality control in the endoplasmic reticulum, the folding
location of most secreted and integral membrane proteins
[11], and this modification can act as a signal for misfolded
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proteins to be translocated to the cytosol for degradation.
A variety of features have been proposed to influence

the targeting of a protein to the ubiquitin proteasome
system. The N-end rule is one of the best documented
examples of sequence-based degradation signals [12]. The
rule originally stated that the in vivo half-life of a protein
is associated with the identity of its N-terminal residue,
causing high levels of binding selectivity for the E3 ligases
that target proteins for ubiquitin-mediated degradation.
The rule classified N-terminal residues as stabilizing, or
belonging to one of three classes of destabilizing residues:
primary, secondary or tertiary. Recently, the rule was
extended when it was discovered that N-terminal acety-
lation of most amino acids acts to create N-degrons [13].
Now it is believed that all but two amino acids (glycine and
proline) can act as degradation signals upon acetylation,
and are therefore considered “destabilizing”. However, the
authors note that many proteins may still have a high level
of metabolic stability despite the presence of an N-degron.
It is possible that long-lived proteins are protected from
degradation through complex formation or folding that
makes the N-degron inaccessible.

It has been suggested that structural disorder is corre-
lated with protein stability [14]. A bioinformatic study on
yeast data found that structural disorder had a weak, but
significant inverse correlation with protein half-life [14].
However, a separate study of protein structural disorder
found that highly disordered proteins (where high disor-
der is defined as a protein with greater that 80% sequence
disorder) had far greater metabolic stability than proteins
with low structural disorder [15].

A correlation between the frequency of certain amino
acids has also been reported[1,7]. One study demon-
strated that the frequencies of tryptophan, cysteine,
leucine and threonine were negatively correlated with
protein stability, and conversely, that glutamic acid, aspar-
tic acid, lysine and asparagine were positively correlated
with protein stability [1]. The exact biological mechanisms
underlying the relationship between amino acid composi-
tion and stability are unknown, though there are likely to
be a variety of factors. For example, the PEST hypothesis
claims that short hydrophilic sequence segments enriched
in certain residues are correlated with protein instability
[16]. What mechanisms are behind this are unknown, and
it has also been suggested that PEST regions are actu-
ally sequence areas enriched in amino acids that confer
phosphorylation modification sites [10].

Previous work on modeling protein stability
There are a number of ways to define metabolic sta-
bility. For example, one study presented a probabilistic
method for classifying the metabolic stability in vitro of
chemical compounds [17]. However, to the best of our
knowledge there is currently only one published predictor

for intracellular protein stability [7]. The contribution of
this published work is two-fold: Huang and colleagues
identified optimized sets of features relevant to protein
stability, and created a predictor that classifies protein sta-
bility based upon the “best” feature vectors. Using the Yen
[1] data set, the authors created four classes of protein sta-
bility (based on a discrete measurement called the protein
stability index, or PSI): short (PSI < 2), medium (2 ≤ PSI ≤
3), long (3 ≤ PSI ≤ 4) and extra long (PSI ≥ 4). The authors
went on to define a list of 376 possible feature components
that are believed to contribute to protein stability. These
included various biochemical/physiochemical attributes
of proteins (such as amino acid composition, hydropho-
bicity and polarity), protein subcellular locations, KEGG
enrichment scores, and the number of complexes a pro-
tein is involved in.

To determine what features distinguish between differ-
ent classes of stability, the authors defined three 2-class
problems based on their four stability classes: (1) short
and medium vs long and extra long, (2) short vs medium
and (3) long vs extra long. For each problem, they ordered
the feature vectors according to the maximum relevance
and minimum redundancy method, which ranks elements
in a vector according to their relevance to a target, and
redundancy against each other [18]. To optimise the ele-
ments in the feature vectors, they used incremental fea-
ture selection (IFS) with nearest neighbor (NN) (using
1-cosine distance as the metric) to classify proteins based
on increasing feature vector sizes. For each vector size,
they used jack-knife cross-validation to determine the
accuracy of NN. For problem (1), they reported an over-
all accuracy of 72.8% using 62 features; for problem (2), an
accuracy of 69.8% with 43 features, and for problem (3), an
accuracy of 67.8% with 122 features. On a cautionary note,
the automated IFS scheme is likely to invoke a “selection
bias”, whereby features are optimal for that particular data
set, leading to inflated performance figures [19].

The authors reported that localisation to the cell mem-
brane was an important contributor to predicting protein
stability. In our own analysis on the set of proteins used
in their study, we found that proteins localised to the
membrane or the cell surface were significantly over-
represented in the “short” class compared to other pro-
teins (Additional file 1: Data Set 1). Furthermore, the
most significant feature for problem (1) according to the
optimal feature vector is the frequency of hydrophobic
residues. We found that an average of 35% of residues in
the “short” class proteins were classified as hydrophobic,
compared to only 29% in the “extra long” class. Consider-
ing the hydrophobic nature of transmembrane domains,
this is likely a reflection of the “short” class proteins
localised to the membrane. If the GPSP data is indeed
biased towards membrane proteins, then it appears that
the NN model shares that bias.
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The NN method as employed by Huang and colleagues
[7] simply classifies a query protein based on the class of
the “nearest” protein. As a result, this method does not
give us information on how given features influence sta-
bility – whether they correlate with stable or unstable pro-
teins. However, the use of probabilistic machine learning
methods such as Bayesian networks can give a transparent
and explainable model of protein stability. Though Huang
and colleagues have presented the first attempt at com-
putationally modeling protein stability, this work can be
improved through the removal of potential experimental
bias from the data, and the use of a computational method
that can explain its predictions.

