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Abstract

Understanding the spread of infectious diseases is an extremely essential step to preventing

them. Thus, correct modeling and simulation approaches are critical for elucidating the transmis-

sion of infectious diseases and improving the control of epidemics. The primary objective of this

study is to simulate the spread of communicable diseases in an urban rail transit station. Data

were collected by a field investigation in the city of Ningbo, China. A SEIR-based model was

developed to simulate the spread of infectious diseases in Tianyi station, considering four

groups of passengers (susceptible, exposed, infected, and recovered) and a 14-day incubation

period. Based on the historical data of infectious diseases, the parameters of the SEIR infectious

disease model were clarified, and a sensitivity analysis of the parameters was also performed.

The results showed that the contact rate (CR), infectivity (I), and average illness duration (AID)

were positively correlated with the number of infections. It was also found that the length of the

average incubation time (AIT) was positively correlated with the number of exposed individuals

and negatively correlated with the number of infectors. These simulation results provide support

for the validity and reliability of using the SEIR model in studies of the spread of epidemics and

facilitate the development of effective measures to prevent and control an epidemic.

Introduction

Infectious diseases are a type of disease caused by various pathogens that can be directly or

indirectly transmitted from person to another, one animal to another or between people and

animals. Epidemics of infectious diseases are occurring more often and spreading faster and

further than ever in many different regions of the world [1]. Generally, infectious diseases are

constantly evolving, emerging, and re-emerging, and an infection that is considered a national

or global threat one year could be eliminated the next [2,3]. Initially, new infectious diseases

could spread only as fast and far as the hosts could travel under their own power; however, in

the context of globalization, the growth of trade activity, tourism and human migration is lead-

ing to increasingly widespread and rapid movement of disease vectors and, consequently, of

the diseases they carry [4,5].
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Subway stations [6], which constitute one of the busiest sites worldwide, involve passenger

connections and transfers. Due to the high concentration of passengers in subway stations, the

transmission of a virus is more widespread than in other public places [7,8], which poses

potential threats to the health and safety of the passengers. On the one hand, with the develop-

ment of urban rail transit networks, passenger flow continues to increase. For example, in

2019, a total of 40 cities in mainland China opened 6,720.27 kilometers of urban rail transit

operating lines, with a total of 968.77 kilometers of new operating lines. The total passenger

traffic volume reached 21.07 billion in 2018 [9], a year-on-year increase of 14%, with a total of

13.32 billion passenger trips and a total passenger turnover of 176.08 billion passenger-km

(pkm). On the other hand, infectious diseases [10] have plagued humans throughout history

and have even shaped history on some occasions. The plagues of biblical times, the Black

Death of the Middle Ages, and the “Spanish flu” pandemic of 1918 are a few examples [11].

Therefore, it is very important to study the spread of infectious diseases in public places, espe-

cially in subway stations, and to determine effective prevention and control measures for infec-

tious diseases in public places.

Literature review

The spread of infectious diseases has seriously affected public health and has posed severe chal-

lenges to the global public health system. An epidemic of an infectious disease must have three

basic elements, namely, an infectious agent, transmission routes and susceptibility. The standard

public health emergency measures are usually the most efficient, including isolating the sources of

infection, cutting off or interrupting transmission routes, and providing special care for the most

susceptible people. For example, since the coronavirus disease 2019 (COVID-19) epidemic started

in Wuhan in late December 2019 [12,13], the Chinese government has taken robust measures to

curb the spread of the deadly virus, most notably ordering the full quarantine of Wuhan, the epi-

center of the outbreak, and implementing strong control and preventive measures in metropolitan

areas such as Beijing and Shanghai as well as other population centers around China.

At present, infectious disease prevention and control strategies mainly include [14–16]: (a)

immunization; (b) the development of effective treatments and vaccines and other medical pre-

vention and control measures; (c) isolation measures; (d) routine and practical epidemic pre-

vention measures (such as temperature detection, the use of protective masks, ventilation, daily

disinfection and epidemic prevention education, etc.); (e) school suspensions; (f) traffic control

(blocking traffic, prohibiting traffic) and other nonmedical prevention and control measures.

