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Objectives Response to the oncology drug gemcitabine

may be variable in part due to genetic differences in the

enzymes and transporters responsible for its metabolism

and disposition. The aim of our in-silico study was

to identify gene variants significantly associated with

gemcitabine response that may help to personalize

treatment in the clinic.

Methods We analyzed two independent data sets:

(a) genotype data from NCI-60 cell lines using the Affymetrix

DMET 1.0 platform combined with gemcitabine cytotoxicity

data in those cell lines, and (b) genome-wide association

studies (GWAS) data from 351 pancreatic cancer patients

treated on an NCI-sponsored phase III clinical trial. We also

performed a subset analysis on the GWAS data set for 135

patients who were given gemcitabine + placebo. Statistical

and systems biology analyses were performed on each

individual data set to identify biomarkers significantly

associated with gemcitabine response.

Results Genetic variants in the ABC transporters

(ABCC1, ABCC4) and the CYP4 family members CYP4F8

and CYP4F12, CHST3, and PPARD were found to be

significant in both the NCI-60 and GWAS data sets.

We report significant association between drug response

and variants within members of the chondroitin

sulfotransferase family (CHST) whose role in gemcitabine

response is yet to be delineated.

Conclusion Biomarkers identified in this integrative

analysis may contribute insights into gemcitabine

response variability. As genotype data become more

readily available, similar studies can be conducted

to gain insights into drug response mechanisms and

to facilitate clinical trial design and regulatory

reviews. Pharmacogenetics and Genomics 24:81–93 �c
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Introduction
Gemcitabine (20-deoxy-20,20-difluorocytidine, dFdC), an

analog of deoxycytidine with proven anti-tumorigenic

effects, is used in the treatment of solid tumors including

pancreatic cancer. Gemcitabine is active toward many

solid tumor types but has a narrow therapeutic index and

variable responses ranging from lack of efficacy to severe

cytotoxicity, which may be attributed to variability in drug

exposure and metabolism [1]. Significant variations in

individual response to gemcitabine therapy are common

among pancreatic cancer patients. Earlier studies based

on cell lines as well as patient–control populations have

demonstrated that interindividual variations in germline

DNA can impact cellular response to oncology drugs.

Identification of such variants with functional/regulatory

impact can serve to predict toxicity and efficacy of

chemotherapeutic agents [2]. In this study, we have

focused on genes encoding drug-metabolizing enzymes

and transporters (DMETs), and their association with

response to gemcitabine. The products of DMET genes

play a substantial role in drug pharmacokinetics, and may

have a role in predicting response and clinical outcomes

in cancer patients. Some of these variants can not only
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impact drug metabolism and transport, but also affect the

expression of cancer-related signaling proteins in down-

stream pathways.

Several potentially actionable variants have been reported

in DMET genes that affect drug toxicity and efficacy

among individuals, yet few have been tested in the clinic.

Several variants in genes directly involved in gemcitabine

metabolism have been reported to impact gemcitabine

response (e.g. deoxycytidine kinase, DCK; DNA poly-

merase epsilon, POLE; cytidine deaminase, CDA; and

transporters: SLC28A1, SLC28A2, SLC28A3, SLC29A1,

SLC29A2, ABCB1, ABCC2, and ABCC10). A significant

association has been demonstrated between gemcit-

abine sensitivity and variants in one or more of the

above genes [3–5] including associations between

single-nucleotide polymorphism (SNP) haplotypes and

gemcitabine treatment outcome in pancreatic cancer

patients [6–8].

Regulatory viewpoint

Developing innovative clinical evaluation tools and advan-

cing personalized medicine has been identified by the FDA

as a core priority area in advancing regulatory science [9].

Understanding the relationship between genetic markers

and response to medical products, in terms of both efficacy

and toxicity, is a critical component of this priority. First

steps toward this understanding include modeling this

relationship with a combination of in-vitro and in-vivo

genomic and phenotypic markers as described in this paper.

Prospective validation of such models along with considera-

tion for regulatory approval and clinical adoption of

resultant tools will be required, but work such as this

helps lay a strong foundation for more personalized,

effective, and safe medical product use.

Importance of data integration to determine clinically

actionable variants

Understanding the genetic and molecular mechanisms

underlying complex diseases such as cancer is extremely

challenging. Genome-wide association studies (GWAS)

have been extensively used in the past decade to discover

important genetic variants. However, the identified SNPs

explain only a small proportion of the phenotypic

variation, and the predictive power of these SNPs

remains low for many complex diseases [10]. To fully

elucidate genetic underpinnings of disease a systems

biology approach is necessary to characterize variants,

mRNA, copy number, proteins, and metabolites, as well

as their cellular interactions [11]. Gene set and pathway

association analyses are playing an increasingly important

role in explaining disease mechanisms through the

identification of functional genetic interactions [12].

