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ABSTRACT
In a recent issue of PLOS Genetics, we reported that the double-stranded RNA-binding protein,
Staufen1, functions as a disease modifier in the neuromuscular disorder Myotonic Dystrophy Type I
(DM1). In this work, we demonstrated that Staufen1 regulates the alternative splicing of exon 11 of
the human Insulin Receptor, a highly studied missplicing event in DM1, through Alu elements
located in an intronic region. Furthermore, we found that Staufen1 overexpression regulates
numerous alternative splicing events, potentially resulting in both positive and negative effects in
DM1. Here, we discuss our major findings and speculate on the details of the mechanisms by which
Staufen1 could regulate alternative splicing, in both normal and DM1 conditions. Finally, we
highlight the importance of disease modifiers, such as Staufen1, in the DM1 pathology in order to
understand the complex disease phenotype and for future development of new therapeutic
strategies.
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Staufen is a double-stranded RNA binding
protein with multiple functions in
cytoplasmic RNA handling

Staufen proteins are highly conserved, ubiquitously
expressed, double-stranded RNA-binding proteins
(RBPs).1,2 First described in Drosophila oocytes, Stau-
fen is essential for anterior-posterior patterning via
the localization of the bicoid and oskar mRNAs.3,4 In
mammals, there exists 2 homologs of Staufen, Stau-
fen1 (Stau1) and Staufen2 (Stau2). Three major pro-
tein isoforms (Stau155, Stau163 and Stau1i) are
produced from the Stau1 gene as a result of alternative
splicing (Fig. 1). Stau155 and Stau163 bind RNA
through their functional RNA-binding domains
(RBDs), RBD3 and RBD4, however, it is reported that
Stau1i lacks the ability to bind RNA.2,5 Staufen pro-
teins, particularly Stau1, are recognized as multi-func-
tional proteins involved in several aspects of
cytoplasmic RNA metabolism, such as neuronal trans-
port of RNA, translation efficiency, the stability of

specific target mRNAs, and long-term memory forma-
tion in Drosophila.6-10

One aspect of Stau1 biology that research has
focused on recently is identifying Stau1 mRNA targets
and Stau1-binding-sites (SBSs) where several high-
profile studies have improved our understanding of
Stau1s multi-functional nature.10-14 From these stud-
ies, it appears that Stau1 does not have a particular
affinity for any RNA-sequence specific based motif(s),
but instead prefers short stem structures, similar to
the 19 base-pair (bp) stem within the 30UTR of the
ARF1 gene. Stau1 can also bind secondary structures
varying in length and number of perfect base pairing,
as well as shorter motifs located within complex struc-
tures spanning hundreds of nucleotides, such as those
found in 18S rRNA.8,10,12-14 One common feature
found in the majority of these studies are SBSs con-
taining Alu elements, formed from either one Alu in
conjunction with a long non-coding RNA or as an
imperfectly paired inverted duplex structure formed
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from 2 Alu elements in opposite orientation, referred
to as Inverted Repeat Alus (IRAlus).13,15,16 The loca-
tion of these SBS appear highly variable and many
have been reported in 30- and 50-UTRs, coding and
intronic regions, as well as intergenic regions.10,13

From these studies, it could be inferred that Stau1
may be involved in additional functions, potentially
including nuclear RNA processing.

A novel role for stau1 in pre-mRNA
alternative splicing

Our lab was the first to provide evidence suggesting a
role for Stau1 in the regulation of pre-mRNA splic-
ing.9 Such a role for Stau1 has been the subject of
much speculation within the field over the years but
remained highly debated until recently. For example,
one major argument that is often put forth is that
Stau1 has been shown to reside primarily in the cyto-
plasm, which would preclude it from functionally
interacting with the nuclear splicing machinery. How-
ever, Stau1 is well known to be a shuttling protein as it
harbours nuclear localization signal (NLS) sequences
and has been observed to localize to the nucleus in
several cell types.17-19 Moreover, it was shown that a
fraction of the Stau1 pool does have a measurable resi-
dence time within the nucleus in several cell lines.19