Bayesian networks
We chose to use Bayesian networks to model metabolic
stability and the relationships between relevant features
for several reasons. First, a Bayesian network can repre-
sent a large number of different types of features to influ-
ence the outcome, recognizing only dependencies that we
believe exist. Second, by virtue of its probabilistic nature,
uncertain observations can be incorporated, missing data
can be managed, and flexible queries to probe and explain
predictions can be entertained [20,21]. Finally, though
most observations are strictly “Boolean” (true or false),
we are able to integrate “continuous” scores produced
by methods particularly suited to challenging though
largely independent sub-problems, such as support-vector
machines (SVMs) applied to detect protein sequence sim-
ilarity and position-weight matrices (PWMs) applied to
recognize PTM sites.

We represent observations about stability, presence of
specific domains, sequence and structural features, PTMs
etc as random variables X1, X2, . . . , XN , that may take val-
ues x1, x2, . . . , xN . Variables are organized “graphically”
into a network, with pa(X) representing the set of “parent”
variables of X, thereby identifying what dependencies can
be captured. The joint probability of all variables is given
by

P(X1 = x1, . . . , XN = xN ) =
N∏

i=1
P(Xi = xi | pa(Xi))

We discuss the selection of relevant variables and their
relationships in Section “Data resources and feature
identification”, including the use of latent (un-observed)
variables. Parameters are set by using the expectation-
maximization (EM) algorithm on a training set [22]. We
also separate out data used to parameterize PWMs to
score PTM sites and data used to train SVMs equipped
with the 1-spectrum kernel to map a protein sequence to
its stability class [23].

Results and discussion
We have described the three most large scale protein sta-
bility data sets available in human cell lines. However,
each study has applied different technology to different
cell types, with different units for measurement for pro-
tein degradation. A comparison of the data generated by
the GPSP method [1] and the metabolic labeling/mass
spectrometry method [2] showed very little correlation
between the two data sets [24]. Furthermore, our own
comparison of these data sets (summarized in Table 1)
shows that there is no correlation between any of the
three major data sets. We hypothesized that the potential
bias caused by N-terminal tagging in the GPSP data could
be resulting in the disparity, but removing secreted and
transmembrane proteins did not improve the correlation
(Table 1). Disparity amongst results does not necessarily
mean experimental error, but could be a result of differ-
ing cell types, tuning a protein’s lifespan to the individual
requirements of the cell. Regardless of the causes behind
the variability, an unfortunate side-effect is that integrat-
ing and analyzing data from multiple sources becomes
much more difficult. Therefore, the model presented in
this study is based singularly upon the GPSP data gener-
ated by Yen and colleagues [1].

Identifying stability groups of proteins
The authors of the GPSP data divide cells into seven sub-
populations based on increasing ratios of EGFP/DsRed as
defined during FACS (R1 – R7). The distribution of cells
across these R values (with the distributions summing
to 1) was used to infer the stability of the EGFP-fusion
protein they expressed. The authors defined a weighted

Table 1 Comparison of protein degradation data sets

Data set comparison P-value (Spearman rank correlation) Adjusted ρ2

GPSP vs SILAC 0.976 -0.002305

GPSP vs SILAC (non-sec/TM) 0.7525 -0.003241

GPSP vs Bleach Chase 0.4642 -0.008504

SILAC vs Bleach Chase 0.3826 -0.01887

Comparisons were made between the Global Protein Stability Profiling method (GPSP) and the Stable Isotope Labeling of Amino Acids in Culture (SILAC) method. This
comparison was repeated with transmembrane and secreted proteins removed. The bleach chase data was also compared with GPSP and SILAC. All comparisons were
made with a Spearman rank correlation, as well as being fitted to a linear model.
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mean, the Protein Stability Index (PSI) for representing
this information as a continuous variable. The PSI is
calculated by:

PSI =
7∑

i=1
Ri ∗ i,

where Ri is the proportion of cells in bin i for a given
gene. This metric for stability classification was also used
by Huang and colleagues [7], as well as other studies
that have employed the GPSP data [15,25]. However, the
selection of PSI classification thresholds is non-trivial.
Therefore, instead of using the PSI, we first explored how
proteins grouped based on the original weight distribu-
tions across the 7 bins (using Euclidean distances between
data points). Figure 1 shows a cluster dendrogram and a
heat-map highlighting the R values that the proteins are
enriched in. We noted in particular two distinct groups
representing the extremes of protein stability. These two
groups seemed a natural choice for investigating what fea-
tures influence stability, as well as constructing a binary
classifier. The bottom group, henceforth labelled “unsta-
ble”, contains proteins enriched in the highly unstable R1
and R2 bins. The “stable” group contains proteins that are
enriched in the stable R5, R6 and R7 bins. The remain-
der were classified as “non-assigned”. Approximately 20%
of the proteins fell into the unstable class, another 20%
into the stable class, and the final 60% fell into the non-
assigned class.

Identifying features correlated with stability
We investigated five types of features believed to be
related to protein degradation: (1) PTMs, (2) domain and
architecture types, (3) N-terminal residues, (4) structural
disorder and (5) amino acid composition. For each fea-
ture (with the exception of amino acid composition) we
used Fisher’s Exact test (corrected for multiple testing) to
determine whether there was a significant over- or under-
representation in the stable or unstable protein classes,
relative all other proteins. The results from the statistical
analyses on proteins in the unstable class are summa-
rized in Table 2, and Table 3 contains the results for
proteins assigned to the stable class. Phosphorylation and
acetylation modifications were both over-represented in
stable proteins while being under-represented in unsta-
ble proteins: 72% of stable proteins were phosphorylated
compared to 30% of unstable proteins, and 36% of stable
proteins were acetylated compared to only 4% of unsta-
ble proteins. The opposite trend was seen in glycosylation,
where only 0.3% of stable proteins were glycosylated,
compared to 6% of unstable proteins.