The above measures have played positive roles in preventing the spread of infectious diseases.

The transmission of a virus by transport

Taking the COVID-19 epidemic as an example, there are three main transmission routes [17],

direct transmission, aerosol transmission, and contact transmission. When a host infected

with the virus coughs or sneezes, the virus sprays into the air along with saliva, mucus or other

body fluids. When the liquid is deposited onto a healthy potential host or the healthy individ-

ual touches the surface of an object contaminated by these droplets, that individual may

become infected. The virus responsible for COVID-19, severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2), can also spread through the air in the form of aerosols, but aero-

sol transmission is not the main route for this virus [18–21]. It is generally believed that inter-

personal interactions while using public transport in large cities may contribute to the spread

of influenza because public transport, such as subways or airplanes, involves relatively enclosed

spaces and dense traffic flow [22,23]. Previous studies have investigated the transmission

routes of epidemic viruses, which are briefly reviewed in this section.
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About subway travel, Cooley et al. [24] conducted a simulation study to develop a unique

influenza agent-based transmission model for New York City that explicitly represents subway

riders as a transmission conduit, and they found that only 4% of transmissions occurred on

the subway. The findings suggested that interventions targeted at subway riders would be rela-

tively ineffective at containing the epidemic.

Regarding school, Lee et al. [25] conducted another simulation study to explore the effects

of various school closure strategies on mitigating influenza epidemics with different reproduc-

tive rates (R0). The results indicated that any type of school closure may need to be maintained

throughout most of the epidemic (i.e., at least 8 weeks).

Air travel, which involves more than three billion passengers annually, serves as a conduit

for the spread of infectious diseases, including emerging infections and pandemics. Computa-

tional fluid dynamics (CFD) was used by Boulbene, et a. (2012) [26] to simulate the movement

of air on a plane, and he found that when a passenger sneezes on the plane, the air flow actually

helps spread the pathogen to other passengers. In a subsequent study, Weiss H. et al. (2019)

[27] collected 229 environmental samples on ten transcontinental US flights and performed

16S rRNA sequencing. They found that although the microbiomes in airplane cabins had large

flight-to-flight variations, they resembled the microbiomes of many other built environments.

Therefore, based on the above previous studies [16,27–29], if using public transit is

unavoidable during an epidemic, moving around the vehicle should be avoided to minimize

the possibility of infection.

Modeling of infectious disease dynamics

The spread of infectious diseases can be unpredictable; fortunately, modeling techniques can

help compensate for imperfect information gathered from large populations under difficult

prevailing circumstances [30]. The infectious disease dynamics (IDD) approach, a mathemati-

cal technique, has developed into a rich interdisciplinary field. It is driven both by the desire

for fundamental understanding and the need to use that understanding to aid public health

decision making.

Compared with traditional statistical models, the IDD model can not only describe the pro-

cess of disease development and transmission and predict the state of disease occurrence but

also evaluate the effects of various prevention and control measures and provide decision-

making support regarding the measures need to prevent and control diseases. At present, IDD

models mainly include four types: compartment models (CMs), meta-population models

(MMs), individual-based models (IMs), and network models (NMs).

The main idea underlying the CM model is to divide the population into several compart-

ments, which, respectively represent agents in different disease states, and then dynamic equa-

tions of related variables are established by mathematical techniques. Finally, the dynamic

process of disease transmission can be modeled. For example, Kermack and McKendrick

(1991) [31,32] predicted the number and distribution of cases of an infectious disease as it was

transmitted through a population over time and proposed the classic SR model. The SR model

is a compartmental differential-equation model that structures the infected population in

terms of the age of infection while using simple compartments for people who are susceptible

(S) and recovered/removed (R). Unfortunately, the generalizability of this model is difficult to

analyze, and a number of open questions remain regarding its dynamics.