More recently, an extensive study carried out by the
Moore laboratory that linked transcript secondary
structure to the regulation of translation by Stau1, did
find that some Stau1 occupancy within intronic
regions of transcripts in HEK293T cells, but failed to
document any apparent consequence on pre-mRNA
splicing.13 Nevertheless, work from other groups has
revealed additional evidence to support Stau1s role in
splicing. For example, an extensive network of splicing
proteins was identified by mass spectrometry as com-
ponents of Stau1 ribonucleoprotein complexes.20 A

novel role of Staufen protein in splicing was also sug-
gested in Drosophila by the Lipshitz laboratory when
they observed that alternatively spliced genes were sig-
nificantly enriched in Staufen targets in Drosophila
cells.12 As a follow up to our 2012 work on Stau1 and
splicing, we have recently published a study (Bondy-
Chorney et al., PLOS Genetics, 2016) where we dem-
onstrate that Stau1 can, in fact, regulate the profile of
numerous alternative splicing events (ASEs) in human
myoblasts (see below), potentially through interaction
with Alu elements present in introns flanking the
alternative splicing unit.

How does stau1 influence alternative splicing?

In order to understand the mechanism behind the
alternative splicing regulatory function of Stau1, we
focused on the splicing of exon 11 of the human INSR,
as we previously showed it to be a Stau1-regulated
event. Through the modulation of Stau1 via depletion
and/or overexpression, we observed that Stau1 regu-
lated the inclusion of exon 11 of the INSR through an
interaction with Alu elements located in the upstream
intron of the alternative event. Prediction of the mini-
mum free energy (MFE) RNA secondary structure of
the 3 Alu elements of the INSR, using Vienna package
RNAfold 2.1.1, revealed that the first and second Alu
elements of intron 10 form IRAlus, similar to those
previously described to be bound by Stau1
(Fig. 2).13,15,21 It will be important to generate individ-
ual Alu deletion mutants that would disrupt the pre-
dicted secondary structure in order to determine
whether the formation of this IRAlus is necessary for
Stau1-regulated splicing of the exon 11. Moreover,
insertion of the INSR IRAlus sequence upstream of a
heterologous alternative splicing cassette would allow
for the investigation into whether this induces Stau1-
regulated splicing of said exon. These experiments

Figure 1. Diagram of the mammalian Staufen1 isoforms. All Stau1 isoforms contain the double-stranded RNA-binding domains (dsRBDs)
2, 3, 4, and 5 (orange boxes), the nuclear localization signal (NLS), the tubulin binding domain (TBD), and the reported Staufen-swap-
ping motif (SSM) 65 (red diamond, dark gray and red boxes, respectively). The observed molecular weights are indicated in superscript
and the amino acid positions are indicated in numbers.
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would be crucial to study the Alu-directed Stau1
splicing mechanism on the INSR and other Stau1
alternative splicing targets.

Next, when investigating the role that the Alu ele-
ments located in intron 10 of the INSR have on splic-
ing of exon 11, we can hypothesize, based on our
work and previous literature, the type of cis-acting ele-
ments they form. For instance, we demonstrated in
our recent paper, that the absence of intronic Alu ele-
ments resulted in an increase in exon 11 inclusion, a
finding also reported in HepG2 cells.22 Thus, we could
speculate that the presence of IRAlus serve to inhibit
the inclusion of exon 11, suggesting that these ele-
ments act as Intronic Splicing Silencers (ISS). Finally,
although it appears that Stau1 binds directly to the
Alu elements, in some form of higher order RNA-sec-
ondary structure, we cannot exclude the participation
of additional RNA-binding proteins that could pro-
vide some sequence specificity. It is widely accepted
that the mechanisms involved in regulation of alterna-
tive splicing is often very complex and commonly
involve several trans-acting factors and cis-acting ele-
ments. For example, if we hypothesize that the Alu
elements are acting as ISS, perhaps once Stau1 is
bound to these elements this leads to the recruitment
of a trans-acting factor that may interfere with recruit-
ment of constitutive splicing factors, resulting in a
reduction of exon splicing. It is likely that Stau1 inter-
acts with other splicing proteins in order to mediate
its regulation of alternative splicing. Intriguingly, pre-
vious studies have predicted that Stau1 interacts with
numerous splicing proteins in Stau1 ribonucleopro-
tein complexes, including SFRS1, PRPF8, SF3B1,
SF3B2, hnRNP M, hnRNP U, and hnRNP C.20 The
interaction between Stau1 and hnRNP C may be of
particular interest, in terms of Stau1-regulated splicing