The most significant outcomes of the domain and archi-
tecture analysis was the strong over-representation of
transmembrane domains and signal peptides in the set of
unstable proteins. These were over-represented in unsta-
ble proteins while being under-represented in stable pro-
teins: 63% of unstable proteins contained transmembrane
domains compared to 4% of stable proteins. These find-
ings were supported by an analysis of GO terms, which

Figure 1 Heat-map and cluster analysis generated from the output of the Yen experiment [1]. A Euclidean distance metric was used for the
cluster analysis. Bright (yellow) colouring in the heat-map represents a value approaching 1, with values approaching 0 having a dull (red) colouring.
Labels on the right show how the data can naturally be broken up into groups of stable and unstable proteins, with the remainder being classed as
“non-assigned”.
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Table 2 Feature analysis of proteins in unstable class

Unstable vs Stable Plus Non-Assigned

Domain/Motif E-value

Transmembrane 3.75e-96 †

Signal Peptide 9.15e-50 †

Loops/Coils 1.36e-06

Immunoglobulin 1.77e-04

Immunoglobulin Like 2.01e-03 †

Immunoglobulin C 4.286e-03 †

Zinc Finger C2 1.73e-02

Cadherin 2.39e-02 †

PTM

Phosphorylation 2.29e-15

Acetylation 6.15e-13

Glycosylation 9.73e-04 †

Disorder

Hot loops: 0-20% 8.77e-03 †

Loops/Coils: 20-40% 1.06e-03

Hot loops: 20-40% 9.11e-06

Rem465: 20-40% 3.41e-05

N-degron 4.86e-80 †

Feature types found to be significantly (Fisher’s Exact test, E-value < 0.05)
over-/under-represented in the unstable protein class when compared to stable
and non-assigned proteins. E-values for over-represented features are indicated
with the symbol †, otherwise the E-value represents an under-representation.
Features include domain/architecture types, PTMs, and disorder classifications
based on three disorder types (loops/coils, hotloops and rem465) and
percentage of sequence containing the disorder type. Lastly, the presence of a
destabilizing N-terminal residue is shown, defined as the N-terminal residue of a
mature protein being one of R, K, H, F, L, W, I or Y. These results are from the full
data set (without removal of transmembrane or secreted proteins).

also showed that unstable proteins were significantly more
likely to contain a transmembrane domain than were
proteins from the stable or non-assigned class. Signal
peptides were present in 44% of unstable proteins com-
pared to 3% of stable proteins.

The results for the N-terminal residue analysis were
highly significant, with destabilizing N-terminal residues
(“destabilizing” being defined according to the original
N-end rule [12]) being over-represented in unstable pro-
teins while being under-represented in stable proteins.
We found that approximately 50% of unstable proteins
had a “destabilizing” N-terminal residue compared with a
far lower proportion (under 10%) in the remaining pro-
teins. The opposite was seen in the stable class, where
under 2% of proteins contained destabilizing N-terminal
residues.

We grouped proteins according to their structural dis-
order using the disEMBL software (http://dis.embl.de/
html/download.html) referring to the types used previ-
ously by Linding and colleagues [26]. The disorder types

are defined as “loops/coils” (secondary structures that can
serve as conditions for structural disorder), “hot loops”
(a subset of loops/coils with high mobility and higher
disorder propensity) and “rem465” (remark465 entries in
PDB indicating missing coordinates in X-Ray structure).
A total of 15 classifications were used, based on the 3 dis-
order types as defined by Linding and colleagues [26], and
5 levels of disorder as used in an earlier study [15]. Lev-
els were classed according to the percentage of a sequence
containing disorded residues of a given type. The levels
were: (1) ≥ 0% and ≤ 20% of sequence containing disor-
dered residues, (2) > 20% and ≤ 40%, (3) > 40% and ≤
60%, (4) > 60% and ≤ 80 %, (5) > 80% and ≤ 100%.

There were a number of disorder types found to be sta-
tistically significant. Tables 2 and 3 show that in both sta-
ble and unstable classes there was an over-representation
of the very low level disorder “hot loops: 0-20%” class.
This disorder type was present in 44% of unstable pro-
teins, and present in about 50% of stable proteins. The
low level 20-40% disorder class for all disorder types were
over-represented in the unstable protein class. The highly
disordered class of 80-100% hot loops and Loops/Coils
was over-represented in the stable set of proteins.

A predictive model of protein stability
We are interested in resolving what features have a
causal relationship with the classification of metabolic

Table 3 Feature analysis of proteins in stable class

Stable vs Unstable Plus Non-Assigned

Domain/Motif E-value

Transmembrane 3.99e-22

Signal Peptide 3.39e-17

RNA Recognition Motif 1.20e-03†

PTM

Acetylation 4.11e-28†

Phosphorylation 1.56e-21†

Glycosylation 5.65e-03

Disorder

Hot loops: 0-20% 5.72e-03†

Coils: 80-100% 1.56e-02†

Hot loops: 80-100% 4.72e-03†

N-degron 5.11e-32

Feature types found to be significantly (Fisher’s Exact test, E-value < 0.05)
over-/under-represented in the stable class when compared to unstable and
non-assigned proteins. E-values for over-represented features are indicated with
the symbol †, otherwise the E-value represents an under-representation.
Features include domain/architecture types, PTMs, and disorder classifications
based on three disorder types (“loops/coils”, “hotloops” and “rem465” as defined
by Linding and colleagues [26]) and percentage of sequence containing the
disorder type. Lastly, the presence of a destabilizing N-terminal residue is shown,
defined as the N-terminal residue of a mature protein being one of R, K, H, F, L,
W, I or Y. These results are from the full data set (without removal of
transmembrane or secreted proteins).

http://dis.embl.de/html/download.html
http://dis.embl.de/html/download.html
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stability. We are also interested in establishing depen-
dencies between features relevant to stability. Both these
issues can be addressed using machine learning mod-
els. We tested the ability of a strawman SVM trained
on sequence data (we refer to this model as “SVM”), a
BN integrating the aforementioned features (Tables 2 and
3) excluding sequence features (we refer to this model
as “BN”), and a complete model (henceforth “BN+SVM”;
Figure 2), to classify proteins into stable and unstable
classes. The complete model incorporates the SVM out-
put as an additional continuous variable.

