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Giant pandas represent one of the most endangered species worldwide, and their

reproductive capacity is extremely low. They have a relatively long gestational period,

mainly because embryo implantation is delayed. Giant panda cubs comprise only

a small proportion of the mother’s body weight, making it difficult to determine

whether a giant panda is pregnant. Timely determination of pregnancy contributes to

the efficient breeding and management of giant pandas. Meanwhile, metabolomics

studies the metabolic composition of biological samples, which can reflect metabolic

functions in cells, tissues, and organisms. This work explored the urinary metabolites

of giant pandas during pregnancy. A sample of 8 female pandas was selected.

Differences in metabolite levels in giant panda urine samples were analyzed via ultra-

high-performance liquid chromatography/mass spectrometry comparing pregnancy to

anoestrus. Pattern recognition techniques, including partial least squares-discriminant

analysis and orthogonal partial least squares-discriminant analysis, were used to analyze

multiple parameters of the data. Compared with the results during anoestrus, multivariate

statistical analysis of results obtained from the same pandas being pregnant identified

16 differential metabolites in the positive-ion mode and 43 differential metabolites in

the negative-ion mode. The levels of tryptophan, choline, kynurenic acid, uric acid,

indole-3-acetaldehyde, taurine, and betaine were higher in samples during pregnancy,

whereas those of xanthurenic acid and S-adenosylhomocysteine were lower. Amino acid

metabolism, lipid metabolism, and organic acid production differed significantly between

anoestrus and pregnancy. Our results provide new insights into metabolic changes in

the urine of giant pandas during pregnancy, and the differential levels of metabolites in

urine provide a basis for determining pregnancy in giant pandas. Understanding these

metabolic changes could be helpful for managing pregnant pandas to provide proper

nutrients to their fetuses.
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INTRODUCTION

Giant pandas (Ailuropoda melanoleuca) are rare endangered
mammals with high social and scientific value. The prerequisite
for ensuring better protection of endangered species is a good
understanding of their reproductive physiological characteristics.
Giant pandas were confirmed to have embryo diapause in 2009
(1); that is, during pregnancy, the embryo floats in the womb
and stops developing until it attaches to the womb a few months
later. Embryo implantation is delayed in giant pandas, resulting
in a long gestational period. Although the giant panda has a
longer pregnancy, the newborn cub is underdeveloped, weighing
only 90–130 g (2). Conversely, the average adult giant panda
weighs 75–160 kg (3). The main reason for this phenomenon is
that giant pandas adapt to unpredictable food sources (4). Giant
pandas experience embryo diapause during pregnancy, and some
giant pandas experience false pregnancy. Pseudopregnant pandas
will exhibit the same physiological and behavioral changes as
pregnant pandas. Thus, it is difficult to identify pregnancy in
giant pandas based on changes in progesterone levels (5). At
present, research on captive giant pandas has focused on the
detection of estrus and mating (6, 7), as well as infant care
and development (2, 8). However, there are sparse reports
on the physiological changes of pregnant pandas. Untimely
pregnancy testing in giant pandas in captivity interferes with their
raising and breeding, further inhibiting efficient breeding and
management. Therefore, the physiological characteristics of giant
pandas during pregnancymust be better understood to effectively
protect these animals.

Metabolomics is the study of the composition of metabolites
in biological samples. These metabolites reflect the metabolic
functions of cells, tissues, and organisms. Moreover,
metabolomics has an advantage over genomics, transcriptomics,
and proteomics because metabolites are generated by ongoing
biological processes in the body, and they therefore more
accurately and directly reflect phenotypic changes. In addition, it
is increasingly being used to identify potential biomarkers to help
identify and prevent diseases (9). Among the various biological
matrices used in metabolomics, urine is characterized by
non-invasive collection methods and the presence of abundant
metabolites that reflect all biochemical pathways in the body (10).
Metabolomics involves comparing metabolic concentrations
between different samples, and this innovative technique is used
extensively to search for biomarkers. The metabolome can be
analyzed using various techniques (gas chromatography-mass
spectrometry [MS], liquid chromatography [LC]-MS, and
nuclear magnetic resonance). Ultra performance LC-MS (UPLC-
MS) combines high-throughput processing, high sensitivity,
and high resolution to obtain more accurate, reliable, and
comprehensive data compared with these other techniques.
UPLC-MS can identify and semi-quantify 100 s to perhaps about
1,000 of metabolites simultaneously and generate a large amount
of MS data. Pattern recognition techniques, such as principal
component analysis (PCA), partial least squares-discriminant
analysis (PLS-DA), and orthogonal PLS-DA (OPLS-DA), are
used to analyze data pertaining to multiple parameters after large
amounts of data have been obtained (11–13). Finally, these MS

