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Abstract
Decisions about health interventions are often made using limited evidence.
Mathematical models used to inform such decisions often include uncertainty
analysis to account for the effect of uncertainty in the current evidence base
on decision-relevant quantities. However, current uncertainty quantification
methodologies, including probabilistic sensitivity analysis (PSA), require mod-
elers to specify a precise probability distribution to represent the uncertainty
of a model parameter. This study introduces a novel approach for represent-
ing and propagating parameter uncertainty, probability bounds analysis (PBA),
where the uncertainty about the unknown probability distribution of a model
parameter is expressed in terms of an interval bounded by lower and upper
bounds on the unknown cumulative distribution function (p-box) and without
assuming a particular form of the distribution function. We give the formulas
of the p-boxes for common situations (given combinations of data on mini-
mum, maximum, median, mean, or standard deviation), describe an approach
to propagate p-boxes into a black-box mathematical model, and introduce an
approach for decision-making based on the results of PBA. We demonstrate
the characteristics and utility of PBA vs PSA using two case studies. In sum,
this study provides modelers with practical tools to conduct parameter uncer-
tainty quantification given the constraints of available data and with the fewest
assumptions.

K E Y W O R D S
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1 INTRODUCTION

Decision-analytic models (DAMs) have been used in numerous applications, from clinical decision-making to
cost-effectiveness analysis (CEA). A DAM integrates evidence within a coherent and explicit mathematical structure used

Abbreviations: CDF: cumulative distribution function; CEA, cost-effectiveness analysis; DAM, decision-analytic modeling; PBA, probability bound
analysis
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to link evidence to decision-relevant outcomes.1 There are situations where the evidence required for informing the
values of model parameters that govern the behavior of DAMs is incomplete or non-existence, for example, health
economic modeling at the early stages of a product’s life cycle2,3 and lack of resources to obtain the required data.4
The importance of explicitly accounting for incomplete knowledge about model parameters (parameter uncertainty) and
propagating its effect through a decisional process is underscored in numerous guidance documents in health, includ-
ing, but not limited to, the guidelines by the International Society for Pharmacoeconomics and Outcomes Research
(ISPOR)-Society for Medical Decision Making (SMDM),5 the Agency for Healthcare Research and Quality (AHRQ),6 the
2nd panel for Cost-Effectiveness Analysis (CEA) in Health and Medicine,7 and beyond.8 At its most basic characteriza-
tion, parameter uncertainty means that we do not know the exact value of a parameter as several different (potentially
uncountable) values may be possible for reasons such as the amount (the size of the available samples of observations)
and quality (measurement error or accuracy of the observations) of the available information.9 In many situations, the
only information we have about a parameter is that it belongs to an interval bounded by a lower bound and an upper
bound. In addition to knowing the interval, we may have some information about the relative plausibility of different
values of 𝜃 in the interval. In situations where we have data or previous knowledge about a parameter, we can leverage
standard statistical techniques to represent uncertainty in the form of a probability distribution. However, when data and
knowledge are limited, we may have only partial or no information about the probability distribution, that is, we can not
assign the relative plausibilities of different parameter values. In some cases, we only know the measures of central ten-
dency (mean or median) from published articles, while, in more extreme cases, only the minimum and maximum values
are known to the researchers. To handle such data sparsity situations, it is necessary to have an approach for quantifying
parameter uncertainty using the fewest number of assumptions and without the need for assuming precise probability
distributions.

Despite the emphasis on its importance, the ISPOR-SMDM best-practice5 recommends only two analytical tools
for evaluating the effect of incomplete knowledge of model parameters on decisional-relevant outcomes despite the
wealth of available methods in the engineering literature.10 First, the best practice prescribes a set of default prob-
ability distributions that are mainly driven by the consideration of the parameter’s support. For example, a beta
distribution is used for characterizing the uncertainty of a parameter with a support [0, 1]. As a result, modelers
tend to rely on “off-the-shelf” probability distributions to portray uncertainty “realistically over the theoretical range
of the parameter.”5 The use of “default distributions” is, in fact, a matter of convenience because there is no sure
way to verify that our choice of the distribution and its parameters is indeed valid. Furthermore, forcing the model-
ers to commit to a particular distribution implicitly assumes that the modelers have more information (eg, knowing
the shape of a distribution) than they actually possess and the uncertainty is known and quantifiable by a prob-
ability distribution. Second, the best practice proposes the use of expert knowledge elicitation11 if no prior data is
available. However, the proposed approach also hinges on a rather unverifiable assumption: the precise form of the
probability distribution. The lack of methodological guidance is due to the lack of an available approach for repre-
senting and propagating parameter uncertainty in situations where it is impossible to assume a precise probability
distribution.

An ideal approach to parameter uncertainty characterization is one that requires minimal assumptions. Specifically,
in the absence of individual patient data, such an approach should require only information on statistics that are typically
accessible to practitioners, such as mean, median, quantiles, minimum, and maximum (hereinafter collectively termed as
minimal data). Additionally, the ideal method does not require information on or assumptions about the precise form of
a probability distribution. Probability bounds analysis (PBA),12 a combination of interval analysis and probability theory,
is one such method and has been applied in risk engineering and management studies13,14 and many other fields.15-17 In
a PBA, the uncertainty about the probability distribution for each model parameter is expressed in terms of upper and
lower bounds on the cumulative distribution function (CDF). These CDF bounds form a probability box and are sufficient
for circumscribing the unknown CDF of the model parameter given some minimal data about it. The goal of this article is
to introduce the PBA method for representing and propagating parameter uncertainty in situations where knowledge or
data about the parameter is limited and a probability distribution can not be specified precisely or the practitioners are not
willing to commit to a particular form. In this study, we assume that the model parameters are mutually independent. This
article is organized into five main parts. First, we review the concept of parameter uncertainty quantification. Second, we
formally describe an approach for representing parameter uncertainty in PBA using a probability box. We focus on free
probability boxes that is a generalization of parametric probability boxes. Then, we describe an approach for propagating
probability boxes into a mathematical model. Fourth, we introduce an approach for decision-making using PBA results.
Then, we demonstrate two applications of PBA in modeling using Markov cohort models and a cost-effectiveness analysis
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of novel health technology. Lastly, we conclude with a discussion on the limitations and directions for future research.
Throughout this exposition, we try to strike a balance between mathematical rigor and accessibility to practitioners.

2 PRELIMINARIES

We begin by briefly introducing the concept of parameter uncertainty quantification and the status quo approach of
probability sensitivity analyses.

2.1 Parameter uncertainty quantification

Let  denote a mathematical model (eg, a cost-effectiveness model7 or a decision-analytic model18) that maps a set of
k inputs 𝜃i ∈ 𝜽 (i = 1, 2, … , k) to a set of quantities of interest Y, that is,  ∶ 𝜽 → Y. We treat  as a black-box model,
that is, only 𝜽 and the corresponding Y, after “running”  at particular values of or a realization of 𝜽, are accessible.
We assume that the values of 𝜽 cannot be determined precisely due to lack of knowledge or data (epistemic uncertainty).
Our uncertainty about each parameter in 𝜽 may vary according to the extent of what is known. To quantify the effect of
not knowing the values of parameters precisely on decision-relevant outcomes Y (parameter uncertainty quantification),
we proceed with the following tasks. First, we specify a mathematical framework to encode the degree of uncertainty
in the model parameters (parameter uncertainty representation). Then, we prescribe an approach to propagate parame-
ter uncertainty, given a representation from the previous step, into our health economic model (parameter uncertainty
propagation). Lastly, we set an approach to interpret the resulting uncertainty in the model outcomes for use in further
analyses.

2.2 Probabilistic sensitivity analysis

If we adopt the standard approach for parameter uncertainty quantification, that is, probabilistic sensitivity analysis
(PSA),19 we proceed with the following steps. For parameter uncertainty representation, we treat each parameter in 𝜽 as
a random variable that is endowed with a CDF, F(𝜃), which is a monotonically increasing function from a sample space
(eg, the real number line R) onto [0, 1], zero at negative infinity, and one at positive infinity. In situations where the avail-
ability of data informing the estimation of the parameters is limited or non-existent, practitioners tend to select a type of
CDF whose support matches with the model parameter’s support (eg, gamma distribution for non-negative parameters).
Hence, this common practice implicitly assumes that the form of F(𝜃) can be precisely specified. The location and ancil-
lary parameters of the chosen distributions are typically estimated using a moment matching approach. After the CDF
has been assigned to each uncertain parameter, the uncertainty propagation follows an iterative Monte Carlo sampling
approach. For each iteration, parameter values are sampled independently from the precisely specified CDFs, and the
model is evaluated using these values to generate model outcomes. After a prespecified number of samples, an empiri-
cal CDF of the model outcome is obtained. Given the empirical distribution of an outcome, we can calculate its expected
value and use it as an input to other analytical tasks (eg, decision rule and value of information analysis).

3 PARAMETER UNCERTAINTY REPRESENTATION

This section introduces the parameter uncertainty representation step of PBA. First, we describe the concept of a
probability box. Then, we introduce the formulas for a probability box given varying levels of available minimal data.