We evaluated model performance through receiver
operating characteristic (ROC) analysis and calculating
the area under the ROC curve (AUC) [27]. We evaluated
the performance of three versions of the model: SVM,
BN, and BN+SVM. Models were first evaluated on a data
set made up of 743 proteins from the stable protein set
and 794 proteins from the unstable protein set using ten-
fold cross-validation over five different data set splits.
Figure 3 shows the performance of the SVM, BN and
BN+SVM models for this data set. All three models have
AUCs well above random (0.5), and the BN+SVM model
performs best. These results are consistent over multi-
ple cross-validation runs with different data set splits.
The mean AUC of the BN+SVM model was 0.85 with a
standard deviation of 0.0026. The mean AUC of the BN
model was 0.84 with a standard deviation of 0.0012, and
the mean AUC of the SVM model was 0.76 with a stan-
dard deviation of 0.0043. To measure the performance of
the models using a threshold, we took the threshold that

occurs at the maximum F-score and calculated sensitivity,
specificity and Matthews correlation coefficient (MCC).
These results including the AUCs are summarised in
Table 4.

We also did a performance comparison with Huang
and colleagues’ [7] IFS and NN model (see Methods for
an explanation of the comparison) in order to determine
which method classifies protein stability most accurately.
We took a subset of proteins that overlapped with their
“extra long” class and our stable class, as well as a subset of
proteins that overlapped with their “short” class and our
unstable class. Evaluating the NN model on this subset
gave an AUC of 0.899 (Figure 4). We also evaluated the
performance of our models on this data, and found that
the BN+SVM and BN models both had superior perfor-
mance to the NN model with AUCs of 0.935 and 0.92,
respectively (Figure 4)

We created a trimmed data set with transmem-
brane/secreted proteins removed to test the models on
proteins not affected by N-terminal fluorescent tagging.
Re-visiting the statistical analysis on this data set, we
found that transmembrane domains, signal peptides and
glycosylation were no longer over-represented in unsta-
ble proteins. We evaluated the performance of the three
models with twenty five-fold cross validation due to a
smaller number of observations. Figure 5 shows ROC
curves for the 3 models trained and tested on the set that
was cleansed from proteins that are potentially subject to
experimental bias. All three models perform worse on the
smaller data set, though performance is still well above

Figure 2 Graph representing BN + SVM model. The type of model parameters are indicated by conditional probability tables (CPT), noisy-OR
(conditional probability table with a noisy-OR assumption) and Gaussian density tables (GDT) representing continuous values. For the sake of clarity,
two continuous nodes that are children to the tyrosine and serine/threonine phosphorylation PTM nodes are not included in the graph. These
continuous nodes contain the PWM scores for the sequence. The BN model is identical, but with “Sequence SVM” removed. The SVM model
contained only the “Stability” node with the “Sequence SVM” node as a child.
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Figure 3 Comparison of true positive and false positive rates for protein stability prediction models. Receiver operating characteristic (ROC)
curves for the BN, SVM and BN+SVM models were calculated using 10-fold cross validation. We evaluated the three models on a total of 743
unstable proteins and 794 stable proteins.

random. The BN+SVM model had an average AUC of 0.75
with a standard deviation of 0.0052. The BN model per-
formed worse with an average AUC of 0.66 and a standard
deviation of 0.0046. In contrast to the results obtained
using the original data set, the SVM model performed bet-
ter than BN with an average AUC of 0.73 and a standard
deviation of 0.0041. For each model we also calculated the
sensitivity, specificity and MCC that occurs at the thresh-
old corresponding to the maximum F-score (Table 4).

Classifying the stability of all human proteins
There are several uses for a global prediction of protein
stability values. First, the predictions allow us to ascertain
how well the model generalizes. Secondly, we can measure

the stability of all proteins through estimating how many
proteins are classified as stable or unstable. Finally, we can
investigate what features are correlated with stability on a
global scale, and compare the findings with experimental
data.

We used the BN+SVM model to predict the stability of
30,019 protein isoforms catalogued in HPRD. Two predic-
tions were made, one with the BN+SVM model trained
on the full data set (prediction 1, or P1), and one with
the BN+SVM model trained on the trimmed data set (P2).
Additional file 2: Figure S1 shows a density plot of P1,
and Additional file 3: Figure S2 shows a density plot of
P2. As the BN+SVM model produces a probability rep-
resenting the belief that the protein is stable, thresholds
are required to classify protein predictions into stable and

Table 4 Summary of performance metrics for each of the trained models

Model AUC F-score MCC Sensitivity Specificity

μ σ μ σ μ σ μ σ μ σ

BN+SVM(1) 0.85 0.0026 0.8 0.002 0.58 0.01 0.9 0.031 0.67 0.045

BN(1) 0.84 0.0012 0.8 0.0002 0.58 0.0007 0.9 0.005 0.66 0.0076

SVM(1) 0.74 0.0043 0.73 0.004 0.42 0.014 0.83 0.027 0.58 0.044

BN+SVM(2) 0.75 0.0052 0.77 0.009 0.39 0.035 0.88 0.032 0.46 0.072

BN(2) 0.66 0.0046 0.73 0.001 0.29 0.07 0.82 0.08 0.45 0.18

SVM(2) 0.73 0.0041 0.76 0.004 0.35 0.03 0.85 0.039 0.46 0.08

Various performance metrics for each of the models trained on the full data set, as well as the trimmed data set. For example, BN+SVM(1) refers to the BN+SVM model
trained on the full data set, while BN+SVM(2) refers to the same model trained on the trimmed data set. For each model we present the area under the curve (AUC) for
a receiver operating characteristic analysis, and find the maximum F-score. The threshold from the maximum F-score was also used to calculate Matthews correlation
coefficient (MCC) as well as sensitivity and specificity. For each metric the mean (μ) and standard deviation (σ ) is shown for five cross-validation runs.
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Figure 4 Comparison with the IFS and NN classifier. The performance of the BN, SVM and BN+SVM models were compared against Huang and
Colleagues’ [7] IFS plus NN method through calculation of ROC. The models were evaluated on a subset of 250 genes overlapping between our
stable/unstable classes and the extra long/short classes as defined by Huang and colleagues [7].

