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Abstract: The mammalian ovary has two main functions—producing mature oocytes for fertilization
and secreting hormones for maintaining the ovarian endocrine functions. Both functions are vital
for female reproduction. Primordial follicles are composed of flattened pre-granulosa cells and a
primary oocyte, and activation of primordial follicles is the first step in follicular development and
is the key factor in determining the reproductive capacity of females. The recent identification of
the phosphatidylinositol 3 kinase (PI3K)/phosphatase and tensin homolog deleted on chromosome
10 (PTEN) signaling pathway as the key controller for follicular activation has made the study of
primordial follicle activation a hot research topic in the field of reproduction. This review systemati-
cally summarizes the roles of the PI3K/PTEN signaling pathway in primordial follicle activation
and discusses how the pathway interacts with various other molecular networks to control follicular
activation. Studies on the activation of primordial follicles have led to the development of methods
for the in vitro activation of primordial follicles as a treatment for infertility in women with prema-
ture ovarian insufficiency or poor ovarian response, and these are also discussed along with some
practical applications of our current knowledge of follicular activation.

Keywords: primordial follicles; PI3K/PTEN signaling; in vitro activation; oocyte; granulosa cells;
fertilization

1. Introduction: The Development of Primordial Follicles Is Essential for
Female Reproduction

The mammalian ovary is a key component of the female reproductive system and
contains follicles at various developmental stages [1]. In addition to its role in producing
mature oocytes, the ovary is also responsible for synthesizing and secreting hormones that
are vital to reproductive development and fertility [2–4].

Follicles are the functional units of ovaries, and in most mammalian species primordial
follicles are formed before or shortly after birth [5]. A large number of primordial follicles
progressively occupy more peripheral parts of the ovary to create the primordial follicle
pool [6], and the primordial follicle pool is considered to be the only source of germ cells
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for fertilization [5]. Although this theory has been challenged over the past decade [7,8],
the latest research by Zhang et al. supports the traditional view that no follicular renewal
occurs in postnatal life in mice and humans [9,10].

Once the primordial follicle pool is formed, the primordial follicles have three possible
developmental fates—to maintain a quiescent state as primordial follicles, to be activated
and enter the growth phase, or to undergo death [11]. The balance between the dormancy,
activation, and death of primordial follicles is considered to be the decisive factor in
determining the length of female reproductive life [12,13]. In humans, the initial primordial
follicle pool at birth contains approximately 500,000–1,000,000 follicles in total. To maintain
the lengthy reproductive lifespan of female mammals, most of the primordial follicles
remain in a dormant state in the ovaries. Eventually, more than 99% of the primordial
follicles will die with age, and this is referred to as ovarian aging [14,15]. In mammals, the
quantity and quality of the primordial follicle pool determine the length of reproductive
life [16,17], and menopause occurs in human females when the number of primordial
follicles drops below approximately 1000 [18].

2. Activation of Primordial Follicles

The activation of primordial follicles and subsequent follicular development is an
irreversible process [2]. The characteristics of follicular activation include the transfor-
mation of granulosa cells from a flattened to a cuboidal shape and an increase in oocyte
volume [19,20]. Recent studies tracing the development of follicles have shown that there
are two distinct populations of primordial follicles in the mouse ovary. The first wave
of primordial follicles in the medulla of the ovary begins to be activated once they are
formed, whereas the primordial follicles in the ovarian cortex are gradually activated over
the course of the female reproductive lifespan [21,22].

Only a small proportion of primordial follicles are recruited into the growing follicle
pool [16,23], and the phosphatidylinositol 3 kinase (PI3K)/phosphatase and tensin homolog
deleted on chromosome 10 (PTEN) signaling pathway in oocytes plays a critical role in primor-
dial follicle activation [24]. Studies have shown that PI3K signaling might be the only pathway
for oocyte activation [25]. Once the PI3K/PTEN signaling pathway is activated, it can convert
phosphatidylinositol 4,5-bisphosphate (PIP2) into phosphatidylinositol 3,4,5-trisphosphate
(PIP3), which activates Akt and phosphorylates downstream forkhead transcription factor
Foxo3. Foxo3 shuttles from the nucleus into the cytoplasm, resulting in primordial follicle acti-
vation [11,26]. The mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway
is another crucial pathway that initiates primordial follicle activation in pre-granulosa cells by
activating PI3K/PTEN signaling [27]. In this article, we elaborate on the important roles of
these two signaling pathways in primordial follicle activation.