3.1 Probability box

As above, we suppose that the imperfect or lack of knowledge about a parameter (𝜃) can be characterized by a random
variable endowed with a CDF F(𝜃). Instead of being restrictive in the context of limited data, PBA assumes that F(𝜃) is
unknown or cannot be precisely specified and introduces the concept of a probability box or p-box. A probability box of a
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continuous random variable 𝜃 with an unknown CDF F(𝜃) is an interval,  =
[

F(𝜃),F(𝜃)
]
, which consists of all CDFs,

including the unknown F(𝜃), that are: 1) bounded by a pair of bounding functions, that is, a lower-bounding function
(LBF) F(𝜃) and an upper-bounding function (UBF) F(𝜃) and 2) consistent with a minimal data  (where  denotes the
set of available data or information on the statistics of the unknown CDF).12,20 The UBF and LBF have the following
properties:

1. F(𝜃) and F(𝜃) are CDFs
2. F(𝜃) ≤ F(𝜃) ≤ F(𝜃) for ∀𝜃 in the support of F(𝜃)
3. F(𝜃) and F(𝜃) form the “tightest” bounds
4. F(𝜃) and F(𝜃) are consistent with 

We say that a CDF of 𝜃 is consistent with the minimal data  if each element in  can be equated to a statistic that is
derivable from the CDF. Under the PBA framework, the epistemic uncertainty is given by: for every possible realization
of 𝜃, we can only assign an interval of CDF values,

[
F(𝜃),F(𝜃)

]
, in contrast to a single CDF value. As we accumulate more

and more data on the parameter, the epistemic uncertainty is reduced, and the interval will eventually shrink to a single
CDF.

3.2 P-box formulas for different 

We consider commons situations of data availability where a modeler can identify and specify a combination of different
summary statistics of and/or information on 𝜃 that constitutes a particular minimal data . We show the derivation of
one formula (Equation 7) as an exemplar in Appendix A.0.1. We also show one proof of a p-box providing the tightest
bounds on the unknown CDF, among all other pairs of bounding functions, given  (Appendix A.0.2).

The first situation involves knowing the smallest (minimum) and largest (maximum) values of a parameter. For some
parameters, one can infer the range from the theoretical limits, such as zero to one for probability or utility parameters.
In some cases, a modeler may ask domain experts to specify a range from their knowledge about the quantity in question.
In both cases, the task will set a minimum a and a maximum b such that the value of a parameter lies in the interval [a, b].
The p-box a,b is given by:

F(𝜃)a,b =

{
0 for 𝜃 < b
1 for b ≤ 𝜃

(1)

for LBF, and,

F(𝜃)a,b =

{
0 for 𝜃 < a
1 for a ≤ 𝜃

(2)

for UBF.
If, in addition to knowing a, b, the median m of 𝜃 is also known, then the p-box will be tighter than a,b. The p-box

a,b,m is given by:

F(𝜃)a,b,m =
⎧⎪⎨⎪⎩

0 for 𝜃 < m
0.5 for m ≤ 𝜃 < b
1 for b ≤ 𝜃

(3)

for LBF, and,

F(𝜃)a,b,m =
⎧⎪⎨⎪⎩

0 for 𝜃 < a
0.5 for a ≤ 𝜃 < m
1 for m ≤ 𝜃

(4)

for UBF.
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If, in addition to knowing a, b, the mean 𝜇 = E[𝜃] is also known, then the p-box a,b,𝜇 is given by:

F(𝜃)a,b,𝜇 =
⎧⎪⎨⎪⎩

0 for 𝜃 < 𝜇
𝜃−𝜇
𝜃−a

for 𝜇 ≤ 𝜃 < b
1 for b ≤ 𝜃

(5)

for LBF, and,

F(𝜃)a,b,𝜇 =
⎧⎪⎨⎪⎩

0 for 𝜃 < a
b−𝜇
b−𝜃

for a ≤ 𝜃 < 𝜇

1 for 𝜇 ≤ 𝜃

(6)

for UBF.
If, in addition to a, b, and 𝜇, we have data on the SD 𝜎, then the p-box a,b,𝜇,𝜎 is given by:

F(𝜃)a,b,𝜇,𝜎 =

⎧⎪⎪⎨⎪⎪⎩

0 for 𝜃 < 𝜉1
𝜎2+(b−𝜇)(𝜃−𝜇)
(b−a)(𝜃−a)

for 𝜉1 ≤ 𝜃 < 𝜉2

(𝜃−𝜇)2

(𝜃−𝜇)2+𝜎2 for 𝜉2 ≤ 𝜃 < b

1 for b ≤ 𝜃

(7)

for LBF, and,

F(𝜃)a,b,𝜇,𝜎 =

⎧⎪⎪⎨⎪⎪⎩

0 for 𝜃 < a
𝜎2

(𝜇−𝜃)2+𝜎2 for a ≤ 𝜃 < 𝜉1

(b−𝜇)(b−a+𝜇−𝜃)−𝜎2

(b−a)(b−𝜃)
for 𝜉1 ≤ 𝜃 < 𝜉2

1 for 𝜉2 ≤ 𝜃

(8)

for UBF, where 𝜉1 = 𝜇 − 𝜎2

b−𝜇
and 𝜉2 = 𝜇 + 𝜎2

𝜇−a
.

In principle, as we have additional summary statistics on 𝜃 or more information about the unknown F(𝜃), the p-box
becomes tighter (Figure 1). Explicit formulas for other s have a complex form (see Appendix A.0.3 for an example where
 = {a, b,m, 𝜇}) and are generally difficult to derive.21 In general, we can derive further cases by intersecting the p-boxes
of differents described above (termed as primitive p-boxes) by “tracing” the minimum (or maximum) of the intersection
of the corresponding UBFs (or LBFs). More formally, for each d (where d indexes each combination of available data),
the LBF and UBF are given by:

F(𝜃) = max F1
(𝜃)F2

(𝜃) … Fn
(𝜃) (9)

and

F(𝜃) = min F1(𝜃)F2(𝜃) … Fn(𝜃), (10)

respectively.

4 PARAMETER UNCERTAINTY PROPAGATION

In a modeling study, we typically have heterogeneity in the amount of and indirectness or imprecision in the available
data used to estimate 𝜽. In principle, each 𝜃i ∈ 𝜽, based on the data availability and the chosen representation of its
uncertainty, falls into of the following subsets of 𝜽: (1) 𝜽f for parameters with fixed values (no uncertainty), (2) 𝜽c for
parameters known up to their precise CDFs, and (3) 𝜽b for parameters known up to their s. In some cases, practitioners
may have access to information that is sufficient for specifying probability distributions of parameters (𝜽c). This section
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F I G U R E 1 P-boxes (solid) with different s and a normal CDF (dashed). CDF: cumulative distribution function [Colour figure can be
viewed at wileyonlinelibrary.com]

presents the parameter uncertainty propagation step of PBA in the context of 𝜽b only and a mix of 𝜽c and 𝜽b. First, we
describe the intuition behind the propagation and proceed with an algorithm.

4.1 Propagating p-boxes

We recall that uncertainty propagation in PSA works as follows: each parameter value is sampled from its precise CDF,
typically using the inverse transform sampling method if the inverse of the CDF is explicitly known. For PBA, we use the
same idea with one modification, that is, we sample an interval of values instead of a single value. The sampling scheme
loosely mimics the inverse transform sampling. For each p ∈ [0, 1] (the image of the CDF), we “sample” an interval by
using the inverses of the LBF and UBF. To mitigate the computational burden, instead of sampling the intervals for
all values in [0, 1], we partition the image of the CDF into finite sub-intervals. For each sub-interval and its endpoints,
we calculate the corresponding interval of parameter values using the inverse p-box. The choice of how to evaluate the
endpoints of the sub-interval, for example, using the LBF (UBF) for the upper (lower) endpoint, determines the accuracy
of the approximation due to discretization. We assign a probability to the interval based on the length of the sub-interval.
We then repeat the process for each parameter. Since there are multiple possible realizations (equal to the number of
sub-intervals) for each parameter, we need to consider all possible combinations of sub-intervals across all parameters, for
example, using a Cartesian product. The probability of each possible combination (henceforth termed as a hyperrectangle)
is computed by multiplying the probabilities assigned to the sub-intervals comprising the combination because of our
independence among parameters assumption. After specifying an approach for sampling hyperrectangles from p-boxes,
we need to prescribe a method to evaluate our model using the sampled intervals. One approach is based on optimization,
where the goal is to find a pair of optima, that is, the minimum and maximum values of the model outcome for each
possible hyperrectangle. The probability of observing a pair of optimum values is equal to the sampling probability of the
corresponding hyperrectangle. To obtain the p-box of the model outcome, we cumulate the probabilities of each minimum
(maximum) to derive the UBF (LBF).

http://wileyonlinelibrary.com
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(A)

(B) (C)