unstable groups. The thresholds can be modified accord-
ing to a desired level of true positives / false positives,
and are most likely be different between P1 and P2. For
our analysis of P1, an unstable protein was defined as hav-
ing a score less than 0.2, while a stable protein scored

greater than 0.75. This resulted in 29% of proteins being
assigned to an unstable class, and 26% to a stable class
(Table 5). When applying these thresholds to proteins
from the GPSP training set, 60% of unstable proteins (as
according to the cluster analysis) are correctly classified as
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Figure 5 Comparison of protein stability prediction models trained on a trimmed data set. The performance of the BN, SVM and BN+SVM
model on a trimmed data set with secreted and transmembrane proteins removed. Due to the set containing a smaller number of samples (300
stable proteins and 227 unstable proteins), 25-fold cross validation was used to calculate the ROC curves.
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Table 5 Breakdown of numbers of proteins across stability groups for experimental and predicted classes

Data set Unstable Non-assigned Stable

Training/testing data 795 2442 743

Predictions 1 (P1) 6974 10683 6357

Predictions 2 (P2) 3319 17475 3220

The first row shows the number of proteins in each of the stable, unstable and non-assigned groups that were allotted based on the cluster analysis of the GPSP data
[1]. This data was employed in all of the statistical analyses and the proteins in the stable and unstable classes were used for training and testing the models. The
second and third rows show how the predictions made by the BN+SVM model trained on the full data set (P1) and the predictions made by the BN+SVM model trained
on the trimmed data set (P2) can be assigned to stability classes when using thresholds to define predicted “stable” and “unstable” proteins. For P1, a stable protein
was defined as scoring above 0.75 and an unstable protein had to score below 0.2. For P2, a stable protein was required to score above 0.7 and an unstable protein to
score below 0.3. For both P1 and P2, if a protein scored above the “unstable” threshold and below the “stable” threshold it was classified as “non-assigned”. These
thresholds were set such that the number of proteins predicted to fall into the three different stability groups reflected the numbers from the cluster analysis on the
GPSP data.

unstable, and 42% of stable proteins are correctly classified
as stable.

Given these predicted stability groups we again tested
for the presence of PTMs and domain/architecture types.
A full catalogue of statistically significant features is con-
tained in Additional file 4: Data Set 2 (domains) and Addi-
tional file 5: Data Set 3 (PTMs). Apart from the features
already noted (Table 3), PTMs including methylation, S-
nitrosylation and sumoylation were over-represented in
stable proteins, and under-represented in unstable pro-
teins. A number of new domain and architecture types
were found as well. For example, nuclear localization
signals (NLS), nuclear export signals, (NES) and other
nuclear related domains were over-represented in stable
proteins and under-represented in unstable proteins. A
similar result was found by Yen and colleagues [1], who
noted that stable proteins were enriched in nuclear GO
terms.

For P2, proteins scoring less than 0.3 were assigned
to the unstable class and those scoring greater than 0.7
were assigned to the stable class. 14% of proteins fell
into the unstable class, and 13% were assigned to the
stable class. We found that signal peptides were under-
represented in both stable and unstable proteins. Trans-
membrane domains were under-represented in stable
proteins, and though they were over-represented in unsta-
ble proteins, the significance level was greatly reduced to
what was seen in P1 where we saw a highly significant
over-representation of secreted and transmembrane pro-
teins in the unstable class. It appears that when trained on
the trimmed data set, the model is scoring secreted and
transmembrane proteins such that they are largely falling
into the “non-assigned” classification – an expected out-
come given the lack of those proteins in the training data.
This is supported by an under-representation of glycosy-
lation modifications in the unstable class. These results
indicate that when trained on the trimmed data set, the
model is no longer making the counterintuitive decisions
that may be a result of N-terminal tagging interference
with protein localisation.

One useful feature of stability values is the ability to
estimate the effect of global stability on specific groups
of proteins. To that end, we investigated the global sta-
bility of signaling proteins using a list of approximately
6000 proteins annotated with the biological process GO
term “signaling”. We found that signaling proteins were
highly over-represented in the P1 unstable class (Fisher’s
exact test, P = 3.08e-29). There was also a smaller, though
still significant over-representation of signaling proteins
in the original unstable class determined by cluster anal-
ysis (Fisher’s exact test, P = 0.019). However, the opposite
was seen in P2 where signaling proteins were signifi-
cantly under-represented in the unstable class (Fisher’
exact test, P = 2.54e-14) and significantly over-represented
in the stable class (Fisher’s exact test, P = 1.34e-16). We
also noted several domain types such as SH2 and SH3
known to be involved in signal transduction that were
over-represented in both the P1 and P2 stable classes [28].

In summary, the two predicted sets of stability values
have some shared, and some distinct features that govern
whether a protein might be classified as stable or unsta-
ble. We have made the predicted stability values for P1
and P2 available in Additional file 6: Data Set 4, as well
as SVM scores for all proteins (Additional file 7: Data Set
5). The Supplementary Material also contains the feature
vectors that were used for training/testing the models and
generating the predicted values (Additional file 8: Data
Set 6, Additional file 9: Data Set 7 and Additional file 10:
Data Set 8). While the stability values for P1 are reliable
predictions for intracellular proteins without N-terminal
signaling sequences, caution should be exercised when
considering secreted and transmembrane proteins.