Many gene–disease association analyses are based on SNP

genotype profiling or gene expression studies. However,

SNPs can influence many downstream processes includ-

ing the expression levels of multiple genes and/or protein

levels, and variations in expression levels can directly or

indirectly impact disease progression and even drug

response [13]. An integrative approach combining multi-

ple data types can more accurately capture pathway

associations [12] for discovery of clinically actionable

variants.

Statistical approaches commonly used to associate

variants with disease and/or drug response

Fisher’s exact test (FET) is commonly used in the

association of germline polymorphisms with drug re-

sponse [14]. The use of probabilistic networks in

conjunction with traditional statistical models for mining

relationships and associations from genotype–phenotype

data is well established [15]. Probabilistic network

methods for pharmacogenomics and newer methods such

as the Markov Blanket concept may be helpful to better

analyze these complex genotype–phenotype associa-

tions [16]. Considering the complexity of both cancer

prognosis and individual drug response to chemo-

therapeutics, application of these association methods

in conjunction with novel informatics and data integration

approaches is necessary to identify clinically relevant

variants for validation studies and ultimately testing in

the clinic for pharmacogenomics applications.

Methods
Data sets

We analyzed SNPs in DMET genes from gemcitabine-

focused studies on cell lines and patients to identify

associations with drug response. The analysis workflow is

summarized in Fig. 1.

(1) NCI-60 data sets:
(a) SNP data: DNA from the NCI-60 cell lines was

provided by the Developmental Therapeutics

Program (DTP) of the National Cancer Institute

(NCI). The NCI-60 are well-characterized tu-

mor cell lines. DNA was analyzed using the

Affymetrix Targeted Human Drug Metabolizing

Enzymes and Transporters (DMET) 1.0

chip [17], which determines the genotype for

1256 variants in 170 genes involved in drug

disposition. An additional 14 variants in DNA

repair enzymes of interest outside of the DMET

chip were also genotyped due to their potential

role in a number of anticancer drug pathways.

(b) Gene expression data: This published data set

consists of mRNA expression of the NCI-60 cell

lines. Raw data on the Affymetrix U133A gene

chip, obtained from the Gene Expression Omni-

bus (GEO, accession number GSE5720), were

used in our analysis [18].

(c) Drug sensitivity data: Drug sensitivity information is

denoted by its GI50 value. The GI50 concentration

is defined as the concentration required to achieve

50% growth inhibition. A data set containing the
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log 10 of mean GI50 values for the NCI-60 cell

lines over seven experiments at a concentration of

10 – 6 mol/l for the drug of interest (gemcitabine,

NSC613327) was queried and downloaded from

the NCI DTP website http://dtp.nci.nih.gov. These

data have been provided as Supplementary File

S1 (Supplemental digital content 1, http://
links.lww.com/FPC/A660). These drug sensitivity

data for cell lines are analogous to patient

outcome data in response to the same drug.

(2) GWAS: all patients data set: GWAS data from 351

patients with advanced pancreatic cancer treated on a

CALGB phase III clinical trial with gemcitabine with

or without bevacizumab (CALGB 80303) were down-

loaded from dbGaP [dbGaP: phs000250.v1.p1]. Patient

outcomes were classified based on RECIST criteria,

including CR (complete response), PR (partial re-

sponse), SD (stable disease), PD (progressive disease),

and unevaluated or NA (not applicable). Patients with

clinical response reported as ‘unevaluated’ or NA were

excluded from further analysis. Of the 561 466 SNPs in

the data, we extracted 2847 SNPs located in genes

contained on the Affymetrix DMET platform (Affy-

metrix Inc., Santa Clara, California, USA) for analysis.

Results from the GWAS study showed no significant

association between bevacizumab and overall survi-

val [19]. We therefore used the entire cohort for

analysis to maximize the input data set.

(3) GWAS: gemcitabine + placebo data set: We analyzed the

GWAS data set on the subgroup of 135 patients who

were given gemcitabine and placebo to remove the

effects of bevacizumab on the results.

Filtering and preprocessing of data sets

The NCI-60 gene expression data were normalized using

the Robust Multichip Average (RMA) method in the

R Bioconductor package (Affymetrix Inc.) [20]. All SNP

data sets were uniformly processed. Samples with more

than 60% missing genotype calls were removed. SNPs

with the same genotype across all samples were filtered

out since they did not contribute new information.