F I G U R E 2 Outer discretization approach for approximating the p-box of the model parameter 𝜃i. Sub-figure A shows the sampling of
an interval using the quasi-inverse of the p-box, given a particular sub-interval in [0, 1]. Sub-figure B and C Show the accuracy of the
approximation when using, n𝜃i

= 10 and n𝜃i
= 50, respectively [Colour figure can be viewed at wileyonlinelibrary.com]

Formally, to propagate the uncertainty of the set 𝜽b into , we proceed with the following steps. First, for each
𝜃i ∈ 𝜽b, we derive its p-box given i. Next, we specify the approach for generating interval-valued samples. To build intu-
itions about how the sampling works, we use a full-factorial-design approach, that is, the slicing algorithm with outer
discretization.22 For each 𝜃i, the interval [0, 1] is partitioned into n𝜃i sub-intervals with its corresponding probability mass
mj (j ∈ {1, 2, … ,n𝜃i}) such that

∑n𝜃i
j=1mj = 1. For the jth sub-interval, we identify its lower and upper boundary points,

that is, cj
i and dj

i, respectively. Given each pair of boundary points, we calculate the boundary points in the 𝜃i domain by
using the inverse or quasi-inverse of the p-box:

aj
i = F(p)−1

(
cj

i

)
, bj

i = F(p)−1
(

dj
i

)
(11)

These inverse or quasi-inverse functions are derived from their corresponding LBF and UBF (Appendix A.0.4), where
the quasi-inverses are due to the fact that some LBFs and UBFs are not strictly injective functions. Equation 11 corre-
sponds to a particular choice of a discretization, that is, an outer discretization approach (Figure 2). The intervals [aj

i, b
j
i]

and their associated mj collectively form the p-box of 𝜃i.
We denote  as the set of multi-indices where each multi-index corresponds to a particular combination of

sub-intervals of all 𝜃s in 𝜽b:

 =
{

k|k = (k1, k2, … , kn), ki ∈ {1, … ,n𝜃i}
}

(12)

http://wileyonlinelibrary.com
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where n is the number of parameters in 𝜽b and ki indexes the sub-intervals for 𝜃i. For each k ∈ , we denote k as a
hyperrectangle (ie, a Cartesian product of intervals) which is given by:

k =
[

ak1
1 , b

k1
1

]
×
[

ak2
2 , b

k2
2

]
× … ×

[
akn

n , b
kn
n

]
(13)

For each k we calculate its probability mass as follows:

P(k) = mk1 mk2 … mkn (14)

where mki corresponds to the probability mass associated with the kith subinterval of 𝜃i. Equation 14 represents our
assumption about the independence among model parameters since the dependence structure depends on how the prob-
abilities in the Cartesian product are computed. In our case, we multiply the marginal probabilities to get the probabilities
of each k, which is akin to assuming random set independence.12

For each k, we associate two optimization problems whose solutions provide the bounds on a quantity of interest
(model outcome) Y :

Y k = min
𝜽b

(𝜽b,𝜽f ,𝜽c), Y
k
= max

𝜽b
(𝜽b,𝜽f ,𝜽c) (15)

for a particular set of values of 𝜃s in 𝜽f and 𝜽c. The existence of a maximum and a minimum is guaranteed by the Weier-
strass extreme value theorem23 since, in decision-analytic modeling, the model  is typically smooth and k is closed
and bounded (compact). The p-box of Y is therefore characterized by a collection of

[
Y k,Y

k]
and its corresponding

probability mass P(k). The empirical p-box of Y can be calculated as:

F(Y ) =
||∑
i=1

P(ki )Y ki≤Y , Y =
||∑
i=1

P(ki)Y
ki≤Y

(16)

where ki indexes all elements in , || denotes the number of elements in , and 
Y

ki≤Y
is an indicator function.

4.2 Propagating p-boxes and precise CDFs

To propagate uncertainty from both sets 𝜽c and 𝜽b into , we proceed in two steps. First, since the uncertainty of each
parameter in 𝜽c can be characterized by a precise CDF, the uncertainty propagation reduces to a Monte Carlo approach,24

a repeated sampling from a joint distribution of parameters in 𝜽c (if their dependencies are known). Let f (𝜽c) be the joint
distribution. Repeated samplings from f (𝜽c) will generate a sequence of samples of 𝜽c: 𝜽1

c ,𝜽
2
c , … ,𝜽N

c , where N is the total
number of Monte Carlo samples. Second, for each sample 𝜽

l
c (l indexes the parameter in 𝜽c) and each k (Equation 13),

we solve the following optimization problems:

Y k,l = min
𝜽b

(𝜽b,𝜽f ,𝜽
l
c), Y

k,l
= max

𝜽b
(𝜽b,𝜽f ,𝜽

l
c) (17)

and derive Fl(Y ) and F
l
(Y ) using Equation 16. The p-box of Y is then calculated by averaging over the N samples:

F̂(Y ) =
N∑

l=1
= Fl(Y ), ̂F(Y ) =

N∑
l=1

= F
l
(Y ) (18)

Alternatively, if  is relatively linear, we can fix the values of 𝜃 in 𝜽c at their mean values. This approach avoids the
use of repeated sampling and reduces the computational time.

5 APPLICATION OF PBA

This section describes how practitioners can utilize the results of uncertainty propagation using PBA (Equations 16 and
18). First, we introduce notations to fix ideas. Then, we describe an application in decision analysis.
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5.1 Formalism of a decisional problem

A typical decision-making problem in health domains consists of: 1) m competing interventions (eg, new drug vs
usual care), ar (r = 1, … ,m); 2) n decision-relevant outcomes (eg, life expectancy or lifetime cost), Yj (j = 1, … ,n);
3) a mathematical model to evaluate the effect of a on Y as in Section 2.1, Y = (ar|𝜽); 4) k model parameters, 𝜃i
(i = 1, … , k); 5) measures of knowledge or uncertainty about each parameter (eg, precise CDFs or p-boxes) and their
dependencies; 6) a value (or utility) function, U((ar|𝜽)) ∶= U(ar|𝜃), that integrates the evaluation of each interven-
tion on all Yjs; and 7) a choice function capturing a decision rule for choosing the (or set of) optimal intervention(s),
G(U(a|𝜃)) = , where  is the set of optimal interventions. For ease of exposition and without loss of generality,
we assume that  is deterministic. Hence, the states of the world are completely determined by our knowledge
about 𝜽.

5.2 Decision analysis with PBA

We recall that the most commonly used decision rule, that is, expected value maximization, requires the specification of
CDFs in the context of parameter uncertainty.25 Under this choice function, if we can specify all the CDFs Fi(𝜃i), then an
intervention a∗ is chosen if

a∗ = arg max
ar

{
∫
𝜽

U(ar|𝜽)dF(𝜽)
}

(19)

Since the propagation of uncertainty in 𝜽 results in uncertainty in Y (F(Y)), we write a∗ =
arg maxar

{∫Y U(ar|Y)dF(Y)
}

. We note that the calculation of the expected value of Y over its p-box results in an interval
of expected values. The interval includes all expected values that correspond to CDFs enclosed by the p-box. This is
true because the p-box of Y is guaranteed to enclose all CDFs of Y (assuming that the p-boxes of the 𝜃s are properly
specified). Therefore, the expected value of U(ar|Y) for each CDF in the p-box must lie in the interval that is given by
[𝜇(ar), 𝜇(ar)] where 𝜇(ar) and 𝜇(ar) are given by ∫Y U(ar|Y)dF(Y) and ∫Y U(ar|Y)dF(Y), respectively. Given what we
know and assume about the uncertainty of the model parameters, the expected utilities can not be larger (smaller)
than 𝜇(ar) (𝜇(ar)). Furthermore, [𝜇(ar), 𝜇(ar)] is not endowed with an uncertainty measure, that is, we cannot say the
relative plausibilities of each value in the interval. Therefore, we cannot use the expected value maximization for PBA.
Instead, the decision rule is based on finding the optimal intervention by comparing the intervals [𝜇(ar), 𝜇(ar)] of all
interventions (ar).

Suppose that we have two competing interventions, that is, a1 and a2, with their corresponding intervals [𝜇(a1), 𝜇(a1)]
and [𝜇(a2), 𝜇(a2)], respectively. We conclude that a1 is preferred to a2 if:

Dominance 𝜇(a1) > 𝜇(a2) and 𝜇(a1) > 𝜇(a2)
Pessimist 𝜇(a1) > 𝜇(a2)
Optimist 𝜇(a1) > 𝜇(a2)
Hurwicz criterion 𝛼𝜇(a1) + (1 − 𝛼)𝜇(a1) > 𝛼𝜇(a2) + (1 − 𝛼)𝜇(a2)

The 𝛼 in the Hurwicz decision criterion captures a decision-maker’s relative attitude towards being overly pessimistic.
The choice of the decision rule is decisional-problem dependent and is typically driven by the type of outcomes and the
decisionmaker’s risk preference.