Discussion
We have presented a model for classifying metabolic
protein stability that combines five groups of features:
(1) post-translational modifications, (2) domain types,
(3) structural disorder, (4) the identity of a protein’s N-
terminal residue and (5) amino acid sequence. The ability
of the model to predict a protein’s stability is high, with
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an AUC of 0.85 for the BN+SVM model. Furthermore,
at a low false positive rate of 20% the model exhibits a
high true positive rate of 80%. We compared our approach
with the IFS and NN method employed previously [7]
and demonstrated the superiority of our model. When
evaluating our models on the subset of data used for com-
parison with the NN model, we found that at a 20% false
positive rate, the BN+SVM model performs with a true
positive prediction rate of approximately 95%. Meanwhile
the NN model has just over an 80% true positive rate.

Despite the improved performance, the BN+SVM
model relies on far fewer features than the NN model –
19 compared to 62 for the “short/medium vs long/extra
long” classifier. This is an indicator that the features we
have chosen for the BN+SVM model have far more pow-
erful predictive capabilities than those used by Huang
and colleagues [7]. Furthermore the IFS method, while
it can generate optimised vectors of features, cannot say
how the features relate to protein stability. In contrast,
we have found that post translational modifications such
as phosphorylation and acetylation are significantly over-
represented in stable proteins, that proteins with 80 –
100% structural disorder are also over-represented in sta-
ble proteins and that destabilizing N-terminal residues are
over-represented in unstable proteins.

It must be acknowledged that there are potentially detri-
mental effects that fluorescent tagging could have on
global protein stability measurements for some proteins,
which could bias computational models. The results from
our feature analysis are consistent with the hypothesis
that fluorescent tagging of co-translationally translocated
proteins (those possessing a signal peptide or trans-
membrane domain) causes unnaturally quick degradation.
The transmembrane domain was highly over-represented
in unstable proteins with an E-value of 3.75e-96 – a
far more significant number than any other feature.
This was consistent with a GO term analysis, which
found membrane GO terms over-represented in unsta-
ble proteins. It has been noted before that there exist
a class of short-lived transmembrane proteins that are
degraded by the proteasome [29], but there is no rea-
son to think that transmembrane proteins are unstable in
general. It is known that N-terminal fluorescent tagging
of proteins with N-terminal signal peptides can interfere
with correct localisation [6], and also that protein qual-
ity control mechanisms can rapidly degrade misfolded
proteins [9].

In light of potential experimental bias, we have tested
our model on non-secretory and non-transmembrane
proteins, and have found that it continues to perform
well with an AUC of 0.75. Even though the model
has decreased performance accuracy on the trimmed
data set, the fact that the performance level remains
high shows that Bayesian networks are powerful tools

for computationally modeling metabolic protein stability.
Furthermore, it is no longer making the unlikely inference
that all membrane and secreted proteins are unstable.

While the models are quite successful at classifying pro-
teins into the “extreme” groups of stable and unstable,
there is a long way to go in understanding the individual
determinants of protein degradation. Consider the find-
ing that phosphorylation and acetylation PTMs are more
prevalent in stable proteins than unstable proteins. It is
likely that the functional role of unstable proteins is reg-
ulated by their continual synthesis and degradation, while
longer-lived proteins are regulated by modifications such
as phosphorylation and acetylation. Indeed it has been
suggested previously that combining a large-scale analy-
sis of protein turnover with further PTM studies will shed
insight onto key regulators of cellular responsiveness [5].
But there are variables other than PTMs that need to be
explored in conjunction with protein stability. For exam-
ple, the potentially stabilizing effect of complex formation,
or cell- and tissue-specific degradation.

The benefit of applying a computational model is the
ability to extend our knowledge beyond what is explicitly
documented in experimental data. In this work we have
used our model to create two sets of stability values for the
human proteome – one using a model trained on all our
data (P1), and one using a model trained on data cleansed
from secreted and membrane proteins (P2). The model is
able to generalise quite well, as seen through the ability to
create new global stable and unstable protein classes that
are consistent with the experimental data. Through anal-
ysis of these predicted values and classes, we were able
to identify further features that are relevant for protein
stability. For example, it appears that proteins containing
NLS/NES domains are more likely to be stable than unsta-
ble. Similarly, our results are further evidence that protein
modifications such as phosphorylation, acetylation and
methylation are important regulators in protein degra-
dation. We have also demonstrated how these predicted
values, or the “stabilome” can be used to ask questions
about the global stability of specific classes of proteins.
As the predicted stability scores in P1 and P2 cover the
human proteome and are made available in the Additional
Files, interested readers can access the scores directly,
obviating the need to use the predictor themselves.

A benefit of a computational model is its ability to be
applied to different data sets. We have noted the disparity
that currently exists between the major protein stability
data sets (Table 1). We hypothesised that if the problem-
atic secretory and transmembrane proteins were removed
from the data set used here, the correlation would improve
at least slightly with the other data, though that was not
the case. Ideally we would have liked to test the model
on a “blind” data set other than the GPSP data, but the
lack of correlation between data sets brings into question



Patrick et al. BMC Systems Biology 2012, 6:60 Page 12 of 15
http://www.biomedcentral.com/1752-0509/6/60

the value of such a test. However, as more data becomes
available, computational modeling of protein stability as
applied here can be easily extended by retraining the
model on new data. This will allow us to more effec-
tively compare data sets and identify the common and
distinct features that exist between them, to unravel the
cell-specific and global features of the protein stabilome.

Conclusions
New experimental techniques coupled with powerful data
integration methods have enabled us to not only inves-
tigate what features govern protein stability in general,
but also to build a model that identifies what prop-
erties determine each protein’s metabolic stability. This
study shows how several post-translational modifica-
tions, domain types, N-terminal residues, disorder and
sequence data can be incorporated into a model to classify
proteins as stable or unstable as defined by experimental
data. Bayesian networks are an ideal tool for such a task,
with their ability to combine multiple forms of data and
capture conditional dependencies that exist between fea-
tures. At a 20% false positive rate, the model exhibits an
80% true positive rate, and outperforms the only previ-
ously proposed stability predictor. We have also consid-
ered the possibility of experimental bias within the data,
retraining the model on a data set cleansed of secreted
and transmembrane proteins. Computational models of
protein stability are important not only for classifying
proteins of unknown stability, but for comparing various
experimental data sets. Furthermore, the use of the model
to score all human proteins in the HPRD will be a freely
available resource for researchers who are interested in the
stability of functionally related proteins.

