
CellCircuits: a database of protein network models
H. Craig Mak1, Mike Daly, Bianca Gruebel and Trey Ideker*

Department of Bioengineering and 1Division of Biology, University of California, San Diego, 9500 Gilman Drive,
La Jolla, CA 92037, USA

Received August 16, 2006; Revised October 11, 2006; Accepted October 13, 2006

ABSTRACT

CellCircuits (http://www.cellcircuits.org) is an open-
access database of molecular network models,
designed to bridge the gap between databases of
individual pairwise molecular interactions and data-
bases of validated pathways. CellCircuits captures
the output from an increasing number of appro-
aches that screen molecular interaction networks
to identify functional subnetworks, based on their
correspondence with expression or phenotypic
data, their internal structure or their conservation
across species. This initial release catalogs 2019
computationally derived models drawn from 11
journal articles and spanning five organisms (yeast,
worm, fly, Plasmodium falciparum and human).
Models are available either as images or in machine-
readable formats and can be queried by the names of
proteins they contain or by their enriched biological
functions. We envision CellCircuits as a clearing-
house in which theorists may distribute or revise
models in needof validation and experimentalistsmay
search for models or specific hypotheses relevant to
their interests.We demonstrate how such a repository
of network models is a novel systems biology
resource by performing several meta-analyses not
currently possible with existing databases.

INTRODUCTION

At present, a great deal of biological information is repre-
sented as interactions between molecules. This information
includes physical interactions that occur among proteins,
DNA, RNA and small molecules (1–3); genetic interactions
such as synthetic lethality, enhancement or suppression (4);
and interactions due to co-expression (5) or co-citation (6).
Modern analyses of interaction data typically accomplish
two goals. The first goal is to clean the data, by filtering
erroneous interactions that can be associated with high-
throughput screens [false positives, e.g. (7,8)] or by predict-
ing new interactions that may have been previously missed

[false negatives, e.g. (9,10)]. The second goal is to organize
the interactions into biological network models—i.e. collec-
tions of interactions hypothesized to work together towards
a particular cellular function or within a common pathway
(11–13).

Interaction analysis is currently supported by two types of
available databases (Figure 1). First, the raw material for
analysis is provided by databases of molecular interactions
including the Database of Interacting Proteins (14), the
Munich Center for Information on Protein Sequences (15),
the Biomolecular Interaction Network Database (16), the
BioGRID (17) and IntAct (18). Many of these databases
provide confidence scores with each measured and predicted
interaction. Second, there are a growing number of so-called
pathway databases, in which canonical diagrams of meta-
bolic, signaling or regulatory pathways have been hand-
curated from review articles and textbooks. Metabolic
pathways are the focus of Reactome (19), MetaCyc (20)
and the Kyoto Encyclopedia of Genes and Genomes (21),
while databases such as BioCarta (http://www.biocarta.com/
genes), CellMap (http://cellmap.org), the Signal Transduction
Knowledge Environment (22), GeNet (23) and TransPATH
(24) are primarily concerned with signaling and transcription.
All of these pathway databases are relevant to the second and
perhaps ultimate goal of interaction analysis—models of
well-defined and well-validated functional relationships
among genes, proteins and/or metabolites.

Automatic inference of accurate and detailed molecular
pathways, however, is well beyond the capability of current
interaction analyses and integrative modeling approaches.
Although current approaches attempt to place interactions
into subnetworks according to their putative function
(11–13), such subnetworks are hypothetical in nature and
thus inappropriate for entry into any of the existing databases
of canonical pathways. Rather, the subnetwork models
produced by automated approaches are typically embedded
in figures, tables or supplementary information in the primary
published literature. Although it is certainly possible to read
about the models, there are several problems with this tradi-
tional method of dissemination. First, the size and number of
models from even a single publication can be overwhelming,
making models relevant to a particular gene or function dif-
ficult to locate. Second, in many cases, network modeling
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papers target bioinformatic, rather than biological or medical,
audiences. As a result, the models remain largely inaccessible
to those who have the most knowledge to interpret them and
the most to gain from their successful interpretation.

Recent opinion articles (25,26) have recognized a related
problem for the case of protein functional predictions, calling
for a clearinghouse of hypotheses generated by bioinformat-
ics analyses and searchable by experimental biologists. In the
same vein, the BioModels Database (27) has recently been
adopted as a working repository for simulations of kinetic
quantitative systems based on ordinary differential equations.
Subnetworks inferred from genome-scale data, however, do
not fall into this category.