data can be interpreted by combining these pattern recognition
analyses with bioinformatics analysis. Bioinformatics analysis
primarily involves the use of XCMS, MZmine 2 and MS-DIAL
(14, 15) software for substance detection and metaX software
(16) for substance quantification and differential substance
screening. Using these software programs, a large amount of
data can be screened to identify highly relevant metabolites in
different physiological states, analyze the relevant metabolic
pathways of these differential metabolites, identify potential
molecular mechanisms and their biological significance, and
find additional biomarkers for different physiological states.
Analyzing the relevant metabolic pathways of differential
metabolites can help identify the potential mechanisms and
provide information about their biological significance, as
well as facilitate the identification of biomarkers that indicate
different physiological states. In recent years, metabolomics
has been increasingly applied to the study of pregnancy and
pregnancy-related diseases (17), as well as to studying the role of
small-molecule metabolites in pregnancy and pregnancy-related
diseases from a holistic perspective (18). These studies can be
performed using maternal blood, urine, amniotic fluid, and
placental tissue. To date, urine has been used as a biological
matrix for metabolomic analysis to study the relationship
between gestational diabetes mellitus and metabolic disorders
(19) to identify urinary biomarkers of aberrant fatty acid and
carbohydrate metabolism in early pregnancies complicated by
gestational diabetes (20), identify potential biomarkers of fetal
malformation and premature delivery in the second trimester
(21), and study urinary metabolic changes during and after
pregnancy (22). Urinary metabolomics plays an important role
in the study of gestational stages in human pregnancy, but to
date, the metabolomics of pregnant giant pandas has not been
analyzed. One of the main difficulties of panda breeding is the
low survival rate of newborns. The twin rate of giant pandas
is 48.1%, and the average number of births is 1.48. However,
there are often large differences in the birth weights of twin cubs,
meaning that the smaller cubs are underdeveloped, making it
difficult for them to survive after birth (2, 23). After childbirth,
giant pandas support their infants on their bodies for the first
1–2 weeks of life. They will forego feeding and drinking to focus
on lactation and thermoregulation (2, 24). In mammals, fetuses
require a significant amount of maternal nutrients at the last
stage of development to ensure their proper growth. At this point
in pregnancy, maternal metabolism changes dramatically (25).
Therefore, metabolomic analysis of urine from pregnant giant
pandas is a promising means of identifying metabolic biomarkers
of late pregnancy in giant pandas. If pregnancy is confirmed,
then interventions, such as dietary and lifestyle changes, can be
made to effectively promote fetal growth and development.

In this work, metabolites in urine from pregnant giant pandas
were explored via UPLC-MS, and changes in amino acid and lipid
metabolism were identified. Our results provide important new
insights into the metabolites produced by giant pandas during
pregnancy, and they may help identify metabolic biomarkers
that can be used to detect changes in fetal nutrient requirements
during late pregnancy, which could then be targeted to promote
efficient reproduction in these endangered animals.
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MATERIALS AND METHODS

Study Animals and Urinary Samples
Giant pandas live in the Giant Panda Breeding Research Base
in Chengdu, Sichuan Province, People’s Republic of China. In
this study, eight captive, sexually mature female giant pandas
were investigated. Of the eight giant pandas, four participated
in the breeding program of 2017 (all four had successful
births). Another four giant pandas participated in the breeding
program in 2018 (all four had successful births). All eight
animals were inseminated via artificial insemination or natural
mating (Table S1).

Urine samples (∼3mL each) were collected from eight pandas
during anoestrus (20–30 days before mating) and pregnancy
(100–110 days after mating). Urine samples were collected from
a cement floor using clean glass droppers with rubber heads.
The urine samples were immediately transferred to clean 15-
mL centrifuge tubes and labeled with the animal identification
number and date of collection. All samples were stored at−80◦C
until analysis. The collected samples were thawed on ice, and
metabolites were extracted from 20 µL of each sample using 120
µL of precooled 50% methanol buffer. The extraction mixture
was then vortexed for 1min, incubated at room temperature
for 10min, and stored overnight at −20◦C. The next day, the
mixture was centrifuged at 4000 × g for 20min, and then the
supernatant was transferred to 96-well plates. The samples were
stored at −80◦C prior to the LC-MS analysis. Pooled quality
control (QC) samples were also prepared by combining 10 µL
of each extraction mixture (26).