In a subsequent study, the metapopulation model (MM) was proposed based on the classic

IR model. The modeling concept underlying the metapopulation model is to simulate the

migration behavior of individuals between populations, and an SIR model or SIS model can be

used to simulate the infectious disease transmission process within the population. For
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example, Watts D. et al. (2005) [33] modeled the movement of individuals between contexts

via simple transport parameters and allowed diseases to spread stochastically using MMs.

They found that when epidemics occur, the basic reproduction number R0 may bear little rela-

tion to their final size. Next, Colizza V. et al. (2007) [34] constructed a theoretical and compu-

tational microscopic framework for the study of a wide range of realistic MMs and agent-

based models that include the complex features of real-world networks. The results provided a

general theoretical understanding of the behavior of more realistic MMs.

The individual-based model (IM) is a microsimulation model that mainly includes a cellular

automata model and an agent-based model. The modeling concept underlying the IM model is

that individuals are treated as cells or agents with a limited set of state and behavior rules. By

defining various rules of behavior, such as individuals’ responses to the etiology of the disease,

individuals’ movement in space, and interactions among individuals, the final evolutionary

behavior of a complex infectious disease system composed of the etiology, host and environ-

ment is eventually simulated. For instance, Milne G. et al. (2008) [35] simulated the transmis-

sion of and effectiveness of interventions for epidemic influenza in a community with an IM.

The results indicated that multiple social distancing measures applied early and continuously

could be effective at interrupting the transmission of the pandemic virus for R0 values up to 2.5.

Moreover, for the network model (NM), the main underlying modeling concept is to treat

individuals in the population as nodes in a network, and the contact relationships between

individuals are described by the edges between nodes in the network. For instance, Ajelli M.

et al. (2010) [36] conducted a side-by-side comparison of the results obtained with a stochastic

agent-based model and a structured, stochastic MM for the progression of a baseline pandemic

event in Italy. The results indicated that both models yielded epidemic patterns that were in

very good agreement at the level of granularity accessible by both approaches. Riley [37]

reviewed the application of four methods (patch model, distance-transmission model, multi-

group model, and NM) to four diseases (measles, foot-and-mouth disease, pandemic influ-

enza, and smallpox). The results showed that household demographics have an important

impact on the spatial transmission of human diseases, such as smallpox, influenza, and other

infectious diseases.

Simulation method

Given the characteristics of the spread of infectious diseases based on passenger flow through a

rail transit station, passengers in a rail transit station and the SEIR model were chosen as the

research subjects and the modeling method, respectively, for this study. Through the simulation

of the spread of an infectious disease through the Tianyi station at Ningbo Rail Transit Line 1,

the factors affecting the spread of the infectious disease, that is, the contact rate, the transmission

ability, and the duration of the infectious disease, were quantitatively analyzed. In the context of

rail transit, the speed of the spread of the disease and the infection rate can be affected by multi-

ple factors. The most immediate factors include the number of infectious persons and their dis-

tribution among the passengers, the transmission route and the transmissibility of the infectious

disease, and the level of immunity. Based on the five routes of transmission, namely, contact

transmission, aerosol transmission, water and food transmission, insect transmission and others,

this manuscript dissects the external and internal factors and the passenger-related factors that

affect the spread of infectious diseases through rail transit systems. The external factors include

the above transmission routes, while the internal factors include the temperature, humidity, facil-

ity layout, subway stations, air, hygienic conditions, density, and intensity of passengers in rail

transit stations. The passenger-related factors include their basic characteristics, physical quality,

behavioral habits, immunity, and medical history.
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The SEIR model

The SIS or SIR model is generally used in studies of the spread of infectious diseases. Based on the

SI model, the SIS model can be used to simulate infectious diseases such as common influenza by

adding the measurable characteristics of the disease, and considering whether individuals are sus-

ceptible or infected. To simulate the production of antibodies after recover and thus the acquisi-

tion of immunity to the disease, the SIR model was developed by introducing a third status,

recovered. Patients do not exhibit symptoms for a certain period as they move from the suscepti-

ble status to the infected status, during which time they do not spread the disease. To simulate the

status of exposed but asymptomatic, the status exposed was introduced, and the SEIR model was

developed. The SEIR differs from the SIR models in that it adds the duration of the disease and is

more suitable for infectious diseases with no infectious potential during the incubation period.