Missing calls, denoted as NoCall (NC), PossibleRareAl-

lele (PRA), or NotAvailable (NA) for the NCI-60 SNP

data and 0/0 for the GWAS all patients data set were

ignored. SNPs with only reference genotype and missing

calls across all samples were also filtered out. After

filtering, there were 59 cell lines and 432 variants

remaining in the NCI-60 SNP genotype data.

For the GWAS: all patients data set, patients with

responses CR and PR were aggregated as they were

assumed to be more ‘sensitive’ to drug therapy; similarly,

patients with PD and SD were aggregated as they were

assumed to be more ‘resistant’ to drug therapy. The

GWAS: all patients data set had 293 patients with 2846

variants following this aggregation and filtering. After

preprocessing of the GWAS: gemcitabine + placebo data

set, there were 2837 variants and 135 patients for

analysis.

Fig. 1

NCI 60 gene
expression

GWAS
SNP data

SNP association with phenotype

Filtering and preprocessing

NCI 60
SNP data

NCI60 drug
response

NCI60 centered integrated analysisEstimate SNP functional
impact

NCI60 gene
expression

NCI60
drug

response 
NCI60
SNP

Probabilistic
network analysis

and
Fisher’s exact

test Patient drug
response

GWAS

NCI60 drug
response 

NCI60 SNP

Pathway analyses

Expand SNP
set using

haploblock
estimation

NCI60 GWAS

SNP annotation

Sift Polyphen dbSNP

Probabilistic
networks

Fisher’s exact test

Reg
re

ss
ionT-test

Pathway analyses

Analysis workflow. GWAS, genome-wide association studies; SNP, single-nucleotide polymorphism.

Pharmacogenomics of gemcitabine response Harris et al. 83

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.

http://dtp.nci.nih.gov
http://links.lww.com/FPC/A660
http://links.lww.com/FPC/A660


We chose two methods to analyze these SNP data sets:

FET and Probabilistic Network Analysis (PNA) using

the software BayesiaLab 5.0.6 http://www.bayesia.com/en/
products/bayesialab.php. FET is a well-known nonpara-

metric test that evaluates the association between

categorical variables [21]. FET was implemented in the

PLINK Whole Genome Association Analysis Toolset [22],

which conducts an allele-based test to identify genotype–

phenotype association.

A probabilistic network (PN) is a representation of a joint

probability distribution [23]. PNA was conducted using

the genotype data and gemcitabine response values for

each SNP data set. PNs can learn complex models and

therefore offer an attractive option to analyze pharmaco-

genomic SNP data for discovery and prediction [24,25].

They also allow for the opportunity to build clinical

decision support systems in the future. Each SNP was

represented as a node in the network, whose states are

the genotype values observed for that SNP. Gemcitabine

response was represented as a special node called the

target node, whose states were the discrete gemcitabine

response values (sensitive or resistant).

Probabilistic network analysis requires discrete outcome

variables, and hence the GI50 values from the NCI-60

gemcitabine response were dichotomized into two groups

that correspond to resistant and sensitive phenotypes. We

decided to use two levels to ensure adequate sample size

in each group. To understand the distribution of the data,

a histogram of the log 10 (GI50) values with the

corresponding kernel density estimate were plotted

(Fig. 2). The smallest antimode, observed at – 6.875,

was used as the cutoff value [26] between Resistant and

Sensitive groups, as displayed by the vertical red line.

After the above filtering steps, we produced a consoli-

dated file containing the variant data and associated drug

response values. We then used this as input for the SNP

analysis described below.

Estimation of haploblocks

We estimated haploblocks using PLINK to estimate the

functional impact of the SNPs and to annotate SNPs

located in intergenic regions, which can be associated

with SNPs in gene or coding regions if they fall in the

same haplotype block. SNPs that fall outside of coding

regions (e.g. intronic or UTR regions) are more likely to

have a significant impact on gene function if they fall in

the same haplotype block as other high-impact coding

SNPs. Haplotype blocks were not used for the association

analysis and were solely used to determine SNP–gene

associations and for functional annotation.

SNP comparative analysis of gemcitabine response

We investigated the association between genotype data

and the gemcitabine response in each data set. Genes

found to be significant were considered for further

downstream analysis. We also identified genes found in

more than one data set as these are likely to play a critical

role in gemcitabine response.