3. The PI3K/PTEN Signaling in Oocytes Governs the Primordial Follicle Activation

According to their structural characteristics and substrate specificity, PI3Ks are di-
vided into three classes (I, II, and III) [28]. Among them, class I PI3Ks are also divided into
two subfamilies, class IA and class IB. Class IA PI3Ks, which are the most well-studied
PI3Ks, are lipid kinases that consist of a p85 regulatory subunit and a p110 catalytic
subunit, and they phosphorylate the 3′-OH group on the inositol ring of inositol phospho-
lipids [29–31]. The p110 catalytic subunit can convert PIP2 into PIP3 [11,32]. PIP3 recruits
both phosphatidylinositol-dependent kinase 1 (PDK1) and the protein serine–threonine
kinase Akt to the cell membrane, where PDK1 phosphorylates and activates Akt [29,33].
Akt subsequently phosphorylates a range of substrates, including the cell-cycle inhibitor
p27 (also known as p27KIP1), glycogen synthase kinase 3, tuberous sclerosis 2 (TSC2),
and the forkhead box transcription factors (FOXO) families [34–37]. The PI3K signaling
network is thus important for cell proliferation, cell cycle entry, and cell survival [38,39].

As a negative regulator of PI3K function, PTEN reverts PIP3 back to PIP2 and thus
suppresses PI3K signaling [40,41]. For many decades, much attention has been focused
on the role of PTEN as a tumor suppressor in cancers [38,42], but its key role in ovarian
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primordial follicle activation was not elucidated until 2008. Studies from Diego Castrillion’s
group and Kui Liu’s group showed that oocyte-specific knockout of the Pten gene results
in over-activation of the entire pool of primordial follicles, and this is followed by the
premature depletion of all the primordial follicles, thus revealing the important roles of
PI3K and PTEN in follicular activation [24,26] (Figure 1). Subsequently, the role of PTEN
in primordial follicle activation has been demonstrated in other species. Bovine ovary
fragments exposed to vanadate-derived dipotassium bisperoxo (5-hydroxy-pyridine-2-
carboxylic) oxovanadate (V) (bpV(HOpic)), an inhibitor of PTEN, showed a significantly
higher proportion of growing follicles compared to control, but was associated with DNA
damage and impaired DNA repair competence [43]. For pig and sheep ovarian tissues,
bpV(HOpic) affects ovarian follicle development by promoting the initiation of follicle
development [44,45]. These large animal models may be helpful to optimize the follicular
activation methods for transfer to clinical application. In humans, inhibition of PTEN with
bpV(HOpic) affects human ovarian follicle development by promoting the initiation of
follicle growth to the secondary stage, but the survival of isolated secondary follicles was
severely affected [46]. However, a short-term study showed bpV(HOpic) treatment en-
hances the activation of primordial follicles in both fresh and cryopreserved human ovarian
cortex, and enlarges growing populations without inducing apoptosis in follicles [47].
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The forkhead transcription factor Foxo3 is a substrate of Akt and is an important fac-
tor downstream of the PI3K/PTEN signaling pathway, and it plays a specific and essential 
role in follicular activation [48,49]. The PI3K signaling pathway controls primordial folli-
cle activation through Foxo3. Foxo3 is imported into the nucleus during primordial follicle 
formation and then is exported to the cytoplasm upon activation. [41]. Foxo3–/– female mice 
present with an ovarian phenotype of global follicular activation leading to oocyte death, 
early follicle depletion, and infertility [50]. Using immunofluorescence techniques, we 
double stained the ovarian sections of PD8 mice with Foxo3 and DDX4. Consistent with 

Figure 1. PI3K/PTEN signaling controls the activation of primordial follicles in the ovary. In dormant
oocytes (left), PTEN reverts PIP2 back to PIP3 and prevents follicular activation. The downstream
transcription factor Foxo3 is expressed in the nucleus. In growing oocytes (right), the PI3K–Akt signal-
ing pathway is activated by converting PIP2 to PIP3. PIP3 then recruits both PDK1 and Akt to the cell
membrane where PDK1 phosphorylates and activates Akt, resulting in Foxo3 hyperphosphorylation
and nuclear export, which triggers the activation of the primordial follicle.