Motivated by these considerations, we have designed
CellCircuits as an open-access general repository of models
distilled from protein networks. By aggregating models
derived from many separate studies into a single resource,
CellCircuits bridges the gap between databases of individual
pairwise interactions and fully curated, biologically validated
pathway models. The CellCircuits database enables experi-
mentalists to readily access and cross-reference models
across multiple publications. It also enables the meta-analysis
of the entire set of models to reveal inter-model relationships
and to answer global questions; for instance, which models
overlap in terms of the genes and/or cellular processes
represented? How novel is a new result given the models
that are already present in the database?

MATERIALS AND METHODS

Data processing

A data processing pipeline was used to extract information
from the textual representation of a model and store that
information in a MySQL (http://www.mysql.org) relational
database. The data processing pipeline required a digital

image of each model and a text file containing the genes,
proteins, metabolites, other small molecules and interconnec-
tions represented in the model. In cases when a network
model was published in graphical form only, the text file
was manually transcribed (see Supplementary Table S1).

To ensure that the CellCircuits database used a consistent
set of gene identifiers, we mapped each gene name found in
the text file for a model to a Gene Ontology (GO) gene id
using tables from the GO database. Gene names found in a
model but not in the GO database were automatically inserted
into the appropriate database tables and flagged as being exter-
nally added. Future curation efforts could be directed towards
handling these genes missing from the GO database. After
models were entered into the database, they were scored
using the hypergeometric test for GO annotation enrichment.

Web interface

We used Perl CGI scripts (http://www.perl.org) in conjunc-
tion with the Apache web server (http://httpd.apache.org),
mod_perl (http://perl.apache.org) and Perl DBI (http://dbi.
perl.org) to serve HTML content, handle user input and
query the MySQL database. Script.aculo.us version 1.61
(http://script.aculo.us), an open source JavaScript library,
was used to generate visual effects on the web pages that
display search results.

Scoring models for Gene Ontology annotation

Using the latest release of the GO database, models were
scored for a statistically significant number of genes in the
model that were annotated with a particular GO term. We
first identified the complete set of genes associated with
each GO term. This set included the genes directly annotated
with that term as well as those annotated with any of the
term’s descendents in the GO hierarchy. Next, we used the
hypergeometric distribution (28,29) to test the genes in

Figure 1. The need for a new type of database. The CellCircuits database is positioned between raw molecular interaction databases (left) and databases of
rigorously validated cellular pathways (right). Interaction database icons represent (clockwise from top left) the Database of Interacting Proteins [DIP (14)]; the
General Repository of Interaction Datasets [GRID (17)]; Molecular INTeractions Database [MINT (48)]; the IntAct molecular interactions database (18); the
interaction database at the Munich Information Center for Protein Sequences [MIPS (15)]; and Biomolecular Interaction Network Database [BIND (16)].
Pathway database icons represent Reactome (19); Signal Transduction Knowledge Environment [STKE (22)]; Gene Networks database [GeNet (23)]; BioCarta
(http://www.biocarta.com/genes); Kyoto Encyclopedia of Genes and Genomes [KEGG (21)]; and CellMap (http://cellmap.org).
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each model against the genes annotated with each of the GO
terms. The resulting P-values were stored in the database.

Scoring similarity between publications

For each pair of publications we compared all models in one
publication to all of the models in the other. To capture model
similarity as sensitively as possible, we defined two models to
be similar if they shared at least one interaction. The similar-
ity score of a pair of publications was defined to be the num-
ber of distinct models that participated in any overlap divided
by the total number of models in the pair. For example, con-
sider publication A containing two models and publication B
containing six models. If model 1 in A overlaps with models
1–5 in B, and model 2 in A only overlaps with model 1 in B,
then the total number of distinct overlapping models is 7, and
the similarity score between publications is 7/8.

RESULTS

A spectrum of network models

To date, interactions have been organized by searching
for essentially three types of subnetworks: linear paths of

interactions, interaction clusters or parallel clusters.
Representative models of each type are shown in Figure 2.
Linear (or branching) paths of interactions have been used
to represent biological pathways such as metabolic processes
or regulatory cascades (Figure 2a) (30–32). Clusters in an
interaction network are regions of dense interconnections
and are suggestive of functional protein complexes
(Figure 2b) (33–37). Parallel clusters are two (or more)
similar network clusters in which the proteins in one cluster
are, in some way, associated with the proteins in the other
cluster. Parallel clusters have been used to represent protein
complexes conserved across species (Figure 2c) (38–40), in
which pairs of proteins spanning the two clusters are
orthologs associated by sequence-similarity relationships.
They have also been used to identify the physical basis for
genetic interactions (Figure 2d) (41), in which two protein
interaction clusters are linked by many genetic interactions
if the clusters perform redundant or synergistic cellular
functions.