6 CASE STUDIES

We conduct two case studies. The first case study uses a hypothetical Markov cohort model to examine the char-
acteristics of PBA and demonstrate the difference between PBA and PSA. The second case study is based on a
published early assessment of the cost-effectiveness of a computer-assisted total knee replacement in the absence
of clinical trial data.26 The models are coded in R27 and available under a GNU GPL license and can be found at
https://github.com/rowaniskandar/PBA.
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F I G U R E 3 A state-transition model diagram used in case study 1

6.1 Case study 1

We consider a generic four-state stochastic (Markov) cohort model as our , which is commonly used in DAM and CEA
studies,1 with the following health states S = {S1, S2, S3, S4} (Figure 3), where S4 is an absorbing state. We assume that
the probability distributions for the rates of transitions S1 → S3 (c2), S2 → S3 (c4), and S2 → S4 (c5) are known or that
our knowledge is sufficient for precise specifications of CDFs. We fix the values of the four parameters at their mean
values: c2 = 0.01, c3 = 0.001, c4 = 0.1, and c5 = 0.05. For c1 (rates of transitions S1 → S2) and c6 (rates for S3 → S4), we
conduct two sets of comparisons. First, we compare the following scenarios: 1) the PBA scenario where the uncertain-
ties in c1 and c6 are modeled using p-boxes with  = {a = 0, b = 10, 𝜇 = 0.05, 𝜎 = 0.00033} and  = {a = 0, b = 10, 𝜇 =
1, 𝜎 = 0.0167}, respectively, and 2) the uncertainties in both rates are precisely specified using a gamma distribution
with the same s as in the PBA scenario. For the latter scenario, the uncertainty propagation follows the PSA approach.
This comparison demonstrates the effect of different degrees of conservatism, that is, precise vs imprecise CDFs, on
the resulting uncertainty in the model outcome. For the second comparison, we assume that only the minimum and
maximum values of c1 and c6 are available to illustrate how PBA treats extreme data sparsity with fewer assumptions
when compared to the common practice of using uniform distributions. For the model outcome of interest, we cal-
culate the expected residence time in states other than S4 (Figure 4). For uncertainty propagation with precise CDFs,
we use the support point method28 for sampling from the gamma and uniform distributions with N = 50. For uncer-
tainty propagation using p-boxes (Equation 16), we apply a deterministic search algorithm based on systematic divisions
of the domain (Equation 13) into smaller hyperrectangles29 and use the implementation of the nlopt library30 in the
R program.31

The first comparison shows the difference between the results of a parameter uncertainty propagation into a model
outcome using precise CDFs (gamma distribution) vs p-box. A PBA results in a p-box enclosing the unknown CDF
of the model outcome instead of a precise CDF (Figure 4A). The p-box gives additional information: (1) the amount
of uncertainty in the model outcome due to our imperfect or complete lack of knowledge about some model param-
eters, which is indicated by the area enclosed by the p-box and (2) the plausible values of the model outcome, which
is indicated by the model outcome values with non-zero probabilities. The latter suggests the minimum and maxi-
mum achievable values of the model outcome. We also note that the accuracy of the empirical LBF and UBF increases
with the number of sub-intervals (n𝜃i ) of each parameter (Figure 5). The second comparison showcases the implica-
tions of how uncertainty due to a severe lack of data about parameter values is modeled (Figure 4B). Uncertainty
propagation with a uniform distribution results in a model outcome’s CDF that gravitates towards a central tendency
and, essentially, “eliminates” our ignorance. In contrast, the result of PBA preserves our ignorance. Furthermore, we
observe that the plausible values of the model outcome under uniform distributions are concentrated in the leftmost
region of the support, thereby discounting the possibility of having high values. Conversely, PBA produces bounds
on the model outcome while maintaining the plausibility of a wide range of values. This observation highlights the
potential peril of assuming a precise form of a CDF, particularly when the model outcome represents an undesirable
outcome.
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F I G U R E 4 Uncertainty around model outcome of 4-state model using p-boxes vs precise CDFs for c1 and c6. Sub-figure A portrays the
comparison of the uncertainties in the model outcome resulting from a p-box and a gamma distribution. Each (.) corresponds to the different
combination of available data on parameter (𝜃b). As more information is available, the p-box enclosing the unknown precise CDF becomes
tighter. Sub-figure B illustrates the comparison between a p-box and a uniform distribution and demonstrates how p-box is more honest in
representing the uncertainty, given information only on the minimum and the maximum values of the model parameters. CDF: cumulative
distribution function [Colour figure can be viewed at wileyonlinelibrary.com]

6.2 Case study 2

We replicate a published cost-effectiveness analysis of a computer-assisted total knee replacement (CA-TKR) vs a
conventional TKR.26 We develop a Markov model with the following states: TKR operation for a knee problem, normal
health after primary TKR, TKR with minor complications, TKR with serious complications, simple revision operation for
treating complications, complex revision operation for treating complications, other non-revision treatments for compli-
cations, normal health after TKR revision, and death. The analytical period is 10 years with a monthly time-step. For the
transition probabilities which could not be estimated from available data, that is, transitions to serious complication from
minor complication or other treatment, transitions to minor complication from other treatment or serious complication,
and transitions to simple revision from other treatment or vice versa, the authors assumed that their values are identical
to the estimated mean values for the same transitions from other states. We relax these assumptions and, instead, subject
the six transition probabilities and the efficacy of CA-TKR to an uncertainty analysis using PBA and PSA with data only
on the mean, minimum, and maximum values. For probabilities and the efficacy parameters, we use beta and gamma
distributions, respectively. Since the study does not report the variances, we assume that the SD is 20% of the mean value.
We conduct two uncertainty analyses in which we vary the minimum and maximum values (ranges) of the seven param-
eters of interest, that is, the ranges reported in the study and wider ranges of values (ten times the original ranges). For
the other parameters, we fix them at their mean values (see tab. 2 in the original study26). For the cost-effectiveness mea-
sure, we calculate the incremental net monetary benefit (INMB) and estimate its empirical CDF (PSA) and p-box (PBA),
given a willingness-to-pay threshold of £30 000 per quality-adjusted life year. The cost-effectiveness analysis is conducted
from the National Health Services’ perspective and uses 3.5% as the discount rate. We use all the data and assumptions
that are reported in the study and make reasonable assumptions whenever the data is not available in the published arti-
cle. For more details on the model structure and estimation and their assumptions, we refer the readers to the original
study.26

Using the PSA approach where we assume precise specifications of the CDF and use the published ranges, the
CDF of the INMB lies entirely to the right of zero in Figure 6, that is, CA-TKR is always cost-effective at the given
willingness-to-pay threshold. In contrast, the PBA approach using the same ranges results in a p-box of the INMB, a
marginal part of which is to the left of the zero line, that is, CA-TKR is not cost-effective at the given willingness-to-pay
threshold. We observe a wider range of plausible INMB values for PBA when compared to that of PSA, that is, [−£17 025,

http://wileyonlinelibrary.com
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F I G U R E 5 The accuracies of the approximations of the p-box of the model outcome as a function of the increasing numbers of
sub-intervals (n𝜃i

) (as indicated by the numbers in the parentheses) for each parameter in 𝜃b, given data on a, b 𝜇, and 𝜎. CDF: cumulative
distribution function [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 6 Uncertainties around the incremental net monetary benefit of computer-assisted vs conventional total knee replacement
surgeries using (1) precise CDFs, (2) p-boxes with published minimum and maximum values, and (3) p-boxes with extreme minimum and
maximum values. The dashed vertical line lies at the zero INMB. The ranges of plausible values are [£42 642, £226 579], [−£17 025, £290 681],
and [− £10 509 248, £383 278] for precise CDF, p-box (published ranges), and p-box (extreme ranges), respectively. CDF: cumulative
distribution function [Colour figure can be viewed at wileyonlinelibrary.com]

£290 681] vs [£42 642, £226 579], which indicates more uncertainty in the cost-effectiveness of the CA-TKR. If we
consider a wider range of possible values for each of the seven parameters, the p-box stretches to minimum
and maximum plausible values of -£10 509 248 and £383 278, respectively. This observation indicates that
the uncertainty in the INMB is sensitive to the assumed ranges of values. Therefore, the cost-effectiveness of
CA-TKR is overestimated when we assume rather narrow ranges for model parameters for which we lack reliable
data.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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7 DISCUSSION

This study introduces the probability bound analysis method for quantifying the effect of parameter uncertainty on
decision-relevant outcomes that is distribution-free. This article is the first study that examines the utility of PBA in
DAM and CEA studies. Although our contribution focuses mainly on medical decision-making and economic evalua-
tion fields, the methodologies apply to many studies using mathematical models to inform policy decisions.32 To assist
practitioners, we provide p-box formulas for the most common situations of data availability. We show an approach for
propagating p-boxes into a black-box model where the uncertainty of the model parameters is characterized by a com-
bination of p-boxes and precise distribution functions. We conduct two case studies to demonstrate the methodological
characteristics and practical application of PBA.