(1) The basic assumptions. To reflect the actual route selection behavior of rail transit

passengers as much as possible and improve the reliability and effectiveness of the simulation

results, the following assumptions were made:

i. Passengers choose the shortest routes to purchase tickets and enter and exit the station; all

passengers are familiar with the process of entering and exiting the station and can handle

basic business transactions independently.

ii. Infected individuals are not infectious during the incubation period of an infectious disease.

iii. The number of passengers who meet any given passenger is basically the same, which is

expressed by the average contact rate.

The distributions of age, gender, health status and daily behavior of passengers in the rail

transit station were investigated through a questionnaire survey. These data were combined

with previous findings regarding relevant pedestrian behavior characteristics. The incubation

period (exposure period) of the infectious disease was assumed to be 1–14 days, the recovered

period was 30–60 days, and the transmissibility was 0.01–0.31.

The disease spreads through the contact message "infection". Thus, each passenger has four

potential statuses: susceptible, exposed, infected, and recovered. Passengers are initially suscep-

tible. If they are exposed to the pathogen, they will enter the exposed status, which means that

they display symptoms and produce antibodies against the pathogen. After a certain period,

they will become susceptible again.

(2) SEIR model. Considering the given incubation period, the SEIR model was used to

model passengers with four statuses: susceptible (S), exposed (E), infected (I), and recovered

(R). Each variable represents the number of passengers in the corresponding group. The prob-

ability of being infected β represents the rate at which people move from S and I to R. Assum-

ing that the total number of regions N remains unchanged and that N = S + E + I + R is

satisfied, the differential equations are constructed as:

dS
dt
¼ mðN � SÞ �

bSI
N
� nS

dE
dt
¼
bSI
N
� mE � sE

dI
dt
¼ sE � gI � mI

dR
dt
¼ gI � mRþ nS

ð1Þ

8
>>>>>>>>>>><

>>>>>>>>>>>:

where v is the perturbation factor, which indicates the ratio from the susceptible state S to the
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recovered state R. Its physical meaning is the protective efficacy of an individual after vaccina-

tion, and a larger value indicates that government interventions are more effective, and vice

versa. Next, μ is the natural mortality rate, β is the infection rate, γ is the recovery rate, and s is

the rate of moving from exposure to infection.

(3) The parameters of the SEIR. There is an important relationship between the valida-

tion of model parameters and the authenticity and effectiveness of the simulation results. The

parameters include the time scale, agent static parameters, agent walking speed and character-

istic parameters of disease spread. The specific values are as follows:

i. The static parameters of the agent: the space occupied by the agent on the ground is called

the passenger space. In the process of movement, the dynamics of the passenger space change

in complex ways, and their specific sizes are difficult to measure. Therefore, only the static pas-

senger space was considered in this study, which included the horizontal space and vertical

space. The former mainly consists of the shoulder width and the safety buffer, while the latter

consists of the stride and the safety space. Many studies have reported human body measure-

ments stratified by gender and age, as shown in Table 1. The other data used in this study are

from relevant studies and experience.

ii. The agent walking speed. In the simulation, the walking speed has a significant impact

on the time to leave the station because age and gender affect walking speed [13,14]. Therefore,

the following data were specifically set with reference to the statistical data published by Chi-

nese and non-Chinese researchers on the walking speed of pedestrians, combined with the

average walking speed of passengers at the Tianyi station measured with the preliminary sur-

vey, as shown in Table 2.