For the FET and haplotype block estimation, a PLINK

input file was created for each of the SNP data sets. SNPs

that were not biallelic were not considered because

PLINK only works on biallelic SNPs. FET results with a

P-value less than 0.05 were considered significant.

Of the numerous network learning algorithms in PNA, we

applied the Augmented Markov Blanket (AMB) algo-

rithm because it has the ability to subset a limited

number of SNPs that best predict the outcome [16].

A Markov Blanket corresponds to a set of nodes in the

network that make the target independent of all

the other nodes conditional on this subset of nodes. The

AMB algorithm attempts to find a Markov Blanket for

the target node (in this case gemcitabine response) and

then uses an unsupervised search to find direct

dependencies between each variable belonging to this

Markov Blanket. The AMB algorithm implemented in

BayesiaLab uses some of the concepts from the Smart-

Greedy + algorithm [27]. Specifically, it combines a

score-based Augmented Markov Blanket learning algo-

rithm with principles inspired by the constraint-based

approaches. The AMB is a nonstochastic learning

algorithm that always returns the same result given the

same input data and parameters. The AMB algorithm

hence created an optimal network with SNPs that were

best associated with gemcitabine response [24,28,29].

The genotype data were input ‘as is’ and no further

coding was carried out, nor was any genetic model

assumed. The parameter we controlled was the ‘structur-

al coefficient,’ which allowed for controlling the extent of

the blanket. We first found the optimal value of this

Fig. 2
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coefficient by repeating the AMB algorithm five times

with different values of the structural coefficient in a

given interval between 0.1 and 1. At each iteration, the

network structure was learned on the entire data set with

a growing structural coefficient. This analysis, called

‘Structural coefficient analysis’, plotted the Structure/

Data ratio for different values of the structural coefficient

(SC). The ‘knee area’ (the area before the strong increase

in the graph) gave the optimal range of the coefficient to

be used in the network. From this analysis, we obtained

the optimal SC of 0.3 for the NCI-60 and the GWAS: all

patients data sets, and 0.35 for the GWAS: gemcitabine +

placebo data set. This optimal structural coefficient

obtained was used to create the network for each data

set. To confirm the stability of the networks, we ran cross-

validation with data perturbation to ensure that the

frequency measures for arc and node confidence were

robust. The structural coefficient analysis, the final

network obtained from PNA, and the cross-validation

results are shown in Supplementary File S2 (Supple-

mental digital content 2, http://links.lww.com/FPC/A661).

Once the network was created a ‘target analysis report’

was made, which ranked the nodes according to the

information they brought to the knowledge of the target

variable. This is defined as ‘mutual information’. This

report also displays P-values from an independence test

based on the w2-distribution computed between each

variable in the network and the target variable. The

mutual information and the P-values were used to further

prune the SNPs. Only SNPs with P-values less than 0.05

and mutual information of greater than 0 were retained

inside the Augmented Markov Blanket.

The resulting SNPs from each test were annotated using

the Affymetrix DMET annotation file, and NCBI’s

dbSNP database. The union of the significant SNPs

obtained from FET and PNA was considered for further

downstream analysis. By taking the union of the results

across data sets used, we generated an accurate and

comprehensive set of SNPs that are best associated with

gemcitabine response.

NCI-60 integrative analysis of SNP, gene expression,

and drug response data in NCI-60 cell lines

We first associated gene expression data with gemcitabine

response by applying Student’s two sample t-tests to the

normalized gene expression levels to compare sensitive

samples to those that were resistant. The 58 cell lines

that had both gene expression and GI50 data were

considered.

Next, to understand the association between SNPs and

gene expression levels, we applied simple linear regres-

sion models relating each gene expression value to each

SNP [30]. SNPs were considered as the independent

variables and the gene expression data levels were the

dependent variables. For each SNP, the most frequent

genotype was used as the reference to avoid making

genetic model assumptions. If a SNP had k genotypes

(k – 1), indicator variables were introduced (k = 2, 3).

Finally, the above analyses were combined. Using the

significant SNPs from PNA and FET, we extracted

the significant gene probe sets affected by these SNPs

from the regression results. Only those probe sets that

were significant with respect to gemcitabine response

from the T-test results were selected [7], resulting in a

consolidated list of SNPs that affect expression of a gene

that in turn affects gemcitabine response.

This integrative analysis was performed in R (http://
www.R-project.org), and can be repeated on any drug of

interest for which GI50 data are available and can help

identify SNPs and probe sets best associated with drug

response. For each analysis we applied multiple testing

correction using Benjamini and Hochberg false discovery

rates (FDR) [31]. Because of the discovery nature of this

analysis, and hence to maximize the inclusion criteria, the

adjusted p-values were not used as a filtering threshold

for integration.