Finally, integrating the interaction network with external
data, such as gene expression profiles and other molecular
states, has also been a key methodology used to identify
significant subnetworks. For instance, these approaches

Figure 2. Representative network models stored in CellCircuits. (a) A collection of linear regulatory pathways downstream of mating-type locus in yeast (31) (b)
An interaction cluster of co-expressed proteins suggestive of a functional complex (34) (c) Parallel clusters conserved between P.falciparum and yeast (40). (d)
Parallel clusters that are highly connected by genetic interactions (41).
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have been used to find protein interaction clusters that exhibit
coherent expression changes in response to panels of per-
turbations (33,35,36) or as a function of the cell cycle (34).
Other works (42) have reported network ‘motifs’, defined
as patterns of interactions that occur more often in the
network than expected by chance. However, these approa-
ches (by design) focus on general patterns rather than sub-
networks of particular proteins. Therefore, they are not
considered here.

Database coverage and assembly

This CellCircuits initial release (version 1.0) was designed as
proof-of-principle of the value of a searchable database of
network models. We focused on providing a clear database
interface and representative, albeit incomplete, coverage of
the types of network models possible. For version 1.0, the
database includes models from 11 publications, spanning lin-
ear, clustered or parallel subnetworks, with priority given to
publications with models available in both graphical repre-
sentations and machine-readable formats (Table 1). Graphical
representations of network models are a particularly valuable
method of disseminating interactions and/or pathways, in
much the same way that DNA sequence logos (43) are used
to visualize position-specific score matrices of DNA-binding
motifs. Conversely, machine-readable formats, such as
SBML (44), BioPAX (45) or the Cytoscape SIF format
(46), greatly facilitate database entry, model curation and
subsequent computational analysis. Four publications pro-
vided models in both graphical and machine-readable formats
(32,39–41). For the remaining seven, models were manually
curated from published figures (30,31,33–36,38).

Manual curation involved downloading figures containing
each network model, and then transcribing the genes and
interactions in the models into a machine-readable format.
For most publications, one figure, or each subpanel in a
figure, contained a single network model. However, in three
publications (31,34,38) the figures contained multiple, uncon-
nected networks that were not divided by the authors into
separate subpanels. In these cases, each unconnected compo-
nent was entered as one model in CellCircuits, and in one
case, networks were further subdivided into smaller models
if they contained several sparsely connected, but functionally
annotated, clusters of proteins (see Supplementary Table S1).

These curation activities resulted in a total of 2019 protein
network models in the database. Models in the database
include protein interactions from five organisms: yeast (Sac-
charomyces cerevisiae; 91% of all models), fly (Drosophila
melanogaster; 58%), nematode worm (Caenorhabditis ele-
gans; 27%), a malarial parasite (Plasmodium falciparum;
2%) and human (2%; these percentages total >100% due to
cross-species comparisons covering multiple species in a sin-
gle model). The models include up to four types of interac-
tions (protein–protein, protein–DNA, genetic and metabolic)
as well as two types of external data (gene expression and
gene deletion phenotypes).

Network model query

Models in the CellCircuits database are queried through a
web-based interface. In the simplest use case, entering a T
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standard gene name (e.g. RAD9) into the search field will
return all models containing that gene. Wild-card searches
are permitted (e.g. RAD* will search for models containing
any gene with a name that begins with the letters RAD, see
Figure 3). All gene queries are also checked against a list
of gene name synonyms, which are drawn from the latest
release of the GO database (47). In addition, searches can
be limited to models from specific publications or to models
containing genes from specific organisms.

Searches based on gene function are also supported. The
CellCircuits database automatically scores all models for
GO functional enrichment using the hypergeometric test
(see Materials and Methods). Such tests had been originally
applied in only 3 out of the 11 curated publications. The
enrichment results are stored with each model in the database
as meta-data, allowing users to search for models that are
enriched for genes having a particular annotation. For exam-
ple, some of the same models retrieved by searching for
RAD9 can also be retrieved by searching for GO annotations
associated with this gene. Queries may include exact GO ID
numbers (e.g. GO:0006974) or partial or complete GO term
names (e.g. ‘DNA damage’ or ‘integrity checkpoint’; these
must be enclosed in double quotes).

More than one gene, GO annotation or wild-card may be
included in a query. If a model matches multiple search
terms, it will be ranked higher in the results. All search results
include graphical representations of the models, links to the
original publication, the organism(s) modeled, the genes or
GO annotations from the search query that were found in
each model and the hypergeometric P-value of enrichment
for any GO annotations (Figure 3).