as it was previously demonstrated that hnRNP C
interacts with Alu elements to regulate hundreds of
splicing events.23 Interestingly, Zarnack and colleagues
further demonstrated that hnRNP C competes with
the splicing factor U2 snRNP auxiliary factor 65-kDa
subunit (U2AF65), thereby preventing its binding to
Alu elements.23 Elucidating the nature of the interac-
tions between Stau1 and other splicing proteins in
specific tissues, using, for example, quantitative prote-
omics approaches, would help define further the Stau1
splicing regulatory mechanism. Additional studies will
be required in order to fully decipher the specific
details of how Stau1 regulates alternative splicing and
how broadly applicable it can be.

Stau1 is misregulated in myotonic
dystrophy type I

DM1 is an autosomal dominant neuromuscular disorder
caused by an expansion of CTG-repeats in the 30

untranslated region (30UTR) of the dystrophia myoton-
ica protein kinase (DMPK) gene.24 Once transcribed, the
CUG-repeats of the DMPK mRNA form hairpin-like
secondary structures, causing the mRNA to aggregate,
which are trapped in the nucleus forming ‘toxic’ RNA
foci, which results in misregulation and/or sequestration
of several RNA-binding proteins, including transcription
factors and importantly, numerous splicing factors. The
misregulation of these splicing factors plays a central role
in the DM1 pathology through wide-spread missplicing
(discussed in detail below).25-33 The effect of the CUG-
repeats has also been shown to induce posttranscrip-
tional silencing of specific genes through Dicer processed
short (CUG) RNAs, misregulation of alternative polya-
denylation events and deregulation of specific micro-
RNAs and altered expression of target transcripts.34-36

Figure 2. The proposed RNA-secondary structure of the IRAlus located in the INSR intron 10. The genomic DNA sequence of the human
INSR (NG_008852.1) was used to assess the Alu repeat elements located in intron 10. Alu elements were identified using RepeatMasker
and RNA secondary structure was determined by Vienna package RNAfold 2.1.1. The intronic regions shown here are not to scale and
this is indicated by a // symbol.

RARE DISEASES e1225644-3



Furthermore, recent reports suggest that repeat-associ-
ated non-ATG translation (so-called “RAN translation”)
occurs in DM1 CAG expansion transcripts to produce
toxic homopolymeric (polyglutamine) proteins that may
contribute to the DM1 pathogenesis37,38

In our 2012 report, we found that the overexpres-
sion of Stau1 was able to reverse key splicing defects,
for example, the missplicing of exon 11 of INSR and
the intronic retention event in the CLC1 pre-mRNA,
in the neuromuscular disorder Myotonic Dystrophy
Type 1 (DM1). We also observed that Stau1 is natu-
rally upregulated in DM1 skeletal muscle obtained
from 3 different DM1 mouse models, and human
DM1 muscle biopsies.9 Importantly, we observed that
Stau1 interacted with CUG-repeat mRNA in a length-
dependent manner although it was not stably
recruited to RNA foci in DM1 cells. Furthermore, we
uncovered that by overexpressing Stau1 we enhanced
the nuclear export and protein translation of the
CUG-repeat mRNA both in DM1 cell culture and
mouse models, an effect that was dependent on Stau1s
dsRBD3 and NLS.9 Our findings thus prompted us to
assess further whether Stau1 might represent a valid
therapeutic target for DM1.

As an initial step toward that goal, it was important
to establish how broad the effect of Stau1 was on alter-
native splicing in the context of DM1. Our recent
study published in PLOS Genetics provided crucial
insights on this, as mentioned above, by carrying out a
high-throughput RT-PCR screen to investigate hun-
dreds of splicing events, pre-selected as relevant to
muscle physiology and function39, in wild-type (WT)
and DM1 myoblast cells. Briefly, either GFP, used as a
CTRL, or Stau1-HA was overexpressed in MyoD-con-
verted WT and DM1 myoblasts and the changes in
the splicing patterns between the different conditions
was assessed. This type of analysis allowed for us to
both identify splicing events that are potentially regu-
lated by Stau1 and additional novel DM1 splicing
events in a severe DM1 myoblast cell line containing
1700 CUG-repeats. Using this approach, numerous
splicing events were identified that were altered upon
Stau1 overexpression in WT and DM1 conditions. In
total, using a cut-off of � 10% in percent splicing
change (PSI), it was found that Stau1 altered the splic-
ing patterns of 75 and 88 splicing events in WT and
DM1 cell lines, respectively. Examples of these Stau1-
regulated splicing events were confirmed in the INSR,
hnRNP A2B1, LRRC23, HIF1a, NRG1, FN1, ACCN3,