Urinary Progestogen Assay
A monoclonal antibody progestogen enzyme immunoassay
[CL425; C. Munro (27)] was used to quantify the progesterone
concentration in urinary samples. Creatinine (Cr) is used as
an indicator of the progesterone concentration to adjust for
variability in urine dilution (28), and the values are expressed as
mass/mg Cr (Table S1).

LC-MS Analysis Conditions
All samples were analyzed using a TripleTOF 5600 Plus high-
resolution tandemmass spectrometer (SCIEX,Warrington, UK).
Chromatographic separation was performed using an UPLC
system (SCIEX). An ACQUITY UPLC T3 column (100mm ×

2.1mm, 1.8µm, Waters, UK) was used for the reversed-phase
separation. The injection volume for each sample was 4 µL per
run. The mobile phase consisted of solvent A (water and 0.1%
formic acid) and solvent B (acetonitrile and 0.1% formic acid).
The gradient elution conditions were as follows: 5% solvent B
for 0–0.5min; 5–100% solvent B for 0.5–7min; 100% solvent B
for 7–8min; 100–5% solvent B for 8–8.1min; and 5% solvent
B for 8.1–10min. The column temperature was maintained at
35◦C. The flow rate was 0.4 mL/min.

The TripleTOF 5600 Plus system was used to detect
metabolites eluted from the column. The quadrupole time-of-
flight (Q-TOF) mass spectrometer was operated in both positive-
and negative-ion modes. The curtain gas pressure was set at 30
PSI, the ion source gas 1 and gas 2 pressure was set at 60 PSI,

and the interface heater temperature was 650◦C. For the positive-
ion mode, the ion spray floating voltage was set at 5,000V, and
for the negative-ion mode, the ion spray floating voltage was set
at −4500V. The MS data were acquired in the IDA mode. The
TOF mass range was 60–1200 Da. Survey scans were acquired
every 150ms, and as many as 12 product ion scans were collected
if the threshold of 100 counts/s was exceeded with a 1+ charge
state. The total cycle time was fixed at 0.56 s. Four time bins
were summed for each scan at a pulse frequency of 11 kHz by
monitoring the 40-GHz multichannel TDC detector with four-
anode/channel detection. Dynamic exclusion was set for 4 s.
During the acquisition, the mass accuracy was calibrated every 20
samples. To evaluate the stability of the LC-MS during the entire
acquisition period, a QC sample (created by pooling all of the
samples) was analyzed after every 10 experimental samples.

Metabolomics Data Processing
Before the group data analysis was performed, the group
datasets were normalized. Data normalization was performed
on all samples using the probabilistic quotient normalization
algorithm. Then, QC-robust spline batch correction was
performed using QC samples. The acquired LC-MS raw data
were analyzed using XCMS software (SCIEX), including peak
picking, peak grouping, retention time correction, second
peak grouping, and annotation of isotopes. Raw LC-MS
data files were converted into the mzXML format and then
processed using the XCMS, CAMERA, and metaX (16) toolboxes
included in R software. Each ion was identified by combining
retention time and m/z data. The intensity of each peak
was recorded, and a three-dimensional matrix containing
arbitrarily assigned peak indices (retention time–m/z pairs),
sample names (observations), and ion intensity information
(variables) was generated. This primary MS information was
then matched to secondary information from our in-house
database. First-order MS information was used for identification,
and second-order information was used for matching to the
in-house standard database. The Kyoto Encyclopedia of Genes
and Genomes (KEGG, http://www.kegg.com/) and Human
Metabolome Database (HMDB, http://www.hmdb.ca) were used
to annotate themetabolites bymatching the exactmolecularmass
data (m/z) of the samples to those from the database to identify
the physicochemical properties and biological functions of the
metabolites. The peak intensity data were further preprocessed
using metaX (16). Features that were detected in <50% of the
QC samples or 80% of the biological samples were removed, and
values for missing peaks were extrapolated using the k-nearest
neighbor algorithm to further improve the data quality. PCA was
performed to detect outliers and evaluate batch effects using the
pre-processed dataset. QC-based robust LOESS signal correction
was fitted to the QC data with respect to the order of injection to
minimize signal intensity drift over time. In addition, the relative
standard deviations of the metabolic features were calculated
across all QC samples, and those with standard deviations
>30% were removed. The analysis methods included PCA
and PLS-DA. MetaX software was used to quantify differential
metabolites and differential metabolite screenings. Supervised
PLS-DA was conducted using metaX to identify variables that
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differed between groups. The variable importance in projection
(VIP) was calculated, and a VIP cutoff of 1.0 was used to select
important features (VIP ≥ 1; ratio≥ 2 or ratio ≤ 1/2; q ≤ 0.05).