Methods
Data resources and feature identification
To identify discrete stability classes we used the nor-
malised (values adding to one) 7-dimensional GPSP micro
array data [1]. We grouped the proteins using the hierar-
chical clustering method provided in the standard R pack-
age. The method calculates Euclidean distances between
vectors and groups the vectors with the closest distance in
a pairwise manner, moving outwards to cluster pairs, and
then groups, in a hierarchical manner (Figure 1). As we
were interested in identifying dichotomous binary classes
that could be used in training a classifier, we chose the two
clusters at the top of the hierarchy that were grouped into
stable and unstable proteins respectively.

To understand what specific PTMs and protein
domain/architecture types correlate with measured pro-
tein stability, we used data from HPRD [30]. We also
classified proteins according to the original N-end rule as
described by Varshavsky and colleagues [12]. The begin-
ning of the mature peptide is first predicted. To detect

the location of signal peptide cleavage sites, we used the
online predictor signalP (http://www.cbs.dtu.dk/services/
SignalP). The protein set was further processed accord-
ing to the N-end rule as described previously [2,31]. For
proteins not containing a signal peptide, the initiating
methionine residue was removed when the second residue
was one of C, G, A, S, T, V or P. After processing, the
new N-terminal residue was classified as destabilizing if
either R, K, H, F, L, W, I or Y. Otherwise it was classified as
stabilizing. We then compared the presence of destabiliz-
ing N-terminal residues between the stable and unstable
protein groups.

An issue that needs to be considered is the bias poten-
tially caused by the N-terminal tag in the data set gen-
erated by Yen and colleagues [1]. In order to create a
subset of the data that was free from secreted and trans-
membrane proteins, to explore the possibility of such
bias, we used the online predictors SignalP and TMHMM
(http://www.cbs.dtu.dk/services/TMHMM/), respectively
[32]. Approximately 30% of proteins were predicted to be
either secreted or integral to the membrane. This figure
is consistent with those previously reported in whole
proteome analysis [33].

Models for classifying protein stability
Classifying stability from sequence: SVM
We configured a SVM to accept as input the amino acid
composition of a protein to classify it into either of two
classes. In practice, the SVM will produce a score indi-
cating the similarity between the input protein and the
stable and unstable proteins in the training set (the so-
called “support-vectors”). We used the 1-spectrum kernel
developed by Leslie and colleagues [23] to map an amino
acid sequence into a compositional vector. We analysed
this simple SVM by mapping its output to a Boolean vari-
able by fitting two Gaussian densities (one for stable and
one for unstable proteins; Figure 2). To avoid over-fitting,
the training samples were halved, with one half being used
to train the SVM and the other half for finding the means
and variances. The evaluation was performed on withheld
test-samples, based on the class posterior probabilities:
the probability of the class given the SVM score.

Classifying stability by integrating features: BN
The network structure of the BN+SVM model is shown
graphically in Figure 2. The BN model is identical, but
without the “Sequence SVM” node. The BN+SVM model
incorporates the random variables, assigned values in
accordance with the following observations of a query
protein:

1. Stability: Set to indicate whether the protein is
stable (true) or unstable (false). The value is
conditioned on the variables N-terms, PTM, Domain
and Disorder described below.

http://www.cbs.dtu.dk/services/SignalP
http://www.cbs.dtu.dk/services/SignalP
http://www.cbs.dtu.dk/services/TMHMM/
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2. N-terms: Set to indicate whether the protein has a
stabilizing (true) or a destabilizing N-terminal
residue (false).

3. PTM: Latent, non-observed Boolean node,
conditioned on the status of four specific PTMs. The
PTMs include the presence (true) or absence
(false) of tyrosine phosphorylation,
serine/threonine phosphorylation, acetylation or
glycosylation. To alleviate issues with data scarcity, a
noisy-OR assumption is made: all specific PTMs
inhibit the PTM variable independently from one
another.
In the absence of information about actual
phosphorylation, we also incorporate the maximum
match score collected from the raw amino acid
sequence. Based on a position-weight matrix (PWM)
created from putative modification sites, this score is,
similar to the SVM score, incorporated as a
continuous variable into the BN, to assign a value to
the Boolean phosphorylation variable (treating it as a
latent variable).

4. Domain: Latent Boolean node, conditioned on the
presence/absence of nine specific protein domain
and architecture types (Tables 2 and 3 contains the
full list of domains). As for the PTM node, a
noisy-OR assumption is made.

5. Disorder: Latent Boolean node, conditioned on
whether the protein contains 80-100% “Loops/Coils”,
and whether it contains 80-100% “hotloops” disorder
types as defined in section “Identifying features
correlated with stability”.

6. Sequence SVM: Set according to the continuous
score of the SVM (which is trained to discriminate
between stable and unstable protein sequences – see
Section “Classifying stability from sequence: SVM”).
Two Gaussian densities allow the BN to determine a
class probability for any score, conditioned on the
Stability node above.

Data sets for training and testing
The data set used for training and testing the classifiers
was chosen based on the availability of HPRD information
for PTMs and domain/architecture. The resulting data set
contains 1537 proteins, divided into 743 stable and 794
unstable proteins, each represented by 19 features (2442
proteins were non-assigned and used as background in
the statistical analysis). After screening the set for secreted
and transmembrane proteins, we used 300 of the remain-
ing stable proteins and 227 unstable proteins.