The structural characteristics of the rail transit station were mainly obtained from the indi-

cator map and the field investigation to provide data to support the simulation.

iii. Spread parameters of the infectious disease. The spread parameters of the infectious dis-

ease reflect the process by which the virus is transmitted throughout the passenger flow and

include the total population, infectivity, contact rate and average illness duration. Based on his-

torical data on the spread of infectious diseases, a model of an infectious disease at Tianyi sta-

tion was constructed. The total number of passengers was set at 1000. Since There are 4

entrances and exits at Tingyi Station, and 4 entrances and exits are open under normal circum-

stances. During the survey time, we took 15 minutes as a time interval to count the flow of

pedestrians entering the station during working days and non-working days respectively, and

finally summarized them in units of 1 hour. Hence, for the convenience of simulation statistics,

the number of simulated people per unit hour was set to 1000.

Table 1. Descriptive statistics for demographic information.

Age group Gender Shoulder width (m)

Younger (<30) female 0.380

male 0.410

Middle-aged (30–60) female 0.395

male 0.419

Older (>60) female 0.390

male 0.405

https://doi.org/10.1371/journal.pone.0253220.t001

Table 2. Walking speed stratified by age and gender.

Characteristic Young females Young males Middle-aged females Middle-aged males Older adults & juveniles of both genders

Average speed (m/s) 1.45 1.51 1.39 1.47 1.00

https://doi.org/10.1371/journal.pone.0253220.t002
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The calibration of the parameters

The SEIR model uses differential equations to reflect the relationship versus time of the num-

ber of individuals in each of the four different statuses, namely, S, E, I and R, which has certain

practical value for the study of the spread of infectious diseases. The static parameters and the

walking speed of agents do not change with research objectives and environments; therefore,

they can be regarded as constants and do not need to be calibrated.

The contact rate, infectivity coefficient, duration of exposure, and duration of infectious-

ness introduced are more abstract, which increases the difficulty of the practical application of

the model. The accuracy of these parameters is the key to model construction and the correct-

ness of the conclusion, but they differ across infectious diseases and transmission environ-

ments. Therefore, optimizing these parameters was an important part of this work.

Calibration experiments [38–40] were established for the SEIR model, and a table of the his-

torical data was also established based on the collected epidemic data. The total number of pas-

sengers in the model was set at 1000, and it was assumed that there was an infectious source in

the target station. The historical data was used as the objective function for multiple iterations,

and the best results were saved at the end of the iterations.

When the total number of passengers was 1000, the result of the 476th iteration for the

number of infected passengers had the best fit among all 501 iterations. When the amount of

data is small, the result has a better fit. Through the model calibration process [41,42], the cali-

brated parameter values were obtained, as shown in Table 3.

Simulation results

After the construction of the infectious disease model, the simulation experiments were carried

out and repeated several times to obtain different datasets. According to the literature [33–35],

the main parameters that affect epidemic spread include the number of initial patients, the

contact probability, the transmissibility of the infectious disease, the duration of the infectious

disease and the time of infection. The influence of other factors on the spread of the infectious

disease due to the contact probability, transmissibility and duration of the infectious disease

based on the experimental results was analyzed quantitatively by the control variable method

of adjusting the values of the model parameters.

The impact of the transmission ability of the infectious disease

The contact rate (CR) was set to 8.781, that is, the average number of persons contacted per

minute, the duration of infectiousness was 53.112, and the duration of exposure was 6.332.

The simulations were carried out by adjusting the transmissibility of the infectious disease.

The results are shown in Fig 1.

Table 3. Parameter values after experimental calibration.