RESULTS

Untargeted Metabolic Profiling of Urine
During Anoestrus and Pregnancy
To explore the metabolic changes in urine during pregnancy
in giant pandas, an untargeted metabolomics analysis was
performed, which identified 7,831 annotated metabolites from
12,451 positive-ion features (Table S2) and 5,744 annotated
metabolites from 12,664 negative-ion features (Table S3). The
total ion chromatograms of positive-ion mode, negative-ion
mode, and QC samples were analyzed using UPLC/Q-TOF
MS, and the chromatographic separation spectra exhibited
good overlapping (Figure S1). In addition, high-resolution mass
spectra were analyzed using the TripleTOF 5600 Plus instrument,
including the m/z width and retention time width (Figures S2,
S3), with the results meeting the standards. Figures 1A,B

presents an overview of the metabolic changes in urine during
anoestrus and pregnancy based on positive- or negative-ion
analysis. The results illustrated that urinary metabolites varied
greatly between pregnant and non-pregnant giant pandas.

Annotations revealed that many different types of metabolites
were present in the urine. In the positive-ion mode, the 20 largest
metabolic categories were arachidonic acid metabolism (69
metabolites), 2-oxocarboxylic acid metabolism (36 metabolites),
tyrosine metabolism (36 metabolites), serotonergic signaling (33
metabolites), and steroid hormone biosynthesis (32 metabolites)
(Figure S4). In the negative-ion mode, the 20 largest metabolic
categories were arachidonic acid metabolism (35 metabolites),
steroid hormone biosynthesis (28 metabolites), neomycin,
kanamycin, and gentamicin biosynthesis (21 metabolites), 2-
oxocarboxylic acid metabolism (19 metabolites), and amino
sugar and nucleotide sugar metabolism (17 metabolites)
(Figure S5).

Multivariate Statistical Analysis
PCA was used to determine the sample separation and
aggregation between the pregnant and non-pregnant pandas.
Each point on the PCA score graph represents a single sample.
Aggregation of points indicates that the observed variables
are highly similar, and discrete points represent significant
differences (VIP ≥ 1; ratio ≥ 2 or ratio ≤ 1/2; q ≤ 0.05)
in the observed variables. In the positive-ion mode, the PCA
scores illustrated that PC1 and PC2 were responsible for
33.53 and 23.46% of the variation, respectively (Figure 2A).
In the negative-ion mode, the PCA scores revealed that
PC1 and PC2 were responsible for 38.07 and 20.98% of the
variation, respectively (Figure 2B). The results demonstrated
that urine from anoestrus and pregnancy had different metabolic
characteristics. This indicated a clear separation between giant
panda urine metabolites during anoestrus and pregnancy. PCA
is mainly used to observe separation between groups in an
experimental model, but it cannot identify specific changes
between groups. Therefore, PLS-DA, which is a supervised

discriminant profiling statistical method, was used to identify
more specific differences between the groups. Higher values for
PLS-DAmodel parameters (R2 and Q2) denote greater reliability
for the PLS-DA model. R2 of the PLS-DA model in the positive-
ion mode was 0.986, and Q2 was 0.943 (Figure 3A). R2 of the
PLS-DA model in the negative-ion mode was 0.985, and Q2 was
0.953 (Figure 3B), indicating that both R2 and Q2 were high.
According to the PLS-DA model parameters, this model was
credible for interpreting the differences; therefore, we used these
data for subsequent analyses.