FHL3, G6PC3, CLCN2 and CLCN6 mRNAs. More-
over, by comparing Stau1-regulated splicing events to
ones found to be regulated by the well-known splicing
regulators MBNL1 and RBFOX1 using the same RT-
PCR array, we were able to reach a number of conclu-
sions. For one, the fact that Stau1 influenced a similar
proportion of ASEs than those 2 splicing factors pro-
vided support for the notion that Stau1 is indeed a
bona fide splicing regulator. Second, several splicing
events were found to be co-regulated between the 3
splicing regulators, but this overlap was by no means
absolute, suggesting Stau1 has its own set of ASEs that
it specifically regulates. Lastly, among overlapping tar-
gets, there were a balanced proportion (»60/40) of
ASEs where Stau1 was influencing splicing decisions
either in the same way or in the opposite direction as
either MBNL1 or RBFOX1. This suggests that Stau1
may function as an agonist or antagonist to other
splicing factors, and further studies will be needed to
fully understand the complexity of the splicing net-
work regulated by Stau1.

These observations also prompted us to assess what
impact Stau1 overexpression might have in the con-
text of the DM1 pathology. By assessing whether
Stau1 overexpression shifted a splicing event either
toward or away from the WT splicing patterns, we
were able to determine if Stau1 overexpression would
be predicted as being overall beneficial or detrimental
for DM1 patients. This was an intriguing notion to us,
as we had previously demonstrated that overexpres-
sion of Stau1 had rescued 2 key hallmarks of the DM1
phenotype, the aberrant splicing of 2 missplicing
events and the nuclear export and translation of
CUG-expanded mRNA.9 The results of our RT-PCR
screen revealed that the overexpression of Stau1 in
DM1 resulted in both beneficial splicing events (25
ASEs), such as the rescue of the INSR exon 11, and
detrimental splicing effects (8 ASEs), which could
exacerbate the DM1 pathology, for example, the splic-
ing of hnRNP A2B1. Mammalian hnRNP A2B1 is a
known splicing factor that produces 2 mRNA iso-
forms, A2 and B1 as a result of alternative splicing of
the 36 bp exon 2. Our splicing screen and validation
showed a trend toward increased hnRNP A2B1 exon 2
skipping in severe DM1 myoblast cells, as compared
to WT, and that Stau1 regulates this event. The
hnRNP B1 mRNA, which lacks exon 2, has been
shown to be increased in lung cancer tissues and is
suspected to be involved in early-stage
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carcinogenesis.40 The hnRNP B1 protein was also
shown to interact and inhibit the activity of DNA-
dependent protein kinase (DNA-PK).41 We envisage
Stau1 as a potential modulator of this splicing event in
DM1, as endogenous Stau1 is naturally elevated in
DM1, and speculate that this could contribute to the
DM1 pathology based on the previous literature
describing the impact of hnRNP B1 expression in dis-
ease conditions. Collectively, the results of our screen
reveal the widespread effect that Stau1 has on alterna-
tive splicing and also highlight its role as a disease
modifier in DM1.

Stau1 acts as a disease modifier in DM1

In addition to Stau1, there are numerous other misre-
gulated RNA-binding proteins that may act as disease
modifiers in DM1 and play an important role in the
pathology. Perhaps the most studied are members of
the muscle-blind protein family (i.e. MBNL1-3),
which have been proposed to be responsible for the
majority of the known missplicing events in DM1.29