Parameter Description Value Unit Data source

N total population 1,000 person Average hourly cross-sectional headcount for field research

t time 10–20 d 1s is used in the simulation to represent 1d

v perturbation factor 79.34% — Effectiveness of protection after individual vaccination

μ natural mortality rate 2�10−5 person/unit time Global natural mortality, as of March 2021

β infection rate 6.93�10−9 person/unit time MCMC parameter estimation

γ recovery rate 0.12 person/unit time MCMC parameter estimation

s the rate of moving from exposure to infection 1/5.7 person/unit time In the actual epidemic, the inverse of the incubation period

Note: MCMC for Markov Chain Monte Carlo.

https://doi.org/10.1371/journal.pone.0253220.t003
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The results show that the transmissibility was lower when I = 0.01, and the number of passen-

gers in different statuses changed slightly. When I = 0.04, the peak number of exposed passengers

were 245, which appeared at the 46th minute, and the peak number of infected passengers was

669, which appeared at the 61st minute. When I = 0.08, the corresponding values were 352

exposed at the 29th minute and 717 infected at the 42nd minute. When I = 0.12, the correspond-

ing values were 415 exposed at the 22nd minute and 730 infected at the 35th minute.

The impact of contact rate on the spread of the infectious disease

The transmissibility was set to 0.110, the duration of infectiousness was 53.112, and the dura-

tion of exposure was 6.332. The simulations were carried out by adjusting the CR. The results

are shown in Fig 2.

The results show that when CR = 3.0, the peak number of exposed passengers was 236,

which appeared at the 48th minute, and the peak number of infected passengers was 662, which

appeared at the 64th minute. When CR = 7.0, the corresponding values were 366 exposed at the

27th minute and 720 infected at the 40th minute. When CR = 12.1, the corresponding values

were 450 exposed at the 19th minute and 735 infected at the 32nd minute. When CR = 15.0, the

corresponding values were 486 exposed at the 17th minute and 738 infected at the 30th minute.

The impact of the duration of infectiousness on the spread of the infectious

disease

The transmissibility was set to 0.110, the CR was 8.781, and the duration of exposure was

6.332. The simulations were carried out by adjusting the duration of infectiousness. The results

are shown in Fig 3.

Fig 1. Results of different groups under different conditions of transmissibility.

https://doi.org/10.1371/journal.pone.0253220.g001
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The results show that when AID = 3.0, the peak number of exposed passengers was 199, which

appeared at the 43rd minute and the peak number of infected passengers was 91, which appeared

at the 46th minute. When AID = 24.0, the corresponding values were 387 exposed at the 25th

minute and 576 infected at the 34th minute. When AID = 45.0, the corresponding values were

400 exposed at the 24th minute and 700 infected at the 45th minute. When AID = 60.0, the corre-

sponding values were 403 exposed at the 24th minute and 747 infected at the 60th minute.

The impact of the duration of exposure on the spread of the infectious

disease

The transmissibility was set to 0.110, the CR was 8.781, and the duration of infectiousness was

53.112. The simulations were carried out by adjusting the duration of exposure. The results are

shown in Fig 4.

The results show that when AIT = 1.0, the peak number of exposed passengers was 155,

which appeared at the 12th minute, and the peak number of infected passengers was 887,

which appeared at the 18th minute. When AIT = 6.4, the corresponding values were 404

exposed at the 24th minute and 726 infected at the 37th minute. When AIT = 10.5, the corre-

sponding values were 475 exposed at the 29th minute and 652 infected at the 46th minute.

When AIT = 14.0, the corresponding values were 515 exposed at the 33rd minute and 604

infected at the 53rd minute.

Sensitivity analysis

A sensitivity analysis is a quantitative analysis of the degree to which the changes in the values

of several factors affect one or more key indicators. The function of a sensitivity analysis to

Fig 2. Results of different groups under different contact rates.

https://doi.org/10.1371/journal.pone.0253220.g002
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explain the law governing the influence of these factors on the key indicators by changing the

values of the relevant variables one by one. To further discuss the influence of the four parame-

ters, transmissibility, CR, duration of exposure, and duration of infectiousness, on the num-

bers of exposed and infected individuals, sensitivity analyses were performed using the control

variables method.