7.1 Advantages of PBA

The novel approach allows practitioners to conduct probabilistic assessments even when extremely little reliable
empirical information is available about the distributions of model parameters. In PBA, parameter uncertainties are
characterized by p-boxes that provide the maximum area of uncertainty (tightest bounds) containing the unknown distri-
bution function, given knowledge about the summary statistics of the parameters. For basic binary operations (addition,
subtraction, multiplication, and division),20,33 the derived p-box of a model outcome is optimal in the following sense:
one can not find other tighter bounds without excluding some of the plausible CDFs. However, p-box computations
using basic operations cannot be easily extended to black-box models.34 Nevertheless, the uncertainty propagation of
p-boxes into a black-box model, using optimization (Equation 15), generates bounds that are guaranteed to enclose all
possible CDFs of the model outcome provided that the parameter p-boxes enclose their respective distributions, with-
out the assurance of the optimality of the bounds.14 PBA is based on two existing approaches. First, we believe that a
parameter value can be bounded in some intervals without specifying the relative plausibility over the interval (interval
analysis35). Second, we assert that the parameter uncertainty can be represented by a probability (probability theory36).
When taken together, PBA models the uncertainty using a CDF, but the CDF is not precisely specified and assumed
to be located within an interval containing all possible CDFs. In a way, a PBA gives an identical answer as an inter-
val analysis whenever the range is the only accessible information. If the lower and upper bounds of a CDF coincide
for every element in the support, then a p-box degenerates to a CDF: a situation where Monte Carlo simulation is the
standard approach. Therefore, a PBA is a generalization of the two standard approaches for representing parameter uncer-
tainty. In addition, a PBA is an improvement over both approaches for situations where one approach is not sufficient by
itself.

One decision-relevant information from the results of a PBA, as demonstrated in our case studies, is the bounds on
the plausible values of a model outcome. This information is particularly useful when the model outcome represents
a negative outcome (or a catastrophic event).37 The p-box of a model outcome suggests that the outcome will not be
smaller (or larger) than a minimum (or maximum), which can be identified by the infimum (supremum) of the support
of the UBF (LBF). The standard approach in DAM and CEA studies, that is, the (over-) reliance on using “off-the-shelf”
probability distributions for characterizing uncertainties about model parameters, may potentially lead to an under-
estimation of the probability of observing extreme values of the model outcome. Using probability distributions may
also assume more information about uncertainty than that is supported by the current evidence base. These errors in
estimating probabilities in the context of insufficient data or a complete lack of knowledge may contribute to overconfi-
dence and lead to a failure to insure ourselves against highly consequential risks.38 Our first case study also highlights
the consequence of using a uniform distribution, the most common approach for modeling ignorance about a param-
eter. Although using a uniform distribution may be justifiable as the embodiment of the principle of indifference,39,40

this “all are equally likely” assumption significantly discounts the possibility of the extremes. On the other hand, PBA
can, loosely speaking, transfer our ignorance about parameter values to ignorance about a model outcome. The second
case study26 represents a real-world setting where we lack the data to inform some of the key parameters, including
the efficacy of the novel technology and probabilities of adverse events. The authors of the original study failed to
adequately represent the uncertainties in these parameters by prescribing narrow ranges. In our re-analysis, our PBA
approach yields a wider p-box of the INMB (more uncertainties) when assuming wider ranges of values. Moreover, the
PBA does not require any assumptions about the SDs (cf. Equations 5 and 6). Although we are not able to exactly repli-
cate the published results due to missing information on the variances, our qualitative result is still valid. Regardless
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of the value of the variances, the conclusion on whether CA-TKR is cost-effective is sensitive to the assumed ranges
of values.

7.2 Computational costs

PBA is computationally intensive for the following reasons. First, an implementation of a PBA requires an optimization
step over the p-box. In this study, we use a full factorial design that transforms the problem of propagating a p-box into
propagation of a large number of intervals. The higher the required level of accuracy is, the higher number of intervals n𝜃i

is needed. Furthermore, an increase in the number of p-box parameters will lead to a higher-dimensional optimization
problem. Second, the computational burden is further exacerbated if the black-box model () is “expensive” to evaluate
for a given 𝜽. Third, if, in addition to p-box parameters, some parameters are characterized by their CDFs, the optimiza-
tion step is embedded in a Monte Carlo sampling loop (Section 4.2); thereby increasing the number of optimizations by a
factor of N (the total number of Monte Carlo samples). To mitigate the computational burden, users of PBA may opt to use
less conservative p-box propagation approaches,41 more efficient optimization methods,42 and fast-to-evaluate approxi-
mations of the original model or meta-models.43 Nevertheless, we expect a higher computational burden since a PBA
imposes fewer restrictions (ie, we do not assume a functional form), leading to a larger region of uncertainty over which
a model needs to be evaluated.

7.3 Relation to other methods

PBA is generally regarded as one of the uncertainty quantification approaches related to the theory of imprecise
probability.14,44 In particular, a p-box is closely connected to Dempster-Shafer’s theory of evidence.12,45,46 The LBF
and UBF can be interpreted as belief and plausibility measures for the event 𝜃 taking values than a particular value
{𝜃 ≤ x}.12 In Dempster-Shafer’s theory, the belief function describes the minimum amount of probability that must
be associated with the event, whereas the plausibility function describes the maximum amount of probability that
might be associated with the same event. The PBA framework is also related to Bayesian sensitivity analysis (or robust
Bayesian analysis).47 In this approach, an analyst’s uncertainty about which prior distribution and likelihood func-
tion should be used is characterized by an entire class of prior distributions and likelihood functions. The analysis
proceeds by studying various outcomes for each possible combination of prior distribution and likelihood function.
Another distribution-free approach is the Chebyshev inequality48 that can be used to compute bounds on the CDF
of a random variable, given the mean and SD of the random variable. However, the inequality cannot produce a
tighter bound even if we have more data (eg, median). Kolmogorov-Smirnov (KS) confidence limits48 also provide
distribution-free bounds on an empirical CDF. The calculation of KS limits requires, however, requires access to sample
data.

7.4 Limitations

Our study has limitations in the following context. First, we assume independence among the model parameters. To the
extent of our knowledge, how to model dependencies among the parameters in the context of uncertainty propagation
using PBA and black-box models is an open problem. One potential approach for modeling dependencies among parame-
ters is to use a copula to represent the joint uncertainty of all parameters.49 A copula approach factors the joint CDF into a
product of independent marginal CDFs and a copula that capture the dependencies. In this formulation of bounds using
a joint CDF, the overall bound is a function of the bounds on CDFs for some parameters represented by their p-boxes
and the bounds of the copula. The potentially promising approach using copula warrants further study and is, however,
beyond the scope of our study. Second, our study does not address the question of when one should consider using p-box
vs assuming a particular CDF to characterize uncertainty. Instead of being prescriptive, we defer such decisions to the
analysts because the level of uncertainty at which a p-box is the preferred approach is problem-dependent. For example,
a parameter may be highly uncertain due to the lack of empirical data and/or previous knowledge and, at the same time,
non-influential, that is, the model outcome is not sensitive to variations in the parameter values. Third, we provide a rudi-
mentary treatment on how to make decisions using the results of a PBA. In situations where best-case/worst-case results
are the basis for decision making, the analytical interval approach is preferred to assuming a distribution (eg, uniform)
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and performing a simulation, particularly when that distribution may not correctly describe the parameters. A more com-
prehensive treatment of decision-making based on interval values or bounds on probability distributions is needed, and
it should be a focus of future studies on uncertainty quantification in decision-analytic modeling and cost-effectiveness
analysis.

8 CONCLUDING REMARKS

This study addresses limitations in current methodologies for characterizing uncertainty in data and knowl-
edge used to inform mathematical models. The novel methodology maximizes the use of existing limited
information with the fewest number of assumptions and provides a way to honestly characterize the uncer-
tainty in the model parameters distributions used in decision-analytic modeling and cost-effectiveness analysis
studies.

ACKNOWLEDGEMENTS
I would like to thank Shaun Forbes and Thomas Trikalinos for introducing me to the world of imprecise probabili-
ties or Knightian uncertainty. I would like to acknowledge the COMED consortium for their excellent support. I am so
thankful to Cassandra Berns for her help in deriving some of the inverses and plotting the figures. I am grateful to Kosta
Shatrov and Vishahan Suntharam for their reviews. This project received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement 779306 (COMED-Pushing the Boundaries of Cost and
Outcome Analysis of Medical Technologies).

CONFLICT OF INTEREST
We have no conflict of interest to declare.