The forkhead transcription factor Foxo3 is a substrate of Akt and is an important factor
downstream of the PI3K/PTEN signaling pathway, and it plays a specific and essential
role in follicular activation [48,49]. The PI3K signaling pathway controls primordial follicle
activation through Foxo3. Foxo3 is imported into the nucleus during primordial follicle
formation and then is exported to the cytoplasm upon activation. [41]. Foxo3–/– female
mice present with an ovarian phenotype of global follicular activation leading to oocyte
death, early follicle depletion, and infertility [50]. Using immunofluorescence techniques,
we double stained the ovarian sections of PD8 mice with Foxo3 and DDX4. Consistent with
previous reports, our results show that Foxo3 shuttles from the nucleus into the cytoplasm
once the follicles are activated (Figure 2).
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Figure 2. The expression of Foxo3 in primordial follicles and growing follicles. Foxo3 (green) is
expressed in the nucleus of primordial follicles. In growing follicles, Foxo3 is translocated to the
cytoplasm. DDX4 (red) was used as the germ cell marker, and DAPI (blue) was used to stain DNA.
Arrowheads: oocyte cytoplasm with Foxo3. Arrows: oocyte nuclei with Foxo3. Scale bars: 50 µm.

4. TSC–mTORC1 Signaling in Pre-Granulosa Cells Initiates Primordial
Follicle Activation

mTORC1 is a serine/threonine kinase that regulates cell growth and metabolism by
promoting various metabolic processes such as protein, lipid, and organelle biosynthe-
sis [51]. In mammals, mTORC1 activates p70 S6 kinase 1 (S6K1) and ribosomal protein
S6 (rpS6) and inactivates eukaryotic translation initiation factor 4E (4E-BPs) to promote
protein synthesis, ribosomal biogenesis, and cell growth [52,53].

In cells, mTORC1 is negatively regulated by a heterodimer complex consisting of TSC1
and TSC2 [51], which are the products of the tumor suppressor genes Tsc1 and Tsc2 [54].
The TSC1/TSC2 complex inhibits the activation of mTORC1 through the GTPase-activating
protein domain of TSC2, and TSC1 maintains the stability of TSC2 by preventing its
ubiquitination and degradation [55]. Some studies have shown that conditional knockout
of Tsc1 or Tsc2 in mouse oocytes leads to the global activation of primordial follicles
around the time of puberty, thus resulting in follicular depletion in early adulthood [56,57].
Moreover, deletion of Tsc1 in pre-granulosa cells also results in overall primordial follicle
activation [27], further suggesting that the TSC1/TSC2 complex plays an important role in
regulating primordial follicular activation.

Another study from Liu’s group showed that conditional knockout of Rptor (mTOR
regulatory protein complex 1) in pre-granulosa cells can inactivate mTORC1 signaling, and
this suppresses follicular activation and prevents the awakening of dormant oocytes [27,58].
However, the inactivation of mTORC1 activity by deletion of Rptor in oocytes does not af-
fect follicular development or female reproductive capacity [59]. These results suggest that
mTORC1 signaling in pre-granulosa cells is essential for the activation of primordial follicles.
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The first stage in primordial follicle activation is the differentiation and proliferation of
pre-granulosa cells, which is followed by oocyte growth in the ovary [60–62]. Zhang et al.
demonstrated that mTORC1 signaling in pre-granulosa cells activates Kit receptor on the
oocyte surface by enhancing the expression of KIT ligand (KITL) in pre-granulosa cells from
Tsc1−/− mouse ovaries [27]. They then crossed Tsc1−/− mice with KitY719F/KitY719F mice to
further determine how the KITL–KIT and the intraoocyte PI3K signaling pathways function
to awaken dormant oocytes. Phosphorylation of KIT Y719 is responsible for activating
the downstream PI3K signaling, and KitY719F/KitY719F mice carry a point mutation that
prevents this phosphorylation [27]. The Y719F mutation in the pre-granulosa cells of Tsc1–/–,
KitY719F/KitY719F mice prevented the KIT-mediated activation of PI3K in oocytes. Thus,
binding of KITL to Kit receptor results in the phosphorylation of KIT Y719, and this further
activates PI3K signaling in mouse oocytes. The activated PI3K phosphorylates Akt, and
this leads to the shuttling of Foxo3 from the nucleus to the cytoplasm resulting in the
activation of primordial follicles [27] (Figure 3).
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In mouse models, the Hippo signaling pathway has been shown to play a role in 
regulating cell proliferation and apoptosis in order to maintain optimal organ size through 
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Figure 3. Pre-granulosa cells initiate the activation of primordial follicles through mTORC1–KITL in
pre-granulosa cells and KIT Y719–PI3K in oocytes. In dormant follicles (left), the mTORC1 signaling
in pre-granulosa cells is suppressed, and only a low level of KITL is expressed by pre-granulosa
cells, which is insufficient to activate KIT Y719 on oocytes. KIT Y719 is not phosphorylated and
the intraoocyte PI3K signaling is suppressed in this situation. In growing follicles (right), activated
mTORC1 signaling in the pre-granulosa cells leads to enhanced production of KITL that binds to
c-kit and subsequently activates the intraoocyte PI3K signaling through phosphorylation of KIT Y719.
Activated PI3K signaling in oocytes awakens the dormant oocytes.