Performance metrics
We calculated AUC, MCC, and sensitivity as described
previously [27]. The remaining scores are defined as
follows, where TP is the number of true positives, FP

the number of false positives, TN the number of true
negatives, and FN the number of false negatives.

Precision:

P = TP
TP + FP

Recall:

R = TP
TP + FN

F-score:

F = 2 × P × R
P + R

Specificity:

spec = TN
TN + FP

Predicting phosphorylation from amino acid sequence
Experimentally confirmed phosphorylation sequence
motifs were downloaded from the HPRD phosphoMotif
finder at http://www.hprd.org/PhosphoMotif finder [34].
We also took sequence data for experimentally confirmed
phosphorylation sites from the Eukaryotic Linear Motif
(ELM) database at http://phospho.elm.eu.org [35]. We
created two classes of PWMs for predicting (1) tyrosine
phosphorylation and (2) serine/threonine phosphoryla-
tion. We used 132 tyrosine phosphorylation motifs and
107 serine/threonine phosphorylation motifs. To create
the PWMs, each motif was scanned over known phos-
phorylation sites, and if a match was found, the sequence
matching the motif was added to a foreground set for that
motif.

Each amino acid in a PWM was calculated by the fol-
lowing equation:

score =
n∑

i=1
log(

Fi + P
BG

) (1)

where n is the number of sequences containing a motif,
Fi is amino acid frequency in the foreground set, BG is
the amino acid frequency in the background set and P
is a pseudo count calculated as BG/10. The PWMs were
trained using a subset of proteins from the ELM database
that did not overlap with the protein set used for training
the Bayesian network.

Comparison with previous work
The performance of the SVM, BN and BN+SVM models
was compared with the IFS plus NN method described by
[7] and provided by the authors. We used a subset of pro-
teins contained in our “stable” class that overlapped with
the “extra long” class used by [7], as well as a subset of our
“unstable” class that overlapped with their “short” class.

http://www.hprd.org/PhosphoMotif_finder
http://phospho.elm.eu.org
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When evaluating the performance of our models on this
data subset we trained using the full data set (i.e. the pro-
teins in our stable and unstable classes), but tested only
using these overlapping subsets.

To evaluate the performance of the NN predictor, we
used their set of optimal feature components and val-
ues for the “short/medium vs long/extra long” classifier.
To produce a continuous output from NN for analysis by
ROC, we used the following function: score = D− − D+,
where for a given test sample, D− is equal to the mini-
mum distance between the test sample and all negative
training samples, and D+ is equal to the minimum dis-
tance between the test sample and all positive training
samples. For our analysis, proteins in the “unstable/short”
class were considered negative, while proteins in the “sta-
ble/extra long” class were considered positive.

Additional files

Additional file 1: Data Set 1. We analysed data provided by Huang and
colleagues [7] to determine what sub cellular locations are over- or
under-represented in their “short” or “extra long” protein classes. Additional
file 1: Data Set 1 contains the list of sub cellular locations that were found
to have a statistically significant (Fisher’s exact test, E-value < 0.05)
presence in one of these stability classes.

Additional file 2: Figure S1. The BN+SVM model was trained on the full
dataset and used to score all proteins contained in the HPRD (P1).
Additional file 2: Figure S1 shows the density plot for the prediction scores
contained in P1. The bimodal nature of the distribution is reflective of the
model’s training on stable and unstable proteins.

Additional file 3: Figure S2. All proteins in HPRD were also scored using
the BN+SVM model trained on the trimmed data set (P2). Additional file 3:
Figure S2 shows the density plot for the prediction scores contained in P2.
Due to the smaller amount of training data, there were some observations
that the Bayesian network had never “seen” before. As a result, those
proteins were given a score of 1.

Additional file 4: Data Set 2. With our proteome wide scoring of stability
(P1 and P2), we created predicted stability classes named “stable”,
“unstable” and “non-assigned” based on scoring thresholds. We then
re-examined domain and architecture data to determine what features
were over- or under-represented in the predicted stability classes (Fisher’s
exact test, E-value < 1e-05). Additional file 4: Data Set 2 contains the list of
over- and under-represented domain and architecture types.

Additional file 5: Data Set 3. Using the predicted stability classes from P1
and P2, we also examined what PTMs were significantly over- or under-
represented amongst predicted stable and unstable proteins (Fisher’s exact
test, E-value < e-10). Additional file 5: Data Set 3 contains this list of PTMs.

Additional file 6: Data Set 4. We trained the BN+SVM model on the both
the full data set (Additional file 6: Data Set 6) and the trimmed data set
(Additional file 5: Data Set 7), and used these two models to generate
stability scores for all proteins in HPRD. Additional file 6: Data Set 4 contains
these two sets of scores (P1 and P2).

Additional file 7: Data Set 5. We trained two SVM models using the
sequence data from Additional file 8: Data Set 6 and Additional file 9: Data
Set 7, and used these models to generate SVM scores for all proteins in
HPRD. Additional file 4: Data Set 5 contains these two sets of scores.

Additional file 8: Data Set 6. Data Set 6 contains the full set of feature
vectors used for training/testing. This data was also used for training the
BN+SVM model to produce the P1 data set. The feature vectors contain
PWM scores, Boolean values representing the presence of PTMs, domains,
“destabilizing” N-terminal residues, disorder types and sequence data.

Additional file 9: Data Set 7. Data Set 7 contains the trimmed set of
training/testing feature vectors with secreted and transmembrane proteins
removed. The feature vectors contain the same type of information as in
Additional file 8: Data Set 6. This data was used for training the BN+SVM
model to produce the P2 data set.

Additional file 10: Data Set 8. Data Set 8 contains the full set of feature
vectors for all proteins in HPRD with the same type of information as in
Additional file 8: Data Set 6 and Additional file 9: Data Set 7. These feature
vectors were evaluated by the classifier after being trained on Additional
file 8: Data Set 6 and Additional file 9: Data Set 7 to produce, respectively,
the P1 and P2 scores.
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