ORCID
Rowan Iskandar https://orcid.org/0000-0001-8680-4824

REFERENCES
1. Hunink MM, Weinstein MC, Wittenberg E, et al. Decision Making in Health and Medicine: Integrating Evidence and Values. Cambridge,

MA: Cambridge University Press; 2014.
2. Drummond MF. Modeling in early stages of technology development: is an iterative approach needed? comment on “problems and

promises of health technologies: the role of early health economic modeling”. Int J Health Policy Manag. 2020;9(6):260.
3. Rothery C, Claxton K, Palmer S, Epstein D, Tarricone R, Sculpher M. Characterising uncertainty in the assessment of medical devices and

determining future research needs. Health Econ. 2017;26:109-123.
4. WHO. WHO Guide for Standardization of Economic Evaluations of Immunization Programmes. Geneva, Switzerland: World Health

Organization; 2019.
5. Briggs AH, Weinstein MC, Fenwick EA, Karnon J, Sculpher MJ, Paltiel AD. Model parameter estimation and uncertainty analysis: a report

of the ISPOR-SMDM modeling good research practices task force working group–6. Med Decis Mak. 2012;32(5):722-732.
6. Dahabreh IJ, Trikalinos TA, Balk EM, Wong JB. Recommendations for the conduct and reporting of modeling and simulation studies in

health technology assessment. Ann Intern Med. 2016;165(8):575-581.
7. Sanders GD, Neumann PJ, Basu A, et al. Recommendations for conduct, methodological practices, and reporting of cost-effectiveness

analyses: second panel on cost-effectiveness in health and medicine. JAMA. 2016;316(10):1093-1103.
8. Council NR. Assessing the Reliability of Complex Models: Mathematical and Statistical Foundations of Verification, Validation, and

Uncertainty Quantification. Washington, D.C: National Academies Press; 2012.
9. Helton JC, Johnson JD. Quantification of margins and uncertainties: alternative representations of epistemic uncertainty. Reliab Eng Syst

Saf . 2011;96(9):1034-1052.
10. Lee SH, Chen W. A comparative study of uncertainty propagation methods for black-box-type problems. Struct Multidiscip Optim.

2009;37(3):239.
11. O’Hagan A, Buck CE, Daneshkhah A, et al. Uncertain Judgements: Eliciting Experts’ Probabilities. Hoboken, NJ: John Wiley & Sons; 2006.
12. Ferson S, Kreinovich V, Grinzburg L, Myers D, Sentz K. Constructing Probability Boxes and Dempster-Shafer Structures. Albuquerque, NM:

United States: Sandia National Lab.(SNL-NM); 2015.
13. Liu X, Yin L, Hu L, Zhang Z. An efficient reliability analysis approach for structure based on probability and probability box models. Struct

Multidiscip Optim. 2017;56(1):167-181.
14. Beer M, Ferson S, Kreinovich V. Imprecise probabilities in engineering analyses. Mech Syst Signal Process. 2013;37(1-2):4-29.
15. Enszer JA, Lin Y, Ferson S, Corliss GF, Stadtherr MA. Probability bounds analysis for nonlinear dynamic process models. AICHE J.

2011;57(2):404-422.

https://orcid.org/0000-0001-8680-4824
https://orcid.org/0000-0001-8680-4824


6516 ISKANDAR

16. Kriegler E, Held H. Utilizing belief functions for the estimation of future climate change. Int J Approx Reason. 2005;39(2-3):185-209.
17. Nong A, Krishnan K. Estimation of interindividual pharmacokinetic variability factor for inhaled volatile organic chemicals using a

probability-bounds approach. Regul Toxicol Pharmacol. 2007;48(1):93-101.
18. Iskandar R. A theoretical foundation for state-transition cohort models in health decision analysis. PLoS One. 2018;13(12):e0205543.
19. Doubilet P, Begg CB, Weinstein MC, Braun P, McNeil BJ. Probabilistic sensitivity analysis using Monte Carlo simulation: a practical

approach. Med Decis Mak. 1985;5(2):157-177.
20. Williamson RC, Downs T. Probabilistic arithmetic. I. numerical methods for calculating convolutions and dependency bounds. Int

J Approx Reason. 1990;4(2):89-158.
21. Ferson S, Ginzburg L. Different methods are needed to propagate ignorance and variability. Reliability Engineering & System Safety.

1998;54(2-3):133-144.
22. Zhang H, Mullen RL, Muhanna RL. Interval Monte Carlo methods for structural reliability. Struct Saf . 2010;32(3):183-190.
23. Rudin W. Principles of Mathematical Analysis. Vol 3. New York, NY: McGraw-Hill; 1964.
24. Cullen AC, Frey HC, Frey CH. Probabilistic Techniques in Exposure Assessment: A Handbook for Dealing with Variability and Uncertainty

in Models and Inputs. Berlin, Germany: Springer Science & Business Media; 1999.
25. Gilboa I. Theory of Decision Under Uncertainty. Vol 45. Cambridge, MA: Cambridge University Press; 2009.
26. Dong H, Buxton M. Early assessment of the likely cost-effectiveness of a new technology: a Markov model with probabilistic sensitivity

analysis of computer-assisted total knee replacement. Int J Technol Assess Health Care. 2006;22(2):191-202.
27. R Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria: 2019,

https://www.R-project.org/.
28. Mak S, Joseph VR. Support points. Ann Stat. 2018;46(6A):2562-2592.
29. Gablonsky JM, Kelley CT. A locally-biased form of the DIRECT algorithm. J Glob Optim. 2001;21(1):27-37.
30. Ypma J, Borchers HW, Eddelbuettel D, Ypma MJ. Package ’nloptr’; 2020. https://cran r-project org/package= nloptr.
31. Ypma J. Introduction to nloptr: an R interface to NLopt. R Package; 2014:2.
32. Den Boon S, Jit M, Brisson M, et al. Guidelines for multi-model comparisons of the impact of infectious disease interventions. BMC Med.

2019;17(1):163.
33. Ferson S, Hajagos JG. Arithmetic with uncertain numbers: rigorous and (often) best possible answers. Reliab Eng Syst Saf .

2004;85(1-3):135-152.
34. Aughenbaugh JM, Paredis CJ. Probability bounds analysis as a general approach to sensitivity analysis in decision making under

uncertainty. SAE Transactions. 2007;116:1325-1339.
35. Alefeld G, Herzberger J. Introduction to Interval Computation. New York, NY: Academic Press; 2012.
36. Savage LJ. The Foundations of Statistics. New York, NY: Dover Publications; 1972.
37. Tucker WT, Ferson S. Probability Bounds Analysis in Environmental Risk Assessment. Setauket, New York, NY: Applied Biomathematics;

2003.
38. Taleb NN. Black swans and the domains of statistics. Am Stat. 2007;61(3):198-200.
39. Norton JD. Ignorance and indifference. Philos Sci. 2008;75(1):45-68.
40. Laplace PS. Marquis de: Théorie analytique des probabilités. Par M le comte Laplace Paris; 1812.
41. Schöbi R, Sudret B. Uncertainty propagation of p-boxes using sparse polynomial chaos expansions. J Comput Phys. 2017;339:307-327.
42. Deng W, Yang X, Zou L, Wang M, Liu Y, Li Y. An improved self-adaptive differential evolution algorithm and its application. Chemom

Intell Lab Syst. 2013;128:66-76.
43. Ellis AG, Iskandar R, Schmid CH, Wong JB, Trikalinos TA. Active learning for efficiently training emulators of computationally expensive

mathematical models. Stat Med. 2020;39(25):3521-3548.
44. Augustin T, Coolen FP, De Cooman G, Troffaes MC. Introduction to Imprecise Probabilities. Hoboken, NJ: John Wiley & Sons; 2014.
45. Dempster AP. Upper and lower probabilities induced by a multivalued mapping. Classic works of the Dempster-Shafer theory of belief

functions. New York, NY: Springer; 2008:57-72.
46. Shafer G. A Mathematical Theory of Evidence. Vol 42. Princeton, NJ: Princeton University Press; 1976.
47. Berger JO. Robust Bayesian analysis: sensitivity to the prior. J Stat Plan Infer. 1990;25(3):303-328.
48. Saw JG, Yang MC, Mo TC. Chebyshev inequality with estimated mean and variance. Am Stat. 1984;38(2):130-132.
49. Joe H. Multivariate Models and Multivariate Dependence Concepts. Boca Raton, FL: CRC Press; 1997.

How to cite this article: Iskandar R. Probability bound analysis: A novel approach for quantifying parameter
uncertainty in decision-analytic modeling and cost-effectiveness analysis. Statistics in Medicine.
2021;40(29):6501-6522. https://doi.org/10.1002/sim.9195

https://www.r-project.org/


ISKANDAR 6517

APPENDIX A

A.1 Derivation of p-box formulas
In this section, we show a heuristic approach for deriving a p-box for  = {a, b, 𝜇, 𝜎} as an exemplar of other . We use
the same notations and definitions as described in the main text.