5. Other Related Pathways That Regulate Follicular Activation
5.1. Hippo Signaling and the Yes-Associated Protein (YAP) Pathway

In mouse models, the Hippo signaling pathway has been shown to play a role in
regulating cell proliferation and apoptosis in order to maintain optimal organ size through
growth inhibition [63,64]. Through a complex kinase cascade, the Hippo signaling pathway
phosphorylates and inactivates the transcriptional coactivator YAP and transcriptional
coactivator with PDZ-binding motif (TAZ) in order to inhibit organ growth [65]. Recent
studies have shown that fragmentation of murine ovaries promotes actin dynamics and
disrupts the Hippo signaling pathway, leading to the production of CCN (cellular commu-
nication network factor) and anti-apoptotic BIRC (baculoviral inhibitors of apoptosis repeat
containing), the promotion of follicle growth, and the generation of mature oocytes [66].
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Another recent study showed that mechanical signaling caused by internal or external
forces can affect follicular activation through the Hippo and Akt pathways involving YAP,
TAZ, PTEN, mTOR, and Foxo3 [2]. Based on the above findings, ovarian fragmentation
via disruption of Hippo signaling followed by Akt stimulation shows promise as a new
approach to promote follicular activation and growth for the treatment of infertility in
patients with premature ovarian insufficiency (POI) [66,67].

5.2. Mitogen-Activated Protein Kinase (MAPK3/1) Pathways

MAPK is expressed in several mammalian tissues and plays important functions
in regulating cell proliferation and differentiation, stress responses, and immune reac-
tions [68–70]. MAPK3/1 activity has been studied in female mice for many years, and
disruption of MAPK3/1 in mouse ovarian granulosa cells showed that these kinases are
necessary for luteinizing hormone-induced oocyte resumption of meiosis, ovulation, and
luteinization [71]. Studies in rat ovaries have shown that treatment with PD98059, a MAPK
inhibitor, significantly inhibits activation of the primordial follicles, suggesting that MAPK
signaling participates in primordial follicle activation and growth [72,73]. A recent study
demonstrated that inhibition of MAPK3/1 signaling in mouse ovaries with the MAPK3/1
inhibitor U0126 decreases the number of growing follicles, the phosphorylation levels of
Tsc2, S6K1, and rpS6, and the expression of KITL, indicating that MAPK3/1 signaling
is involved in primordial follicle activation through mTORC1–KITL signaling in granu-
losa cells. Moreover, U0126 decreases the phosphorylation levels of Akt, suggesting that
MAPK3/1 signaling regulates the activation of primordial follicles through the PI3K sig-
naling in oocytes [74]. Therefore, MAPK3/1 activity plays an important role in primordial
follicle activation through the mTORC1–KITL signaling pathway in pre-granulosa cells
and through KIT–PI3K signaling in oocytes [74].

5.3. The 5′-Adenosine Monophosphate-Activated Protein Kinase (AMPK) Pathway

AMPK is a highly conserved serine–threonine protein kinase and is a key part of a
kinase-signaling cascade that senses cellular energy status. In order to maintain energy
homeostasis, AMPK regulates energy consuming and generating metabolic pathways [75].
AMPK activators reduce YAP-dependent CCN2 expression under conditions of energy
stress, whereas AMPK depletion blocks this effect [76], and the increase in CCN2 expression
results in ovarian follicle growth due to disruption of the Hippo signaling pathway [66].
In contrast, treatment with AMPK inhibitors results in activation of the mTOR signaling
pathway, increased CCN2 expression, stimulation of follicular development, and promotion
of ovarian angiogenesis [77]. Therefore, AMPK inhibition promotes follicular development
through the AMPK–mTOR and AMPK–CCN2 pathways in mouse ovaries.

5.4. Cell Division Cycle 42 (CDC42)

CDC42 is a member of the Rho GTPase family and serves as a key regulator in
controlling numerous cellular functions [78], and a recent study showed that CDC42 plays
an important role in the activation of primordial follicles. The study showed that inhibition
of CDC42 with a specific inhibitor significantly suppressed primordial follicle activation in
mouse ovaries, while overexpression of CDC42 accelerated follicle activation [79]. CDC42
appears to function in the activation of primordial follicles by binding to the p110β catalytic
subunit of PI3K and regulating PTEN expression in oocytes [79].