MBNL1 has been found to directly bind to the CUG-
repeats and is sequestered by the RNA foci in the
nucleus causing MBNL1 loss-of-function resulting in
multiple aberrant alterative splicing events in the
pathology.27,42 Other misregulated RNA-binding pro-
teins in DM1 include CUGBP1, hnRNP H, RNA heli-
case p68/DDX5, DEAD-box helicase DDX6, TBPH,
and BSF (Fig. 3).43-47 The misregulation of many of
these RBPs has been shown to result in aberrant splic-
ing of pre-mRNAs in DM1. For example, Paul et al.
reported that not only were the steady-state levels of
hnRNP H, a known splicing regulator, increased in
DM1 myoblasts, but that hnRNP H overexpression in
myoblasts inhibited INSR exon 11 inclusion, similar to
the splicing pattern seen in DM1 conditions.46

Recently, Jones et al. demonstrated that the DEAD-
box RNA helicase, DDX5/p68, was reduced in DM1
skeletal muscle.43 They also found that an increase in
DDX5/p68 reduced skeletal muscle myopathy and
atrophy in a DM1 mouse model and degraded mutant
CUG RNAs. Additionally, DDX5/p68 has been shown
to allow for increased MBNL1 binding to the mutant

Figure 3. The RNA-binding proteins that are involved in the molecular pathomechanisms of Myotonic Dystrophy Type 1. The toxic RNA-
gain of function model of DM1 that shows the expansion of CUG-repeat mRNA in the nucleus and the resulting misregulation of RBPs.
The RBPs that can act as disease modifiers in the DM1 pathology, through the regulation of alternative splicing events, mRNA translation
and decay, are shown here and the arrows represent the decrease/increase in either protein levels and/or activities of the protein in
DM1 (references within main text). The mRNAs containing aberrant splicing events that have been identified in various DM1 models are
listed.
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CUG-expanded mRNA repeats which, in turn, can
influence splicing events misregulated in DM1 as
described for the cardiac Troponin T (TNNT2) pre-
mRNA.48 The emergence of these other RBPs that are
misregulated in DM1 highlight the complexity of the
pathology and it is crucial to identify more factors
involved to obtain a better understanding of the
disease.

Since the majority of DM1 research has heavily
focused on a few key RBPs, such as MBNL1, it may
appear easy to attribute the pathology to the misregu-
lation of just a few proteins. This idea should be
accompanied with caution for several reasons. For
example, although multiple DM1 mouse models have
been generated, including MBNL1 and MBNL2 loss-
of-function mice, these models fail to recapitulate all
of the features of the DM1 pathology in humans.49,50

Although it is clear that proteins such as MBNL1 are
major players in DM1 pathogenesis, we hypothesize
that other RBPs such as Stau1 play important func-
tions as disease modifiers, where the fine-tuning of
such genes likely contribute together to the disease
progression and severity. The complex phenotype
observed in DM1 is likely a cumulative effect of sev-
eral of these disease modifiers, in addition to epige-
netic factors, and environmental influences. The
“normalization” of misregulated RBPs is recognized as
one of the major approaches being explored in pre-
clinical studies in DM1.32 It is vitally necessary to
broaden the scope of the DM1 disease mechanism to
include these disease modifiers and their effects on
several aspects of the disease to better understand its
complexity. The importance of this notion becomes
apparent when potential therapies, for example, the
overexpression of MBNL1, are suggested to treat DM1
patients. We speculate that even if the major players,
such as MBNL1 are corrected, other disease modifiers
misregulated in DM1 such as Stau1, may continue to
contribute to the pathology, perhaps through its role
in alternative splicing. Indeed, this idea may be
reflected in the evidence that although Mbnl1 overex-
pression, in the widely used DM1 mouse model the
HSALR mouse, was reported to rescue myotonia and
several key splicing events known to be misspliced in
DM1, other features of the phenotype were not
restored, such as normal myofiber structure.51 It
would be interesting to investigate how the correction
of MBNL1 sequestration, and the release of MBNL1
from the CUG-expanded mRNA, would influence the

activity of the other disease modifiers bound to the
CUG-repeats. Although Stau1 is not stably recruited,
it is still possible that the transient interactions
between Stau1 and the CUG repeat mRNA may be
sufficient to disrupt binding of sequestered RBPs such
as MBNL1. If this occurs, then Stau1 upregulation in
DM1, may also indirectly regulate some MBNL1-spe-
cific splicing events through the displacement of
MBNL1 from the CUG-repeats upon Stau1 binding.
In order to begin to address these types of ideas we
need to further understand the impact of the other
disease modifiers that are involved in DM1, for exam-
ple, Stau1s role as a splicing regulator, and how it con-
tributes to the DM1 pathology.