The LBF of the p-box, a,b,𝜇,𝜎 is given by:

F(𝜃) =

⎧⎪⎪⎨⎪⎪⎩

0 for 𝜃 < 𝜉1
𝜎2+(b−𝜇)(𝜃−𝜇)
(b−a)(𝜃−a)

for 𝜉1 ≤ 𝜃 < 𝜉2
(𝜃−𝜇)2

(𝜃−𝜇)2+𝜎2 for 𝜉2 ≤ 𝜃 < b

1 for b ≤ 𝜃

(A1)

Let  denote the set of all CDFs (F(𝜃)), that are consistent with the minimal data: {a, b, 𝜇, 𝜎}. From the definitions of
a CDF, any F(𝜃) ∈  satisfies: 0 ≤ F(𝜃) ≤ 1, F(a) = 0, and F(b) = 1 (denoted collectively as Assumption (*)). Let ft be the
probability density function. Using the formula for a mean, we obtain the following equation:

𝜇 = bF(b) − aF(a) −

b

∫
a

F(𝜃)d𝜃 = b −

b

∫
a

F(𝜃)d𝜃

and the following relation:

b

∫
a

F(𝜃)d𝜃 = b − 𝜇 = S(𝜃) (A2)

Since we know the SD 𝜎, we have:

𝜎2 =

b

∫
a

𝜃2f (𝜃)d𝜃 − 𝜇2

= 2

b

∫
a

S(𝜃)d𝜃 − (b − 𝜇)2

or

b

∫
a

S(𝜃)d𝜃 = 1
2
(
𝜎2 + (b − 𝜇)2) (A3)

Since the derivative of S(𝜃) is equal F(𝜃), then:

0 ≤ S′(𝜃) ≤ 1 (A4)

To derive the LBF, we consider three cases depending on the value of 𝜃. The first case is a ≤ 𝜃 ≤ 𝜉1. In this interval,
F(𝜃) has a minimum of 0. We want to (1) find F(𝜃) ∈  that (i) satisfies Equations A2 to A4 as well as (*) and (ii) takes
the value of 0 ∀𝜃 ≤ 𝜉1 and (2) determine the maximum value of 𝜉1. For 𝜉1 to be a maximum, the following has to be true:
the maximum area under S(𝜃) is concentrated in 𝜉1 < 𝜃 ≤ b. Since S′(𝜃) = F(𝜃) is non-decreasing, the maximum area will
be obtained if F(𝜃) is constant (or S(𝜃) is linear) over 𝜉1 < 𝜃 ≤ b. Using Equation A3 to compute the area under S(𝜃), we
obtain the following equality:

1
2
(b − 𝜉1)(b − 𝜇) = 1

2
(
𝜎2 + (b − 𝜇)2)
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Solving for 𝜉1, we have:

𝜉1 = 𝜇 − 𝜎2

b − 𝜇
(A5)

Therefore, for x ≤ 𝜉1 and x > 𝜉1, F(𝜃) = 0 and F(𝜃) = b−𝜇
b−𝜉1

= (b−𝜇)2

(b−𝜇)2+𝜎2 , respectively.
The second case is 𝜉1 < 𝜃 ≤ 𝜉2. Since 𝜃 > 𝜉1, then F(𝜃) ≠ 0. To find the minimum possible F(𝜃), we need to concentrate

the maximum area under F(𝜃) to the left of 𝜃. This is only possible when F(𝜃) is constant (similar to the above) and takes
different (constant) values, depending on whether the interval is to the left or right of 𝜃. Geometrically, the shape of F(𝜃)
follows a step function. Using Equation A3 to compute the area under S(𝜃), we obtain the following equality:

1
2
(𝜃 − a)S(𝜃) + 1

2
(S(𝜃) + b − 𝜇)(b − 𝜃) = 1

2
(
𝜎2 + (b − 𝜇)2) .

Hence, we have:

F(𝜃) = S(𝜃)
𝜃 − a

= 𝜎2 + (b − 𝜇)(𝜃 − 𝜇)
(b − a)(𝜃 − a)

.

Thus, for a < 𝜃′ ≤ 𝜃:

F(𝜃′) = 𝜎2 + (b − 𝜇)(𝜃 − 𝜇)
(b − a)(𝜃 − a)

(A6)

and, for 𝜃 < 𝜃′ < b, using Equation A2, we have:

F(𝜃′) = (b − 𝜇)(b − a + 𝜇 − 𝜃) − 𝜎2

(b − a)(b − 𝜃)
. (A7)

Since F(𝜃) must be non-decreasing, Equation A7 must be no less than Equation A6:

(b − 𝜇)(𝜇 − a) ≥ 𝜎2; (A8)

otherwise, Equations A2 to A4 as well as (*) are not satisfied. We also have another condition, that is, Equation A7 must
not exceed 1, or:

𝜃 ≤ 𝜇 + 𝜎2

𝜇 − a
= 𝜉2. (A9)

In sum, for 𝜉1 < 𝜃 ≤ 𝜉2, we obtain:

F(𝜃) = 𝜎2 + (b − 𝜇)(𝜃 − 𝜇)
(b − a)(𝜃 − a)

(A10)

The third case is 𝜉2 < 𝜃 ≤ b. Since 𝜃 > 𝜉2, F(𝜃′) must be equal to 1 for 𝜃′ > 𝜃. In contrast to the second case, for 𝜃′ to
the left of 𝜃, F(𝜃′) can not be strictly constant. To obtain the minimum value of F(𝜃′), we split the interval into 𝜃′ ≤ 𝜉0
and 𝜃′ > 𝜉0 for some 𝜉0: F(𝜃′) = 0 for 𝜃′ ≤ 𝜉0 and F(𝜃′) is constant for 𝜃′ ≤ 𝜉0. As above, using Equation A3 to compute
the area under S(𝜃), we obtain the following equality:

1
2
(𝜃 − 𝜉0)S(𝜃) +

1
2
(S(𝜃) + b − 𝜇)(b − 𝜃) = 1

2
(𝜎2 + (b − 𝜇)2),

or

𝜉0 = 𝜇 − 𝜎2

𝜃 − 𝜇

Therefore, the minimum value of F(𝜃) is given by:

F(𝜃) = (𝜃 − 𝜇)2

(𝜃 − 𝜇)2 + 𝜎2 = F(𝜃)
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Combining the results of the three cases, we obtain Equation 7. The derivation of the UBF follows identical steps: instead
of a minimum, we find the maximum of F(𝜃) and start the derivation from the maximum value of 𝜃 (b). The derivations
of p-boxes for other  follow the same principles, that is, by ensuring that certain constraints are respected.

A.2 P-box as the tightest bound
In this section, we show that a p-box gives the tightest bounds on the unknown CDF, given  = {a, b,m} as an exemplar
of other . We consider only the LBF as the procedure for the UBF follows the same steps. The LBF for  = {a, b,m} is
given by:

F(𝜃) =
⎧⎪⎨⎪⎩

0 for 𝜃 < m
0.5 for m ≤ 𝜃 < b
1 for b ≤ 𝜃

Let  denote the set of all CDFs (F(𝜃)), that have {a, b,m}. From the definitions of a CDF, any F(𝜃) ∈  satisfies:
0 ≤ F(𝜃) ≤ 1, F(a) = 0, and F(b) = 1 (denoted collectively as Assumption (*)). We use a proof by contradiction. Sup-
pose that there exist an LBF G(𝜃) (different from F(𝜃)) and a UBF G(𝜃) (different from F(𝜃)) such that the following
is true:

F(𝜃) ≤ G(𝜃) ≤ F(𝜃) ≤ G(𝜃)F(𝜃) (A11)

Consequently, there exist 𝜃1 ∈ [a, b] such that the following holds true:

F(𝜃1) < G(𝜃1) ≤ F(𝜃1) (A12)

We consider two cases: 𝜃 < m and 𝜃 ≥ m. From Equation 3, we know F(𝜃) = 0 for 𝜃 < m. Therefore, we can find an
𝜃1 ∈ [a,m) such that:

0 < G(𝜃1) ≤ F(x1) (A13)

We pick an F(𝜃) ∈  with the following form:

F(𝜃) =
⎧⎪⎨⎪⎩

G(𝜃1)
2(𝜃1−a)(𝜃−a)

for a ≤ 𝜃 < 𝜃1
1
2

G(𝜃1) +
1−G(𝜃1)
2(m−𝜃1)

(𝜃 − 𝜃1) for 𝜃1 ≤ 𝜃 < m
(A14)

The form is chosen specifically for ensuring F(𝜃1) = 1
2

G(𝜃1). Therefore, we have G(𝜃1) > F(𝜃1) which contradicts
Equation A13. In sum, we are able to find F(𝜃) ∈  that does not satisfy the inequality in Equation A11 for the proposed
lower bound G(𝜃) in the interval 𝜃 < m. Furthermore, Equation A11 is violated for any value of G(𝜃) > 0. Hence, the
lower boundary for 𝜃 < m can not take positive values which contradicts our assumption about the existence of G(𝜃) that
is different than F(𝜃).