Recently, a study showed that treatment with epidermal growth factor (EGF) stimu-
lates the activation of primordial follicles in both mouse ovaries and human cortical pieces
using a new in vivo system (noninvasive ovarian topical administration) with dissolved
EGF in liquid Matrigel, suggesting the role of EGF in follicle development [80]. Further evi-
dence demonstrated that EGF promotes the activation of primordial follicles by increasing
CDC42–PI3K signaling activity in mice. Combined with an inducible POI mouse model,
that paper showed the effects of EGF in living animals and suggested new ideas for the
treatment of female infertility [80].
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5.5. Anti-Müllerian Hormone (AMH)

AMH is a dimeric glycoprotein belonging to the transforming growth factor-β super-
family of growth and differentiation factors [81] and was first identified as the causative fac-
tor behind the regression of the Müllerian ducts during fetal development in males [82,83].
AMH is not expressed in female rodents before birth [84,85], but it is readily detected in
the granulosa cells of growing follicles a few days after birth [86,87]. In humans, AMH
is produced by the granulosa cells from about 36 weeks post conception (wpc) until
menopause [88,89]. Moreover, AMH also plays a role in primordial follicle activation.
AMH treatment decreases the primordial to primary follicle transition in rat ovaries by
inhibiting endogenous growth factors, such as KITL [90]. Studies in an AMH-null mouse
model showed that a lack of Amh does not affect fertility in female mice [91], but primor-
dial follicles are depleted earlier than those in the wild-type mice. Moreover, the ovaries
of AMH-null female mice contain fewer primordial follicles and more growing follicles
than those of wild-type mice [92]. Similar roles were identified in human ovarian cortical
tissue biopsy specimens, suggesting that AMH inhibits the initiation of primordial follicle
growth in vitro [93]. Taken together, these results suggest that AMH serves as a “brake”
on primordial follicle activation and prevents the premature depletion of the primordial
follicle pool. However, the mechanism through which AMH regulates the activation of
primordial follicles is still not clear, and whether AMH plays a role in signal transduction
by regulating PI3K signaling remains to be studied.

AMH is widely applied in the clinic for predicting the ovarian response to controlled
ovarian stimulation treatment, because AMH is mainly produced in the growing follicles,
which are capable of responding to exogenous gonadotrophins [94,95]. For in vitro fertil-
ization (IVF) treatment, AMH is a good predictor of poor ovarian response, although its
cut-off value varies depending on the assay that is used [96].

5.6. Insulin-Like Growth Factor (IGF) and Transforming Growth Factor Beta 1 (TGFβ1)

The IGF system, which is composed of insulin and insulin-like growth factors 1
(IGF-1) and 2 (IGF-2), participates in cell growth, proliferation, and survival [97]. IGFs,
particularly IGF-1, can work synergistically with gonadotropins to stimulate follicular
steroidogenesis [98]. IGF-1, either alone or with FSH, can increase AKT phosphorylation in
granulosa cells [99]. The Akt and MAPK3/1 pathways are involved in mediating the effects
of gonadotropins and IGF on follicle cell proliferation and follicular development [100], and
IGF-1 can promote primordial follicle growth via the PI3K/AKT signaling pathway [101].
In addition, several studies have shown that IGF-1 crosstalks with the TGFβ family at
multiple levels in cell lines [102], although further studies are needed to explore the
relationship between these two essential pathways in ovary. As a consequence of such a
central role, the Akt and MAPK3/1 pathways are the key signaling pathways that mediate
the effect of IGF on regulating the development of follicles.

TGFβ1 is a member of the TGFβ superfamily of proteins, which function in the
regulation of cell growth and differentiation [103,104]. Recently, TGFβ1 has been found
to be involved in the maintenance of primordial follicles in mice [20]. The in vitro culture
of mouse ovaries with TGFβ1 significantly inhibits the activation of primordial follicles,
and TGFβ1 significantly induces oocyte apoptosis and inhibits somatic cell proliferation
through regulation of the TSC/mTORC1 signaling pathway [20].

5.7. Liver Kinase B1 (LKB1)

LKB1 is a serine/threonine kinase that plays roles in regulating cellular energy home-
ostasis, the establishment of cell polarity, vascular development, and tumor suppres-
sion [105]. LKB1 regulates energy balance by phosphorylating AMPK at threonine 172 on
the α subunit, and its function is critical for female fertility [106]. Germ line mutations in
LKB1 are associated with Peutz–Jeghers syndrome (PJS) in humans [107], and conditional
knockout of Lkb1 in mouse oocytes leads to excessive activation of the primordial follicle
pool resulting in POI in adulthood [108]. Rapamycin can block follicular depletion in Lkb1
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conditional knockout mice, indicating that elevated mTOR signaling is responsible for the
excessive follicle activation and growth [108]. Together, these results suggest that LKB1 is
indispensable for maintaining the reserve of primordial follicles.