Systems biology analysis

The significant genes found in each data set were

validated against the literature, and pathway analysis

was performed to determine their potential role in one or

more of the following processes: gemcitabine metabolism,

pancreatic cancer, or interaction with other proteins

implicated in the response to gemcitabine or other drugs

used to treat pancreatic cancer. We also used the results

from the NCI-60 integrated analysis to see whether such

associations could be explained at the molecular level

using pathway analysis. Pathway analysis was performed

using IPA (Ingenuity Systems Inc., Redwood City,

California, USA; http://www.ingenuity.com) and Ariadne’s

Pathway Studio (Rockville, Maryland, USA).

Results
SNP comparative analysis of gemcitabine response

The PLINK-based FETon the NCI-60 data set resulted in

25 significant SNPs (P < 0.05). PNA analysis identified

three SNPs and two of these overlapped with the FET

results. In total there were 26 unique SNPs correspond-

ing to 14 unique genes. The genes ABCC1 (rs8187858,

FET, P = 0.001 [32], cds-synon), CHST3 (rs4148943, FET,

P = 0.002, UTR-3), ABCC4 (rs4148551, FET, P = 0.01,

UTR-3), CYP2E1 (rs3813867, FET, P = 0.01 [33,34],

nearGene-5), and ALDH3A1 (rs887241, FET, P = 0.01,

missense [35]) were among the most significant hits. Of

the 14 genes identified, three are from the ABCC family

(ABCC1, ABCC4, ABCC6), and two are from the CHST

family (CHST3, CHST13). CYP genes identified include:

CYP2D6, CYP2E1 and CYP4F2, CYP4F8, and CYP4F12.

ALDH3A1, PPARD, SLCO1B1, and VKORC1 were also

identified as significant. Functional analysis of the sig-

nificant SNPs identified two as damaging: rs2108622,
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a missense mutation in the CYP4F2; and rs1056522, a

missense mutation in the CHST13 gene.

The FET on the GWAS: gemcitabine + Placebo data set

resulted in 123 significant SNPs (P < 0.05). PNA analysis

identified 19 significant SNPs, of which 12 overlapped with

the FET results. In total there were 130 unique SNPs

corresponding to 50 unique genes. Top hits include:

CYP39A1 (rs3799884 FET, P = 2.0E – 4, intron), ABCC4
(rs7993878, FET, P = 2.3E – 4, intron), SLC6A6 (rs2327896,

FET, P = 5.1E – 4, UTR-3), SLC29A2 (rs2279861, FET,

P = 1.1E – 3, intron), and ABCB1 (rs17327624, FET,

P = 1.3E – 3, intron). Among the 50 genes identified

were three members of the ABCC family (ABCC1,

ABCC4, ABCC8) as well as two CHST family members

(CHST8, CHST11). Twelve CYP genes were identified

including two members of the CYP2 family (CYP2B6,

CYP2J2) and four members of the CYP4 family (CYP4B1,

CYP4F3, CYP4F8, CYP4F12). Functional analysis of the

significant SNPS identified rs4646487, a missense muta-

tion in the CYP4B1 gene, as damaging.

The FET on the GWAS: all patients data set resulted in

121 significant SNPs (P < 0.05). PNA analysis identified 18

SNPs of which nine overlapped with the FET results. In

total there were 130 unique SNPs corresponding to 54

unique genes. Top hits include: CYP4F10P pseudo-

gene (rs1543284, FET, P = 5.0E – 5), CYP4F10P pseudogene

(rs1543285, FET, P = 2.2E – 4), rs1063803 (no direct

gene association but in the same LD block as SNPs in the

CYP4F3 gene, FET, P = 3.6E – 4), rs3794989 (no direct

gene association but in the same LD block as SNPs in the

CYP4F8 gene, FET, P = 4.9E – 4), CHST8 (rs17325358,

FET, P = 1.5E – 3, intron), SLC6A6 (rs2341985,

P = 1.5E – 3, UTR-3), CYP39A1 (rs3799884, FET, P =

1.8E – 3, intron), CHST11 (rs312172, FET, P = 2.1E – 3,

intron), and SLC29A2 (rs2279861, FET, P = 2.1E – 3,

intron). The 54 genes identified contained three ABCC

family members (ABCC1, ABCC4, ABCC8), five members

of the CHST family (CHST3, CHST6, CHST8, CHST9,

CHST11), and 10 CYP genes including three members

from the CYP4 family (CYP4B1, CYP4F3, CYP4F8), and

10 SLC genes were identified including two members of

the SLC7A subfamily (SLC7A7, SLC7A8) and two

members of the SLC22A subfamily (SLC22A3, SLC22A6).