(1) The transmissibility. The simulation experiments were carried out with the prelimi-

nary calibrated data, constraining the range of infectivity. The simulation step was set to 0.01,

and then the curves for the infection duration and the exposure duration were output. The

results are shown in Table 4.

After 31 iterations, it can be seen in Fig 5 that when 0.01�I�0.31, the stronger the trans-

missibility was, the larger the peak numbers of exposed and infected individuals, and the

shorter it took to reach those peaks. When I = 0.31, the peak number of exposed individuals

were 743, which appeared at the 26th minute, and the peak number of infected individuals was

557, which appeared at the 13th minute.

(2) Parameter CR. The simulation experiments were carried out with the preliminary cal-

ibrated data, constraining the range of the CR. The simulation step was set to 0.01, and then

the curves for the infection duration and the exposure duration were output. The results are

shown in Table 5.

After 29 iterations, it can be seen in Fig 6 that when 1�CR�15, the larger the CR was, the

larger the peak numbers of exposed and infected individuals, and the shorter the time needed

to reach those peaks. When CR = 15, the peak number of exposed individuals was 738, which

appeared at the 30th minute, and the peak number of infected individuals was 486, which

appeared at the 17th minute.

Fig 3. Results of different groups under different durations of infection.

https://doi.org/10.1371/journal.pone.0253220.g003

PLOS ONE Epidemic spread simulation in an area with a high-density crowd

PLOS ONE | https://doi.org/10.1371/journal.pone.0253220 June 17, 2021 10 / 19

https://doi.org/10.1371/journal.pone.0253220.g003
https://doi.org/10.1371/journal.pone.0253220


(3) The duration of infectiousness. The simulation experiments were carried out with

the preliminary calibrated data, constraining the range of the duration of infectiousness. The

simulation step was set to 0.01, and then the curves for the infection duration and the exposure

duration were output. The results are shown in Table 6.

After 58 iterations, it can be seen in Fig 7 that when 3�AID�60, the longer the duration of

infectiousness was, the larger the peak numbers of exposed and infected individuals. However,

the duration of infectiousness did not obviously affect the time to reach the peaks. When

AID = 60, the peak number of exposed passengers was 747, which appeared at the 37th minute,

and the peak number of infected passengers was 403, which appeared at the 24th minute.

(4) The duration of exposure. The simulation experiments were carried out with the pre-

liminary calibrated data, constraining the range of the duration of exposure. The simulation

step was set to 0.01, and then the curves for the infection duration and the exposure duration

were output. The results are shown in Table 7.

After 27 iterations, it can be seen in Fig 8 that when 1�AIT�14, the longer the duration of

exposure was, the larger the peak numbers of exposed individuals, the smaller the peak

Fig 4. Results of different groups under different durations of exposure.

https://doi.org/10.1371/journal.pone.0253220.g004

Table 4. Parameter values in the sensitivity analyses (I).

No. Parameters Values Steps

1 Total Population 1000 -

2 Infectivity (I) 0.01–0.31 0.01

3 Contact Rate (CR) 8.781 -

4 Average Illness Duration (AID) 53.112 -

5 Average Incubation Time (AIT) 6.332 -

https://doi.org/10.1371/journal.pone.0253220.t004

PLOS ONE Epidemic spread simulation in an area with a high-density crowd

PLOS ONE | https://doi.org/10.1371/journal.pone.0253220 June 17, 2021 11 / 19

https://doi.org/10.1371/journal.pone.0253220.g004
https://doi.org/10.1371/journal.pone.0253220.t004
https://doi.org/10.1371/journal.pone.0253220


Fig 5. Exposure-infection curve under different transmissibility conditions.

https://doi.org/10.1371/journal.pone.0253220.g005

Table 5. Parameter values in the sensitivity analyses (CR).