5.8. The Cyclin-Dependent Kinase Inhibitor 1B (p27)

p27 is a regulatory protein that controls cell cycle progression by binding to cycle-
dependent kinase complexes [109,110]. It is a negative regulator of cell cycle progression
and is a key molecule in mammalian ovarian development [111]. The role of p27 as a tumor
suppressor has been widely studied in human cancer [112]. p27 is expressed in the nuclei
of dormant oocytes in mouse ovaries [113] and is considered to be a substrate of PI3K–Akt
signaling, which regulates cell survival and cell cycle entry [11,35]. Studies in p27-deficient
mice have shown that follicle assembly is accelerated and that the primordial follicle pool
is prematurely activated, leading to POI in early adulthood [113]. Overall, p27 plays an
important role in maintaining the primordial follicle pool and preventing follicles from
being activated prematurely.

5.9. Semaphorin 6C (Sema6c) and Sirtuin 1 (SIRT1)

Recent studies of semaphorins have focused on their roles in cancer, the immune
system, the vascular system, and organogenesis, and Sema6c has been found to play a role
in the neonatal mouse ovary [114–118]. The latest research has shown that downregulation
of SEMA6C results in the activation of primordial follicles through interactions with the
PI3K–AKT–rpS6 signaling pathway, indicating that Sema6c is involved in primordial
follicle dormancy [119]. These results give us valuable information for understanding POI
and ovarian aging.

The sirtuins are a family of NAD+-dependent deacetylases that have recently emerged
as key sensors in metabolism, cancer development, and aging [120,121]. As the most
conserved sirtuin, Sirt1 has been shown to play crucial roles in mammalian health and
disease [122]. The expression of SIRT1 in oocyte nuclei has been shown to increase during
primordial follicle activation [123], and the function of Sirt1 is dependent on some tran-
scription factors, including Foxo3 [124]. Based on these results, it can be hypothesized that
SIRT1 is an important factor in determining the fate of the primordial follicles downstream
of the PI3K–AKT–Foxo3a signaling pathway.

5.10. Exosomes

Exosomes derived from mesenchymal stem cells (MSC-exos) have great therapeutic
potential due to their ethical acceptance, abundant tissue sources, low immunogenicity,
and rapid renewal properties [125]. Like their cellular sources, MSC-exos can help in
organizing and maintaining a stable environment for tissues and can restore critical cellular
functions by initiating the process of repair and regeneration [126]. Among the components
of MSC-exos, miRNAs are considered to be vital factors for regulating target cellular
functions via several key signaling pathways that are also related to primordial follicle
activation, including activation of the PI3k–Akt and mTOR pathways via miR29, miR24,
miR34, miR130, and miR378 in cardioprotection [127], regulation of PTEN expression via
miR-17–92 clustering in neurological recovery [128], and attenuation of TGF-β receptor 1
expression via miR-let7 in renal fibrosis [129].

With regards to female fertility, an increasing number of studies have shown that
MSCs can improve ovarian function in POI or natural-aging animal models [130–132].
Moreover, transplantation of human umbilical cord mesenchymal stem cells (HucMSCs)
has also been applied in the clinic as a therapy for POI patients [133]. However, the
potential molecular mechanism of HucMSCs in treating POI remains unclear. Recently,
exosomes derived from human umbilical cord mesenchymal stem cells (HucMSC-exos)
have been shown to promote follicular activation and development in newborn mouse
ovaries and to delay the age-related retardation of fertility in female mice [134]. It has
also been shown that HucMSC-exos stimulate primordial follicle activation through the
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PI3K/mTOR signaling pathway via their miRNA components, such as miR-146a-5p and
miR-21-5p [134]. Thus, HucMSC-exos might represent a new treatment method for women
with diminished ovarian reserve to enhance their decreased fertility.

6. Application of In Vitro Activation of Primordial Follicles in the Treatment of Poor
Ovarian Response (POR) and POI

In recent years, more and more women in many societies are delaying marriage and
postponing motherhood, and this is increasing the number of women seeking in vitro
fertilization (IVF) in order to have their own children. However, IVF cannot help women
with POR or POI because they only have undeveloped follicles in their ovaries, and these
do not respond to hormones. In recent years, primordial follicle in vitro activation (IVA) has
provided a new potential treatment for infertile women with POR and POI. IVA is a new
in vitro assisted reproductive technology that treats infertility in POR patients by activating
the primordial/small follicles in vitro [135]. Based on studies of the PTEN–PI3K molecular
network and the Hippo signaling pathway in the activation of primordial follicles, IVA
technology has brought hope for the treatment of infertility in POR patients [66,136].