Comparison of the significant genes from each data set

resulted in the genes ABCC1, ABCC4, and CYP4F8 common

to all three data sets. The genes CYP4F12 and PPARD were

found in both the NCI-60 and the GWAS: gemcitabine +

placebo data sets. CHST3 was found in both the NCI-60 and

the GWAS: all patients data set. Thirty-four genes were

found in common between the GWAS: all patients and

GWAS: gemcitabine + placebo data sets including three

members of the UGT2 family (UGT2A1, UGT2A2, UGT2B4).

Table 1 lists the top genes found in each set. Cells in the

table are marked ‘Yes’ if an SNP associated with the gene

was found to be significant by either FET or PNA.

Detailed results of the SNP comparative analysis using

PNA and FET can be found in Supplementary File S3

(Supplemental digital content 3, http://links.lww.com/FPC/
A662) and Supplementary File S4 (Supplemental digital

content 4, http://links.lww.com/FPC/A663), respectively.

Haploblock analysis

The haplotype block estimation (Supplementary File S5,

Supplemental digital content 5, http://links.lww.com/FPC/A664)

revealed that SNP rs4148943 in the CHST3 gene, which was a

top hit in the NCI-60 analysis, is found in the same haplotype

block as rs4148946, which was previously reported as a top hit

in an analysis of long-term survival in stage III myeloma

patients (Table 2) [21]. In addition, rs3842 in the ABCB1

gene has been associated with genetic susceptibility of lung

cancer [36] and response to antidepressant treatment [37].

NCI-60 cell line integrative analysis of SNPs, gene

expression, and drug response

SNPs in genes that effect their own expression

From the linear regression analysis of NCI-60 SNP and

gene expression data, we focused on SNPs that were

Table 1 Genes common to the two study sets after significance
analysis

Gene name NCI-60 GWAS: gemcitabine + placebo GWAS: all patients

ABCC1 Yes Yes Yes
ABCC4 Yes Yes Yes
CYP4F8 Yes Yes Yes
CYP4F12 Yes Yes No
CHST3 Yes No Yes
PPARD Yes Yes No
ABCB1 No Yes Yes
ABCC8 No Yes Yes
ABCG1 No Yes Yes
ARNT No Yes Yes
CHST11 No Yes Yes
CHST8 No Yes Yes
CYP1A1 No Yes Yes
CYP4B1 No Yes Yes
CYP4F3 No Yes Yes
CYP19A1 No Yes Yes
CYP20A1 No Yes Yes
CYP24A1 No Yes Yes
CYP39A1 No Yes Yes
DPYD No Yes Yes
EPHX1 No Yes Yes
MAT1A No Yes Yes
NR1I2 No Yes Yes
PTGIS No Yes Yes
SLC22A3 No Yes Yes
SLC29A2 No Yes Yes
SLC22A6 No Yes Yes
SLC6A6 No Yes Yes
SLC7A7 No Yes Yes
SLCO3A1 No Yes Yes
SLCO4A1 No Yes Yes
SULT1E1 No Yes Yes
TOP1P1 No Yes Yes
UGT2A1 No Yes Yes
UGT2A2 No Yes Yes
UGT2B4 No Yes Yes
XDH No Yes Yes

GWAS, genome-wide association studies.
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associated with expression of their own genes. The

results, as shown in Table 3, contain 10 unique SNPs

in PPARD, five in ABCC4, two in CYP2E1, and one

in SLCO1B1. We annotated all variants using the

SNPnexus annotation tool [38,39].

SNPs that affect gene expression and drug response

The integrative analysis on SNPs, gene expression, and

GI50 response revealed significant associations between

several variants, and expression of multiple genes that

were also associated with GI50 response. Supplementary

File S6 (Supplemental digital content 6, http://links.lww.
com/FPC/A665) shows 25 unique SNPs (14 unique genes)

associated with 51 unique probes (39 unique genes),

with a total of 129 combinations. Several of the genes

include CHST3 variants affecting SFPQ, SLO4C1, and

SLC24A3; PPARD variant affecting SFPQ; CYP2D6
variant affecting FMO5; and CYP4F12 variant affecting

FETUB, HNRNPU, and HNRNPA2B1.