Meta-analysis of models

Collecting published network models within a single database
allowed us to survey the state of computational analysis of
large interaction datasets. Scoring all models for GO func-
tional enrichment (described in the previous section) is an
example of such analyses. Another example, the observed
sizes of models from all 11 publications, is shown in
Figure 4a. On average, the 2019 models in the database con-
tained �18 proteins and 36 interactions with 95% of models
containing between 5 and 30 proteins. However, this distribu-
tion was heavily influenced by two publications (39,41)
which together contributed over 90% of the models in the
database.

7

9

4

3

2

1

5

6

8

Figure 3. Web interface (www.cellcircuits.org). Results using RAD* and ‘DNA binding’ as the search query (circle 1). A total of 274 subnetwork models are
returned. The search output includes a graphical representation of the model (circle 7), the genes and GO terms from the model that match the query (circle 6),
alternative gene names or synonyms matching the query (circle 9), the total number of matches (circle 8), enriched GO terms (circle 5 and 3), a link to view
similar models (circle 4) and a link to example search queries (circle 2).
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To assess the overlap between models, we examined the
extent to which the same proteins appeared in multiple mod-
els (Figure 4b). Although a protein was shared by approxi-
mately nine models on average, the majority were found in
only one or two models. Thirty-five proteins appeared in
over 100 models (<5% of all models in the database). Inter-
estingly, among these were all six of the yeast ATPases in the
26S proteasome (RPT1–6), components of the yeast and
worm 20S proteasome, and several yeast, worm and fly pro-
tein kinases. The pervasiveness of these proteins in models
may reflect their broad evolutionary conservation across spe-
cies, a high degree of connectivity in the protein network,
their popularity in the biological literature or their functional
roles in many distinct biological processes (i.e. pleiotropy).

The results of our model overlap analyses are accessible
through the web interface. Each model is annotated in the
CellCircuits database with a list of similar models, defined
as those that contain at least three of the same genes. Clicking
the ‘View similar models’ link in the search results will dis-
play these models (Figure 3, circle 4). Currently, only the
number of shared genes is used to assess similarity between
models. However, more complex measures could be envi-
sioned, potentially making CellCircuits, itself, a resource
for comparing several similar models (perhaps corresponding
to the same biological process) and showing the differences
between them.

On a broader scale, we also assessed the extent to which
publications covered overlapping regions of the protein

Figure 4. Meta-analysis of models. (a) Histogram of the number of genes or proteins per model. (b) Histogram of the number of genes (y-axis) that are contained
in a given number of models (x-axis). The inset is an expanded view of the genes that span over 50 models. (c) Overlap between network modeling publications.
Thicker lines represent greater similarity between the sets of models published in two publications (see legend). Similarity is measured by the number of distinct
models that share one or more interactions (yeast interactions only) divided by the total number of models in both publications. Interactions are shared between
almost every pair of publications, but for clarity, similarity scores <0.05 are not shown.
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interactome using a pairwise similarity score (see Materials
and Methods). Results are shown in Figure 4c. Although
our similarity score was permissive such that some overlap
was expected between every pair of publications, only 5
out of the 55 possible pairs showed over 25% similarity.
Thus, it appears that the different modeling publications
are, to some degree, capturing different regions of the protein
interaction network [excluding (39,41), see Figure 4c].
Furthermore, in the future, this kind of meta-analysis could
be used to determine how the results from new publications
differ from existing models.

DISCUSSION

In summary, CellCircuits version 1.0 provides a clearing-
house in which hypothetical pathway models derived from
large-scale protein networks may be easily accessed, queried
and exported for further study. The 11 publications included
in this initial release were chosen to cover a broad range of
network model types with a bias towards publications that
provided models in both graphical and machine-readable for-
mat. Beyond this proof-of-principle, a significant question is
whether, or to what extent, all past and future network models
might be incorporated.

On one hand, the field of network biology is still young
such that the number of relevant previous publications is
probably <50. On the other hand, the rapid adoption of sys-
tems and network approaches will make capturing informa-
tion from all future works a daunting prospect if the models
are not readily accessible. CellCircuits complements existing
efforts that have begun to address this challenge, such as
markup languages for describing models [BioPAX (45) and
SBML (44)] and the BioModels Database of quantitative,
kinetic models (27). Similar to biological sequence and
microarray databases, we envision CellCircuits as a valuable
resource for storing, accessing and updating network models
across the wider biological research community.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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