In 2013, Dr. Aaron Hsueh [66] disrupted the Hippo signaling pathway by fragmenting
ovaries followed by Akt stimulation for treating infertility in POI patients. First, the ovaries
were removed by laparoscopic surgery and cortical strips were obtained. Histological
analyses were performed to detect residual follicles using a small portion of the ovarian
cortices, and the rest of the cortical strips were then vitrified and cryopreserved. Before
transplantation, the strips were thawed and further cut into 1–2 mm3 cubes followed by
treatment with Akt stimulators for two days. The cubes were then autografted beneath the
serosa of Fallopian tubes for development into follicles. After antral follicles had appeared,
the patients were injected with FSH. With the emergence of preovulatory follicles, hCG
was injected for the final maturation of the oocytes. These oocytes were aspirated and used
in IVF to form embryos (Figure 4). In their paper, a total of 27 patients participated in the
IVA treatment, and 13 of them were found to have follicles in their ovaries by histological
analyses. Using IVA methods, the follicles were able to grow and reach the pre-ovulation
stage in eight patients (62%). Of these eight patients, mature oocytes were successfully
obtained from five patients for intracytoplasmic sperm injection. Three of the patients each
successfully obtained two embryos, and at the time the article was published one of the
patients had a detected pregnancy and one other had successfully delivered a healthy baby.

Similar results were also observed in a study of IVA including 37 POI patients. Among
these patients, 54% still had residual follicles in their ovaries, 9 out of 20 (45%) showed
follicular development, and oocytes were successfully obtained from the growing follicles
of six patients. Following IVF, embryo transfers were carried out in four patients and
three pregnancies were identified that resulted in one miscarriage and two successful
deliveries [137]. In 2016, an article reported a simplified IVA protocol for transplanting
fresh tissues instead of frozen-thawed tissues. In that paper, 6 out of 14 (43%) patients
showed follicular development and four patients had successful oocyte retrieval of six
oocytes. Four early embryos were observed after IVF, and after the embryo transfer one
patient delivered a healthy boy [138].



Cells 2021, 10, 1491 10 of 17

Cells 2021, 10, x 10 of 17 
 

 

Figure 4. Schematic diagram of IVA. (a) Obtaining ovarian tissues. Under laparoscopic surgery, 
ovaries were obtained and cut into strips for histology and cryopreservation after vitrification. (b) 
IVA. After thawing of cryopreserved ovarian strips, the strips were fragmented into 1–2 mm3 cubes 
and cultured with Akt stimulators for 2 days. (c) Auto-transplantation. After two days of culture, 
the ovarian cubes were autografted beneath the serosa of the fallopian tubes. (d) Conventional IVF. 
Follicle growth was stimulated by injection of FSH. When preovulatory follicles were found, mature 
oocytes were retrieved for IVF to obtain embryos. 

Similar results were also observed in a study of IVA including 37 POI patients. 
Among these patients, 54% still had residual follicles in their ovaries, 9 out of 20 (45%) 
showed follicular development, and oocytes were successfully obtained from the growing 
follicles of six patients. Following IVF, embryo transfers were carried out in four patients 
and three pregnancies were identified that resulted in one miscarriage and two successful 
deliveries [137]. In 2016, an article reported a simplified IVA protocol for transplanting 
fresh tissues instead of frozen-thawed tissues. In that paper, 6 out of 14 (43%) patients 
showed follicular development and four patients had successful oocyte retrieval of six 
oocytes. Four early embryos were observed after IVF, and after the embryo transfer one 
patient delivered a healthy boy [138]. 