Pathway analysis

We performed pathway analysis to understand the

biological role of genes containing significant variants in

a comparative study of the NCI-60 cell lines and GWAS

data sets. Our study identified five significant variant

genes (ABCC1, ABCC4, CYP4F8, CYP4F12, PPARD)

common to both the NCI-60 and the GWAS: gemcita-

bine + placebo data sets with respect to gemcitabine

response. Pathway analysis identified shared molecular

mechanisms for some genes at both the downstream

target level and regulatory level (Fig. 3a). Downstream,

ABCC1 and ABCC4 exert positive regulation on other

ABC transporters via shared ligands [40] or inducing

agents [41]. At the regulatory level, transcription factors

MYCN and NFE2L2 [42–45] and cytokines (IL1B)

[46,47] play a major role in enhancing the expression

of ABCC1 and ABCC4. Pathway analysis of significant

genes from NCI-60 (Fig. 3b) and the GWAS: gemcita-

bine + placebo (Fig. 3c) studies pointed to genes involved

in tumor cell proliferation, apoptotic, and inflammatory

pathways.

To understand the biological associations between SNPs

that affect the expression of target genes as well as drug

response, we looked for molecular interactions between

genes in which significant SNPs have been identified and

target genes that might in-turn affect drug response. The

chondroitin sulfotransferase gene, CHST3, was strongly

associated with multiple differentially expressed genes in

the integrated data set (Fig. 4a). Pathway analysis showed

that CHST3 may indirectly influence the RNA-proces-

sing gene SFPQ (PTB-associated splicing factor) via

other matrix proteins and cell adhesion molecules such as

versican and vitronectin, whereas SFPQ shares common

pathways with genes whose expression is associated with

CHST3 variants. In the PPARD network (Fig. 4b) PPARD
may regulate the PTB-associated splicing factor via theTa
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transcription factor SP1. SP1 and SFPQ are known to

dynamically regulate growth factor-regulated gene ex-

pression response in mammalian cells [48,49]. The

CYP450 network identified potential regulatory mechan-

isms via the xenosensors (Fig. 4c–e). The CYP2D6
network showed interaction with other proteins that

regulate one of the significantly associated expression

genes, Flavin Containing Monooxygenase 5 (FMO5),

which is known to mediate the oxidative metabolism of

several xenobiotics [50]. Cyp enzymes are regulated by

xenosensors such as NR1I2 (PXR) and NR1H4
(FXR) [51], which also induce Fetuin-B, a tumor

suppressor, and may contribute to interindividual varia-

bility in drug response [52,53] (Fig. 4d). Heterogeneous

nuclear ribonucleoproteins (hnRNPU, hnRNPA,

hnRNPC) positively regulate the expression of cytokines

such as TNF-a [54], which in turn can reduce the

expression of xenosensors and their CYP enzyme

targets [55] and drug transporters such as SLCO1B1 [56]

(Fig. 4e).
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Discussion
Abnormal expression and activity of drug transporters and

metabolizing enzymes may arise from inherent or

acquired polymporphisms and lead to undesirable drug

response [2]. Identification of such variants can aid in the

selection of patients who may benefit from gemcitabine

treatment.

For the GWAS data sets we compared patients treated

with gemcitabine + bevacizumab and gemcitabine + pla-

cebo as the addition of bevacizumab was shown to have

no clinical benefit over gemcitabine treatment alone in

these patients. Bevacizumab is an anti-angiogenesis drug

that inhibits VEGF-A and its action is different from

gemcitabine’s, which inhibits RRM1, a gene that encodes

the regulatory subunit of ribonucleotide reductase critical

to the synthesis of deoxyribonucleotides. The GWAS:

gemcitabine + placebo data set is a smaller, less noisy

data set compared with the larger and more diverse

GWAS: all patients data set. These differences could be

reflected at the molecular level and potentially explain

the small difference in results between these two GWAS

data sets in the SNP comparative analyses of gemcitabine

response and pathway analysis.

ABC transporters have the ability to transport diverse

types of anticancer drugs including gemcitabine. Mem-

bers of ABC transporter family are also involved in diverse

processes that impact cell proliferation and apoptotic

pathways. Variants in two of these genes, ABCC1 [57] and

ABCC4 [58], were significant in both studies, the

overexpression of which has been observed to contribute

to gemcitabine resistance in pancreatic cancer cells. As

the functional significance of the SNPs in regulating

Fig. 4
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these genes is unknown, we looked at molecular

interactions that might explain their effect on gemcita-

bine. We identified shared pathways for these genes,

and suspect that one or more of these SNPs could

have a combined effect on gemcitabine response.