Next, OPLS-DA was used to analyze the metabolites in urine
during anoestrus and pregnancy. In the positive-ion mode, the
OPLS-DA parameters were as follows: R2X = 0.433, R2Y =

0.991, andQ2= 0.922 (Figure 4A). In the negative-ionmode, the
OPLS-DA parameters were as follows: R2X= 0.529, R2Y= 0.993,
and Q2 = 0.971 (Figure 4B). The intercept of the OPLS-DA
model did not reach the overfitting threshold (R2Y > 0.4, Q2Y >

0.05). TheOPLS-DA score plot demonstrated a clearer separation
of the urine between anoestrus and pregnancy samples. The
Q2 values all exceeded 0.4, indicating that the current OPLS-
DA model was more reliable and that consistent modeling and
predictability were achieved.

Potential Biomarkers and Metabolic
Pathways for Metabolite Analysis
Next, we subjected the metabolomics data to univariate analysis
of fold changes and T statistical testing to perform Benjamini–
Hochberg correction and obtain the q-value. This was combined
with multivariate statistical analysis of the VIP obtained via
PLS-DA to screen for differential metabolites. Differential ions
were defined as follows: VIP ≥ 1; ratio ≥ 2 or ratio ≤

1/2; q ≤ 0.05. Based on these criteria, a comprehensive
statistical analysis was performed to compare urine from
pregnant and non-pregnant giant pandas. In the positive-
ion mode, 8,702 characteristic ions were detected, of which
896 were present at higher levels and 1,307 were present at
lower levels in during pregnancy (Figure S6). In the negative-
ion mode, 9,152 characteristic ions were detected, of which
1,210 were present at higher levels and 1,662 were present
at lower levels in during pregnancy (Figure S6). LC-MS data
analysis was used to analyze the secondary metabolites of
different substances. Secondary differential metabolite ions were
defined according to the aforementioned criteria. Exact mass
data (m/z) from the KEGG and HMDB databases were used
to annotate 59 differential metabolites. Sixteen differential
metabolites were found in the positive-ion mode, and 43
differential metabolites were found in the negative-ion mode. For
unsupervised clustering, the significantly different metabolites
were used to construct heatmaps (Tables S4, S5). A heatmap
was used to define the metabolites with different levels in
urine taken during anoestrus and pregnancy. Consistent with
the OPLS-DA results, both the positive- and negative-ion
modes revealed significant aggregation (Figure 5). These results
indicated significant changes in the expression of molecules
associated with amino acid metabolism, lipid metabolism, and
organic acid production during pregnancy. The changes in
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FIGURE 1 | A heatmap of the metabolites identified in the urine of pregnancy and non-pregnancy giant pandas. (A) Positive ions, (B) Negative ions.

FIGURE 2 | Principal component analysis score plots of metabolites identified in urine during anoestrus and pregnancy. (A) Positive ions, (B) Negative ions.

amino acid metabolism occurred in tryptophan (Trp), tyrosine,
and methionine metabolism. Regarding Trp metabolism, Trp,
indoleacetic acid, L-glutamic acid, and kynurenic acid were
present at significantly higher levels in pregnant pandas,
whereas xanthurenic acid and S-adenosylhomocysteine (SAH)
were present at significantly lower levels. Concerning tyrosine
metabolism, L-glutamic acid and indole-5,6-quinone were
present at significantly higher levels in the pregnant group,
whereas SAH was present at significantly lower levels. Regarding
methionine metabolism, choline, betaine, and 2-ketobutyric acid
were present at significantly higher levels in the pregnant group,
whereas SAH was present at significantly lower levels. These data
indicate that L-glutamic acid and SAH are involved in multiple
amino acid metabolic pathways. Concerning lipid metabolism,
androsterone glucuronide, adipic acid, mesaconic acid, and D-
malic acid were present at significantly higher levels in pregnant

pandas, whereas pregnenolone sulfate was present at significantly
lower levels. These metabolic changes during late gestation may
reflect changes in fetal nutrients needs, as well as the metabolic
status of the mother.

DISCUSSION

Urine is characterized by abundant metabolite levels that reflect
all biochemical pathways within the body (10). In this study,
a MS-based approach to urine metabolomics and biomarker
discovery was used to examine urinary metabolism via UPLC Q-
TOF/MS analysis. Urine from 8 giant pandas during anoestrus
and subqequent pregnancy was tested to identify changes in
metabolite levels associated with different pathways involved
in pregnancy. This study identified 59 differential metabolites
via UPLC Q-TOF/MS analysis. In the positive-ion mode, 16
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FIGURE 3 | Partial least squares-discriminant analysis score plots of metabolites identified in urine during anoestrus and pregnancy. (A) Positive ions, (B) Negative

ions.