We follow the same approach for 𝜃 ≥ m. From Equation 3, F(𝜃) = 1
2
. Therefore, we can find an 𝜃1 ∈ [m, b] such

that:

1
2
< G(𝜃1) ≤ F(x1) (A15)

We choose an F(𝜃) ∈  with the following form:

F(𝜃) =
⎧⎪⎨⎪⎩

1
2
+

G(𝜃1)−
1
2

2(𝜃1−m)(𝜃−m)
for m ≤ 𝜃 < 𝜃1

1
4
+ 1

2
G(𝜃1) +

3
2
−G(𝜃1)

2(b−𝜃1)
(𝜃 − 𝜃1) for 𝜃1 ≤ 𝜃 ≤ b

(A16)
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The form is chosen specifically for ensuring F(𝜃1) = 1
2
+ 1

2

(
G(𝜃1) − 1

2

)
. As before, for the proposed lower bound G(𝜃),

we can find an F(𝜃) ∈  that violates inequality (Equation A11). Furthermore, Equation A11 cannot be satisfied for any
value of G(𝜃) > 1

2
. Thus, the lower boundary of 𝜃 ≥ m cannot take any values > 1

2
; thereby contradicting our assumption

about the existence of G(𝜃) that is different than F(𝜃).

A.3 P-box formula for minimum, maximum, mean, and median case
This sections shows the formula for a p-box for  = {a, b,m, 𝜇}. We use the same notations and definitions as described
in the main text.

We define the following new notations:

c = a + b
2

𝜙 = b − 𝜇
b − a

𝛾 = 2𝜇 − a
𝜓 = 2𝜇 − b

𝜇min = a + m
2

𝜇min = m + b
2

The formulas of the p-box depend on the values of the above variables:

1. m < 𝜇, 𝜇 < c, 𝜙 > 1
2

F(𝜃) =
⎧⎪⎨⎪⎩

0 for 𝜃 < m
1
2

for m ≤ 𝜃 < 𝛾
𝜃−𝜇
𝜃−a

for 𝜃 ≥ 𝛾

, F(𝜃) =
⎧⎪⎨⎪⎩

1
2

for 𝜃 ≤ m
b−𝜇
b−𝜃

for m < 𝜃 < 𝜇

1 for 𝜃 ≥ 𝜇

(A17)

2. m < 𝜇, 𝜇 = c, 𝜙 = 1
2

F(𝜃) =

{
0 for 𝜃 < m
1
2

for 𝜃 ≥ m
, F(𝜃) =

⎧⎪⎨⎪⎩
1
2

for 𝜃 ≤ m
b−𝜇
b−𝜃

for m < 𝜃 < 𝜇

1 for 𝜃 ≥ 𝜇

(A18)

3. m < 𝜇, c < 𝜇 < 𝜇max, 𝜙 < 1
2
, m > 𝜓

F(𝜃) =

{
0 for 𝜃 < m
1
2

for 𝜃 ≥ m
, F(𝜃) =

⎧⎪⎨⎪⎩
b−𝜇
b−𝜃

for 𝜃 ≤ 𝜓 or m < 𝜃 < 𝜇
1
2

for 𝜓 < 𝜃 ≤ m
1 for 𝜃 ≥ 𝜇

(A19)

4. m < 𝜇, 𝜇 = 𝜇max, 𝜙 < 1
2
, m = 𝜓

F(𝜃) =

{
0 for 𝜃 < m
1
2

for 𝜃 ≥ m
, F(𝜃) =

{
b−𝜇
b−𝜃

for 𝜃 < 𝜇

1 for 𝜃 ≥ 𝜇
(A20)

5. m = 𝜇, 𝜇 < c, 𝜙 > 1
2

F(𝜃) =
⎧⎪⎨⎪⎩

0 for 𝜃 ≤ 𝜓 or m < 𝜃 < 𝜇
1
2

for 𝜓 < 𝜃 ≤ m
𝜃−𝜇
𝜃−a

for 𝜃 ≥ 𝜙

, F(𝜃) =

{
1
2

for 𝜃 ≤ m
1 for 𝜃 > m

(A21)
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6. m = 𝜇, 𝜇 = c, 𝜙 = 1
2

F(𝜃) =

{
0 for 𝜃 < m
1
2

for 𝜃 ≥ m
, F(𝜃) =

{
1
2

for 𝜃 ≤ m
1 for 𝜃 > m

(A22)

7. m = 𝜇, 𝜇 > c, 𝜙 < 1
2

F(𝜃) =

{
0 for 𝜃 < m
1
2

for 𝜃 ≥ m
, F(𝜃) =

⎧⎪⎨⎪⎩
b−𝜇
b−𝜃

for 𝜃 ≤ 𝜓
1
2

for 𝜓 < 𝜃 ≤ m
1 for 𝜃 > m

(A23)

8. m > 𝜇, 𝜇 = 𝜇min, 𝜙 >
1
2
, m = 𝜓

F(𝜃) =

{
0 for 𝜃 < 𝜇
𝜃−𝜇
𝜃−a

for 𝜃 ≥ 𝜇
, F(𝜃) =

{
1
2

for 𝜓 < 𝜃 ≤ m
1 for 𝜃 > m

(A24)

9. m > 𝜇, 𝜇min < 𝜇 < c, 𝜙 > 1
2
, m < 𝜓

F(𝜃) =
⎧⎪⎨⎪⎩

0 for 𝜃 < 𝜇
𝜃−𝜇
𝜃−a

for 𝜇 ≤ 𝜃 < m or 𝜃 ≥ 𝜙
1
2

for m ≤ 𝜃 < 𝜙

, F(𝜃) =

{
1
2

for 𝜓 < 𝜃 ≤ m
1 for 𝜃 > m

(A25)

10. m > 𝜇, 𝜇 = c, 𝜙 = 1
2

F(𝜃) =
⎧⎪⎨⎪⎩

0 for 𝜃 < 𝜇
𝜃−𝜇
𝜃−a

for 𝜇 ≤ 𝜃 < m
1
2

for 𝜃 ≥ m

, F(𝜃) =

{
1
2

for 𝜓 < 𝜃 ≤ m
1 for 𝜃 > m

(A26)

11. m > 𝜇, 𝜇 > c, 𝜙 < 1
2

F(𝜃) =
⎧⎪⎨⎪⎩

0 for 𝜃 < 𝜇
𝜃−𝜇
𝜃−a

for 𝜇 ≤ 𝜃 < m
1
2

for 𝜃 ≥ m

, F(𝜃) =
⎧⎪⎨⎪⎩

b−𝜇
b−𝜃

for 𝜃 ≤ 𝜓
1
2

for 𝜓 < 𝜃 ≤ m
1 for 𝜃 > m

(A27)

A.4 Quasi-inverse of p-box formulas
The inverse functions of the p-box a,b are given by:

F(p)−1
a,b =

{
[a, b] for p = 0
b for 0 < p ≤ 1

(A28)

for LBF, and,

F(p)−1
a,b =

{
a for 0 ≤ p < 1
[a, b] for p = 1

(A29)

for UBF.
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The inverse functions of the p-box a,b,m are given by:

F(p)−1
a,b,m =

⎧⎪⎪⎨⎪⎪⎩

[a,m] for p = 0
m for 0 < p < 0.5
[m, b] for p = 0.5
b for 0.5 < p ≤ 1

(A30)

for LBF, and,

F(p)−1
a,b,m =

⎧⎪⎪⎨⎪⎪⎩

a for 0 ≤ p < 0.5
[a,m] for p = 0.5
m for 0.5 < p < 1
[m, b] for p = 1

(A31)

for UBF.
The inverse functions of the p-box a,b,𝜇 are given by:

F(p)−1
a,b,𝜇 =

⎧⎪⎨⎪⎩
[a, 𝜇] for p = 0
p∗a−𝜇

p−1
for 0 < p < b−𝜇

b−a

b for b−𝜇
b−a

≤ p ≤ 1

(A32)

for LBF, and,

F(p)−1
a,b,𝜇 =

⎧⎪⎨⎪⎩
a for 0 ≤ p ≤ b−𝜇

b−a
b − b−𝜇

p
for b−𝜇

b−a
< p < 1

[𝜇, b] for p = 1

(A33)

for UBF.
The inverse functions of the p-box a,b,𝜇,𝜎 are given by:

F(p)−1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[a, 𝜉1] for p = 0
pa(b−a)−𝜇(b−𝜇)+𝜎2

p(b−a)−(b−𝜇)
for 0 < p ≤ 𝜎2(b−𝜇) 𝜎2

𝜇−a

(b−a)
(
𝜇−a+ 𝜎2

𝜇−a

)
𝜇 +

√
p𝜎2

1−p
for

𝜎2(b−𝜇) 𝜎2

𝜇−a

(b−a)
(
𝜇−a+ 𝜎2

𝜇−a

) < p < 1

b for p = 1

(A34)

for LBF, and,

F(p)−1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a for p = 0

𝜇 −
√

𝜎2(1−p)
p

for 0 < p ≤ 𝜎2(
𝜎2

b−𝜇

)2
+𝜎2

(b−𝜇)(b−a+𝜇)−𝜎2−pb(b−a)
(b−𝜇)−p(b−a)

for 𝜎2(
𝜎2

b−𝜇

)2
+𝜎2

< p < 1

[𝜉2, b] for p = 1

(A35)

for UBF, where 𝜉1 = 𝜇 − 𝜎2

b−𝜇
and 𝜉2 = 𝜇 + 𝜎2

𝜇−a
.