CYP4F12, whose role in pancreatic cancer or gemcitabine

resistance is yet unknown, is one of the enzymes induced

by p53 in response to xenobiotic signals such as

chemotherapy [59].

Our analyses also revealed significant variants in CHST

genes that have not been reported to be involved in

gemcitabine transport or metabolism. These enzymes

utilize 30-phospho-50-adenylyl sulfate (PAPS) as sulfonate

donor and catalyze the transfer of sulfate to selective

glycoprotein ligands such as chondroitin, and the result-

ing chondroitin sulfates play a critical role in oncogenic

HRAS signaling [60] and diverse biological functions

including cell proliferation, adhesion, migration, and

differentiation [61,62]. Members of the CHST family

also mediate inflammation, immunity, angiogenesis, and

extracellular matrix reorganization [63,64]. So far there is

one study [65] that reports the involvement of chon-

droitin sulfates in enhancing antitumor activity of

gemcitabine in human bladder cancer cells.

Looking at SNPs within the NCI-60 data that affect their

own gene expression we found 10 unique SNPs in PPARD
and one in SLCO1B1. SLCO1B1 is known to regulate the

uptake of drugs and compounds in the liver and SNP

rs4149056 is predicted by SIFT and polyphen to be

damaging. The C allele of this SNP has been linked to

reduced transport activity and hence impaired drug

effect [66,67]. Another SLCO1B1 variant, rs4149015,

known to affect its own expression [68], may impact its

transporting activity and, consequently, drug response.

Variants in PPARG2 have been known to affect mRNA

expression of PPARG1 and its target genes [69,70], which

play a diverse role in cellular energy metabolism and

angiogenesis. Activation of PPARb/d, in particular, has

been reported to favor angiogenesis, and is suggested to

play a critical role in inducing angiogenesis in pancreatic

cancer [71]. Such alterations in tumor cell characteristics

can consequently modify drug response. Variants in

ABCC4 have been observed to affect intracellular

concentrations of some drugs even though the SNPs

were synonymous or within 30UTR [72,73].

SNPs can influence the expression levels of multiple

genes either through cis-regulatory or trans-regulatory

effects; and variations in gene expression levels can

directly or indirectly impact drug response [74,75]. To

understand these effects, we integrated the gene

expression data with DMET SNP and drug response

data for the NCI-60 cell lines. Associations involving

detoxifying proteins such as CYP enzymes and transpor-

ters such as SLCO1B1 revealed pathways closely related

to drug response regulation. Associations involving other

variant genes such as CHST3 and PPARD suggest a major

role for cell adhesion, cell growth, and tumor-invasive

processes in the alteration’s drug response. Although

trans-regulatory effects, if present, will have to be

experimentally validated, the pathway analysis provides

a potential mechanism to explain how SNPs could have a

genome-wide impact on drug response, directly or

indirectly, by altering tumor cell characteristics.

Conclusion and future perspective

There is strong agreement among clinicians about the need

to implement pharmacogenomic discoveries in clinical

practice due to the changing needs in medicine. However,

most physicians have limited familiarity with genomics and

inadequate knowledge of the pharmacogenomic tests

available to help their patients [76,77]. Many associations

have been identified between variant genotypes and drug

response phenotypes, some of which are now identified in

FDA-approved medical product labels [78]. Despite the

growing evidence of pharmacogenetic involvement in drug

response, physician uptake of pharmacogenetic testing has

been poor. We believe this is in part due to lack of strong

evidence of clinical utility, evolving clinical guidelines around

these markers, and lack of integrated decision support tools.

Another major barrier to address is the lack of adequate

physician education in the field [76].

To overcome some of these challenges, adequate

computational and informatics data analysis and support

will be necessary to analyze and interpret results from

clinical studies and to help evaluate pharmacogenomics

biomarker panels. Multidisciplinary teams of clinicians,

geneticists, bioinformaticians, and systems biologists

need to partner to apply growing pharmacogenomic

knowledge in the clinic. Decision support tools must be

tightly coupled to electronic health records and clinical

work flows to alert healthcare providers to actionable

pharmacogenetic information.

Although we present an integrative systems biology and

genetic analysis of ‘omics’ data for understanding variants

that are strongly associated with gemcitabine response

(e.g. CHST family of proteins), this report is intended as

a framework to systematically integrate varied data types

and strengthen the evidence behind pharmacogenomics

markers. Such frameworks can ultimately provide motiva-

tion to develop clinical decision support tools and

interfaces to help clinicians use pharmacogenomics data

to improve patient care.
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