In recent years, drug-free IVA, i.e., only fragmentation of the ovarian cortex, has ap-
peared as a simplified IVA procedure for POR and POI patients and has been reported to 
allow retrieval of more oocytes and to achieve higher pregnancy rates. Drug-free IVA 
showed that disrupting the Hippo signaling pathway through ovarian cortical fragmen-
tation could effectively promote follicle growth and increase the clinical pregnancy rate. 
Using this simplified drug-free IVA procedure, two case reports showed successful preg-
nancies in patients with POI in 2018 and 2019 [139,140]. Another study used a similar 
drug-free IVA method to treat 20 women with diminished ovarian reserve (DOR). Patients 
were randomized to have four biopsies taken from one ovary by laparoscopy, followed 
by fragmentation of the ovarian cortex, then auto transplanted to a peritoneal pocket. The 
contralateral ovary served as a control. Growth of four follicles was detected in three pa-
tients (15%), and one oocyte was retrieved and fertilized, but embryonic development 

Figure 4. Schematic diagram of IVA. (a) Obtaining ovarian tissues. Under laparoscopic surgery,
ovaries were obtained and cut into strips for histology and cryopreservation after vitrification. (b) IVA.
After thawing of cryopreserved ovarian strips, the strips were fragmented into 1–2 mm3 cubes and
cultured with Akt stimulators for 2 days. (c) Auto-transplantation. After two days of culture, the
ovarian cubes were autografted beneath the serosa of the fallopian tubes. (d) Conventional IVF.
Follicle growth was stimulated by injection of FSH. When preovulatory follicles were found, mature
oocytes were retrieved for IVF to obtain embryos.

In recent years, drug-free IVA, i.e., only fragmentation of the ovarian cortex, has
appeared as a simplified IVA procedure for POR and POI patients and has been reported
to allow retrieval of more oocytes and to achieve higher pregnancy rates. Drug-free IVA
showed that disrupting the Hippo signaling pathway through ovarian cortical fragmen-
tation could effectively promote follicle growth and increase the clinical pregnancy rate.
Using this simplified drug-free IVA procedure, two case reports showed successful preg-
nancies in patients with POI in 2018 and 2019 [139,140]. Another study used a similar
drug-free IVA method to treat 20 women with diminished ovarian reserve (DOR). Patients
were randomized to have four biopsies taken from one ovary by laparoscopy, followed
by fragmentation of the ovarian cortex, then auto transplanted to a peritoneal pocket.
The contralateral ovary served as a control. Growth of four follicles was detected in three
patients (15%), and one oocyte was retrieved and fertilized, but embryonic development
failed [141]. In another paper, follicular growth waves were observed in 9 out of 11 patients
(81%) treated with this simplified IVA procedure. One patient showed a natural pregnancy,
and 16 embryo transfers in five patients resulted in one live birth, two ongoing pregnancies,
and one miscarriage [142]. The paper published by Janisse et al. reported that 7 out of 14
(50%) patients showed follicular development, and five patients had successful retrieval
of seven oocytes. Six embryo transfers were carried out in five patients resulting in four
pregnancies [143]. Together, these results suggest that the drug-free IVA procedure may be
efficient in treating some patients with POI, POR, or DOR. At the 2019 Summit Meeting of
Ovarian Disease and Reproductive Health (Shenzhen, China), Dr. Aaron Hsueh showed
the effectiveness of drug-free IVA in the treatment of POR and POI patients. This new
approach only involves mechanical cutting of the ovarian cortex and does not require
tissue culture, and thus only a single surgery is required.
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Research into mTORC1 signaling in the activation of primordial follicles has shown
that the efficiency of primordial follicle activation can be improved by the combination of
mTOR stimulators and PI3K activators [144]. This suggests that combinations of drugs
affecting multiple signaling pathways might have a better effect on the activation of
primordial follicles. Recently, a review investigated the mechanism of DNA damage
surveillance and its association with the PI3K/PTEN signaling pathway, as well as its
influence on the DNA damage response (DDR) during primordial follicle activation and
ovarian aging. Focusing on the mechanism of DDR in oocytes may provide new approaches
to improve the clinical regulation of primordial follicular activation [145].

Although IVA has been used in the treatment of POI patients, there is still much to do
to improve this approach. Due to the complex clinical manifestations, complex etiology,
and heterogeneity of POI, the application of this technology needs to consider individual
differences among patients. The use of drugs for activating primordial follicles might result
in negative feedback from downstream effectors. For example, inhibition of PTEN will not
always leads to a constant over-activation of the PI3K pathway, but rather the opposite,
which might lead to unsatisfactory clinical outcomes and low success rates of IVA.

7. Conclusions

In this review, we highlight the roles of the PI3K/PTEN signaling pathway in primor-
dial follicle activation along with other pathways and factors involved in the regulation of
dormancy and the activation of primordial follicles (Figure 5). Primordial follicle activation
needs to be further studied because a better understanding of this process will not only
help to reveal the molecular mechanisms underlying follicular development, but will also
facilitate the clinical treatment of infertility, including POR patients. At the same time, more
target molecules need to be identified in order to develop more personalized treatments
for individual patients.
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