The importance of disease modifiers has been
highlighted for other neuromuscular disorders. For
example, the main causative event in Spinal Muscular
Atrophy (SMA) a functional loss the SMN1 gene,
however, it has been appreciated for some time now
that the SMN2 gene is a strong modifier of the SMA
phenotype, as copy number of this gene closely corre-
lates with disease severity.52 More recently, additional
disease modifiers have been identified in SMA, for
example, the Actin-Binding Protein Plastin 3, whose
expression can modify the phenotype of female SMA
patients.53 In the recessive X-linked form of muscular
dystrophy, Duchenne Muscular Dystrophy (DMD), it
was recently found that the gene encoding the Latent
Transforming Growth Factor-b Binding Protein 4
(LTBP4) whose function is to bind Transforming
Growth Factor Beta (TGFb), was indeed a modifier in
DMD.54 Taken together, results of these studies indi-
cate that in addition to primary defects, neuromuscu-
lar disease severity and progression can be markedly
influenced by a host of secondary modifying proteins
that should be considered when devising therapeutic
approaches for patients. Moreover, as in the case of
Stau1 in DM1, modulation of these disease modifiers
may even represent attractive therapeutic targets in
some cases.

Outstanding questions and concluding remarks

The recent efforts to understand the multi-functional-
ity of Stau1, for instance, our work into the novel role
of Stau1 in splicing and in DM1, has greatly extended
the understanding of Stau1 and also brought to light
many new considerations. For example, we have pre-
viously uncovered a significant upregulation of Stau1
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in DM1 skeletal muscle, however, its expression in
other DM1 tissues is unknown. It would be interesting
to investigate the expression of Stau1 in other tissues
affected in DM1 such as the heart and brain. Further-
more, if we do see the overexpression of Stau1 in other
DM1 tissues, it would be important to evaluate the
alternative splicing of known Stau1 targets in addition
to investigating novel splicing events. Several of the
Stau1-regulated mRNAs we identified also harbour
splicing events shown to be misspliced in the hippo-
campus of adult DM1 mouse models, for example,
KCNMA1 and CACNA1d.55 Our recent work shows
that Stau1 acts as a splicing regulator in several differ-
ent cell types, thus, one could speculate that indeed a
misregulation of Stau1 in various tissues types, in
addition to muscle, would result in splicing changes
within these tissues. In addition to Stau1, it would be
interesting to examine the expression pattern of Stau2
in various DM1 tissues. As both Stau1 and Stau2 have
been shown to play important roles in neuron func-
tion56,57, assessment of Stau2 levels in the brain, may
prove highly informative and relevant in the context
of DM1.

Another outstanding question that emerged from
our work is the cause and mechanism involved in the
aberrant upregulation of Stau1 in DM1. We could
speculate on several alternate explanations: First, the
overexpression of Stau1 may be a direct result of the
CUG-repeat expansions. We have observed a ten-
dency for a disease severity-dependent increase in
Stau1 levels in DM1 patient biopsies.9 If Stau1 upregu-
lation is a direct result of the CUG-repeat mRNA,
then investigating whether Stau1 is overexpressed in
other DM1 tissues, where the toxic RNA foci are pres-
ent, should also reveal an increased Stau1 expression
in these tissues. Alternatively, it is possible that among
the numerous proteins misregulated in DM1, some of
these factors regulate Stau1 expression. Investigating
this avenue would be highly informative as little is
known about the general regulation of Stau1 mRNA
or protein levels. Finally, the aberrant upregulation of
Stau1 in DM1 skeletal muscle may not be a direct
result of the CUG-repeats rather it may be a conse-
quence of the reversion of DM1 tissues back toward
an embryonic state. This reversion toward a neonatal
state is observed in skeletal muscle in DM1 and has
been suggested as a reason for the adult to embryonic
switch in the splicing patterns of several DM1 related
splicing events.58 It would be interesting to explore

whether the aberrant Stau1 upregulation in DM1
contributes to this embryonic shift, perhaps through
the regulation of key splicing events. We have
previously described Stau1 to be developmentally
regulated whereby Stau1 is highly expressed during
embryogenesis and decreases to low levels in adult
skeletal muscle.59 Interestingly, a similar expression
pattern is observed for CUGBP1.59,60 It is thus possible
that several of the misregulated RBPs in DM1, includ-
ing Stau1, are aberrantly expressed due to the rever-
sion to an embryonic state and, in turn cause
missplicing. Finally, many other mechanisms, perhaps
independent of the several discussed here, could be
contributing to the aberrant upregulation of Stau1 in
DM1, thus further investigation is required to fully
understand the misregulation of Stau1 in this complex
disorder.