FIGURE 4 | Orthogonal partial least squares-discriminant analysis score plots of metabolites identified in urine during anoestrus and pregnancy. (A) Positive ions,

(B) Negative ions.

differential metabolites were found; notably, Trp, kynurenic acid,
3-indoleacetic acid, and choline were present at higher levels
in pregnant pandas, whereas 4-hydroxybenzoic acid, coniferyl
aldehyde, and xanthurenic acid were present at lower levels.
In the negative-ion mode, 43 differential metabolites were
found. Notably, 2-ketobutyric acid, 2-oxopentanedioic acid, L-
histidine, and indoleacetic acid were present at higher levels
in pregnant pandas, whereas pregnenolone sulfate and SAH
were present at lower levels. These differential metabolites
represent changes in various metabolic processes, such as amino
acid and lipid metabolism, as well as organic acid content.
Choline is an essential nutrient for animals, and its metabolites
phosphatidylcholine and sphingomyelin are the main lipid

components of the cell membrane (29). Choline is involved in
lipid metabolism, brain development, and fetal development,
and it is a key component of the cell membrane (30). Studies
have found that choline levels are increased in maternal plasma
during pregnancy, and they are supplied to the fetus via one-
way transfer through the placenta (31). Maternal choline supply
to the fetus plays an important role in fetal brain development,
membrane biosynthesis, and neurotransmission. In rat models,
prenatal choline supplementation protected memory in adults
and temporal and spatial memory in the offspring (32). Although
no studies have examined this in pandas, we hypothesize that this
is one of the explanations of the increase in choline levels in giant
panda urine during late pregnancy. Choline supplementation
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FIGURE 5 | Heatmaps of metabolites present at significantly different levels in urine during anoestrus and pregnancy. (A) Positive ions, (B) Negative ions. Red

indicates an increase, blue indicates a decrease, rows indicate different metabolites, and columns indicate different samples.

during pregnancy is also important in humans. Infant brain
development can be improved bymaternal supplementation with
phosphatidylcholine, a choline metabolite, during pregnancy
(33). When the body has high choline content, choline enters
the mitochondria, in which it is metabolized to betaine aldehyde
by choline oxidase, and betaine aldehyde is further oxidized
to betaine by betaine aldehyde dehydrogenase. When the body
lacks choline, the betaine content will decrease (34). Betaine is
mainly produced by choline in the body, and plasma betaine
levels are positively correlated with the choline concentration
(35). Homocysteine is strongly and negatively correlated with
plasma betaine (35). Homocysteine is a sulfur-containing amino
acid that can be converted to methionine via the remethylation
pathway. Serum homocysteine levels are significantly lower in
pregnant women than in non-pregnant women (36). Therefore,
homocysteine can be used as a marker of pregnancy. SAH can
be hydrolyzed to homocysteine by SAH hydrolase. Prior research
found that SAH accumulation indirectly induces homocysteine
toxicity. In the present study, we found that the urine of pandas
during pregnancy contained 6-fold more choline than during
anoestrus, as well as higher betaine levels. This indicates that
choline and betaine also play important roles in giant pandas
during pregnancy. SAH levels were significantly lower when
giant pandas were pregnant compared to anoestrus. Because
homocysteine is a metabolite of SAH, we speculated that
homocysteine levels may also decrease during pregnancy in
giant pandas. This speculation is consistent with previous studies
indicating that serum homocysteine levels are significantly
lower in women of childbearing age than in non-pregnant
women (36). Although we did not analyze homocysteine levels
in this study, our results indicate that choline plays a key

role in maintaining pregnancy in giant pandas. Urinary SAH
levels could therefore be used as a biomarker of pregnancy
in pandas.