Number Parameters Values Steps

1 Total Population 1000 -

2 Infectivity (I) 0.110 -

3 Contact Rate (CR) 1–15 0.5

4 Average Illness Duration (AID) 53.112 -

5 Average Incubation Time (AIT) 6.332 -

https://doi.org/10.1371/journal.pone.0253220.t005
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Fig 6. Exposure-infection curve under different contact rates.

https://doi.org/10.1371/journal.pone.0253220.g006

Table 6. Parameter values in the sensitivity analyses (AID).

Number Parameters Values Steps

1 Total Population 1000 -

2 Infectivity (I) 0.110 -

3 Contact Rate (CR) 8.781 -

4 Average Illness Duration (AID) 3–60 1

5 Average Incubation Time (AIT) 6.332 -

https://doi.org/10.1371/journal.pone.0253220.t006
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Fig 7. Exposure-infection curve under different durations of infection.

https://doi.org/10.1371/journal.pone.0253220.g007

Table 7. Parameter values in sensitivity analyses (AIT).

Number Parameters Values Steps

1 Total Population 1000 -

2 Infectivity (I) 0.110 -

3 Contact Rate (CR) 8.781 -

4 Average Illness Duration (AID) 53.112 -

5 Average Incubation Time (AIT) 1–14 0.5

https://doi.org/10.1371/journal.pone.0253220.t007
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number of infected individuals, and the longer they needed to reach those peaks. When

AIT = 14, the peak number of exposed individuals was 604, which appeared at the 53rd min-

ute, and the peak number of infected individuals was 516, which appeared at the 33rd minute.

Therefore, when I = 0.31, CR = 15, AID = 60, and AIT = 1, the peak number of infected

individuals was 928, which appeared at the 8th min, as shown in Fig 9.

5. Conclusion and future study

In this study, the Tianyi rail transit station of Ningbo Rail Transit Line 1 was chosen as an

example and used to construct an SIR model of the spread of an infectious respiratory disease

in rail transit stations. Then, simulation experiments of the spread of the infectious disease

Fig 8. Exposure-infection curve under different durations of exposure.

https://doi.org/10.1371/journal.pone.0253220.g008
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through the passenger flow in the rail transit station were designed and carried out. The simu-

lation results show that the CR, transmissibility, duration of infectiousness and duration of

exposure have important impacts on the spread of infectious diseases.

1. With increases in the CR and the transmissibility, the peak numbers of infected and

exposed passengers also increased, with a shorter time needed to reach those peaks.

2. The longer the duration of infectiousness was, the larger the peak numbers of infected and

exposed passengers, but there was little impact on the time needed to reach those peaks.

3. The longer the duration of exposure was, the larger the peak number of exposed individu-

als, the smaller of the peak number of infected individuals, and the longer the time needed

to reach those peaks.

Therefore, the peak number of affected individuals in rail transit stations can be reduced by

decreasing the CR, transmissibility, duration of infectiousness and duration of exposure.

The process and mechanism of the spread of an infectious disease through high-density

passenger flow in a rail transit station were simulated and analyzed through the construction

of this model, which provides theoretical support for the application of similar models in

research on controlling the spread of infectious diseases. In addition, the research results can

be used as a reference to help rail transit stations and disease control centers thoroughly under-

stand the spread of infectious diseases in rail transit stations and formulate and implement

effective disease control and prevention measures in other public places.

In this study, the process by which infectious diseases spread in rail transit stations were dis-

cussed preliminarily. There were still issues need further study, such as changing the facilities

and organizational mode in the station and verifying the effectiveness of prevention and con-

trol measures. The model setting does not consider the impact of the temperature and ventila-

tion in the station on the spread of the infectious disease. In the future, the model will be

improved, and many practical factors will be considered to provide evidence that can be used

to inform the development of effective measures to prevent the spread of infectious diseases.

Fig 9. The population dynamics of different groups.

https://doi.org/10.1371/journal.pone.0253220.g009
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