Finally, the multi-functional nature of Stau1 should
always be considered. Often studies on multi-func-
tional proteins, such as Stau1, are primarily focused
on one role of the protein. Due to the multi-function-
ality of Stau1, it is plausible that in addition to its role
in splicing, Stau1 assumes other functions that allow it
to further modulate the DM1 pathology. For example,
we have demonstrated that Stau1 negatively regulates
myogenesis, via the regulation of c-myc translation.59

Thus, Stau1 is likely to contribute to the impaired
differentiation program observed in DM1.61 In
addition, Stau1 is recruited to Stress Granules (SGs) to
impair their assembly.62 Interestingly, we recently
reported that SG formation is deficient in DM1 myo-
blasts, and that this is at least partially due to Stau1
overexpression, as targeting Stau1 using RNA interfer-
ence rescued normal SGs formation.63 Since SGs are
part of a protective mechanism for cellular stress,
Stau1s negative effect on this process may represent
yet another mechanism through which it may act as a
disease modifier in DM1. Finally, Stau1 RNP
complexes have been reported to contain RNA
silencing elements including Ago proteins 1–3 and
associated microRNAs, such as miR-124.64 Since
microRNA deregulation is present in DM1, it would
be interesting to investigate whether Stau1 misregula-
tion may also contribute to altered expression of target
transcript though microRNA mediated silencing of
Stau1-associated microRNAs. These converging lines
of evidence thus indicate that Stau1 can act as a
disease modifier having widespread effects on several
cellular processes that can in turn modulate the DM1
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phenotype. Continued research on disease modifiers
will advance diagnostic, prognostic and therapeutic
avenues necessary to fully understand a complex
human disorder such as DM1.

Abbreviations
30UTR 30 untranslated region
ACCN3 Amiloride-sensitive cation channel 3
ASE alternative splicing events
bp base-pair
CACNA1d Calcium Channel, Voltage-Depen-

dent, L Type, Alpha 1D Subunit
CLCN2 Chloride channel 2
CLCN6 Chloride channel 6
DM1 Myotonic Dystrophy Type I
DMD Duchenne Muscular Dystrophy
DMPK dystrophiamyotonica protein kinase
DNA-PK DNA-dependent protein kinase
FHL3 Four And A Half LIM Domains 3
FN1 Fibronectin 1
G6PC3 Glucose 6 Phosphatase Catalytic 3
HIF1a Hypoxia-inducible factor 1-a
hnRNP A2B1 Heterogeneous Nuclear Ribonu-

cleoprotein A2/B1
INSR Insulin Receptor
IRAlus Inverted Repeat Alus
ISS Intronic Splicing Silencers
KCNMA1 Potassium Channel, Calcium Acti-

vated Large Conductance Subfam-
ily M Alpha, Member 1

LRRC23 Leucine Rich Repeat Containing 23
LTBP4 Latent Transforming Growth Fac-

tor-b Binding Protein 4
MBNL1 Muscleblind-Like 1
MFE minimum free energy
NLS nuclear localization signal
NRG1 Neuregulin 1
PRPF8 Pre-mRNA Processing Factor 8
PSI Percent splicing index
RAN translation Repeat-associated non-ATG

translation
RBDs RNA-binding domains
RBPs RNA-binding proteins
SBSs Stau1-binding-sites
SF3B1 Splicing Factor 3b, Subunit 1
SF3B2 Splicing Factor 3b, Subunit 2
SFRS1 Serine/arginine-rich splicing factor 1
SMA Spinal Muscular Atrophy
Stau1 Staufen1

Stau2 Staufen2
TBPH TAR DNA-binding protein-43

homolog
TGFb Transforming Growth Factor Beta
TNNT2 cardiac Troponin T
U2AF65 U2 snRNP auxiliary factor 65-kDa

subunit
WT wild-type.
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