We respectively performed pathway analysis of differential
positive and negative ions. The results from both the positive-
and negative-ion modes indicated that Trp metabolism plays an
important role in pregnancy (Figure 6). Trp is an essential amino
acid that plays an important role in protein synthesis, and it
is a precursor of many biologically active substances, including
5-hydroxytryptamine (5-HT), kynurenine, and kynurenic acid.
5-HT is an important neurotransmitter in the central nervous
system (37) that can be further converted to melatonin. Research
illustrated that Trp-rich foods or intravenous Trp can promote
melatonin secretion (38). Therefore, Trp is also a precursor of
melatonin, making it a regulator of circadian rhythms. Trp is
metabolized by multiple metabolic pathways, and most free Trp
is metabolized via the kynurenine pathway. Trp is degraded to
kynurenine via indoleamine 2,3-dioxygenase (IDO) and Trp 2,3-
dioxygenase (TDO). Trp plays an important role in maintaining
pregnancy in humans. Fetal demand for protein increases
continuously during pregnancy. Trp metabolites include 5-
hydroxychromone, kynurenine, and kynurenic acid, which have
different effects on signal transduction, immunosuppression, and
neuronal protection. Studies have revealed that the placenta
is the most abundant source of IDO enzymes (39). During
pregnancy in humans, Trp levels in maternal plasma decrease
because IDO in the placenta promotes local Trp metabolism
(40), which increases kynurenine levels in the placenta, thereby
inhibiting maternal T-cell proliferation and protecting the fetus
from the maternal immune system (41). Although maternal
plasma Trp levels decrease during human pregnancy, free
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FIGURE 6 | Histogram of differential metabolites annotated by comparison to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Differential

metabolites were classified by KEGG pathway enrichment and significance analysis. Fold enrichment is presented as the ratio of the number of metabolites assigned

to the modified pathway by enrichment analysis to the theoretical number of metabolites assigned to the modified pathway by random distribution. The degree of

enrichment is indicated by different colors in the histogram according to the p-value. (A) Positive ions, (B) Negative ions.

(i.e., not bound to albumin, the form immediately available
for tissue uptake) and total Trp levels are increased during
pregnancy in rats (42–44). During the first 12 days of pregnancy
in rats, free and total Trp levels increase in the mother because
TDO activity is inhibited in the liver (45). Inhibition of TDO
activity affects Trp metabolism. Levels of progesterone and
estradiol, which inhibit TDO, increase in early pregnancy (45,
46). Therefore, free Trp levels are higher in pregnant mothers
than in non-pregnant women. In the present study, urinary
Trp levels during pregnancy were 4.9-fold higher than those
observed during anoestrus. Thus, Trp levels increase and play
an important role during pregnancy in giant pandas. We
speculate that Trp levels increase during pregnancy because
TDO activity in the liver is inhibited and Trp metabolism is
reduced, thereby promoting fetal development (Figure S7). In
the present study, we also detected an increase in the levels of
kynurenic acid, which is part of the Trpmetabolism pathway.We
hypothesized that placental IDO promotes Trp metabolism in
the umbilical cord, thus promoting kynurenine synthesis. Studies
indicated that exogenous kynurenine supplementation promotes
an increase in kynurenic acid levels in both the fetus and
mother. However, exogenous kynurenic acid supplementation
did not increase kynurenic acid levels in either the fetus or
the mother (47). Therefore, we speculate that the elevated
kynurenic acid levels in the urine of pregnant giant pandas

may be attributable to the increased kynurenine content in the
cord blood, and the presence of kynurenine promotes kynurenic
acid production via the activity of kynurenine transaminase.
Kynurenine is metabolized to 3-hydroxykynurenine (3-HA)
via kynurenine mono-oxygenase (KMO), and xanthurenic acid
is a metabolite of 3-HA. In our study, xanthurenic acid
levels were reduced in the urine during pregancy compared
to anoestrus, possibly because the upregulation of estrogen
and progesterone production inhibits KMO expression during
pregnancy (48).

CONCLUSION

Metabolomic profiling of urine from giant pandas sampled
during anoestrus and pregnancy was performed using UPLC Q-
TOF/MS. Fifty-nine metabolites were present at different levels
in the urine when samples from pregnancy were compared to
anoestrus samples. These metabolites included amino acid and
lipid metabolites. To our knowledge, this is the first study to
investigate metabolic changes in pregnant giant pandas. Our
study provides new insights into urinary metabolite changes
in giant pandas during pregnancy and provides a basis for
detecting pregnancy in giant pandas and identifying biomarkers
that indicate fetal nutrient requirements during late gestation.
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