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The technology of fluoro-deoxyglucose positron emission tomography (PET†) has drastically
increased our ability to visualize the metabolic process of numerous neurological diseases.
The relationship between the methodological noise sources inherent to PET technology and
the resulting noise in the reconstructed image is complex. In this study, we use Monte Carlo
simulations to examine the effect of Poisson noise in the PET signal on the noise in recon-
structed space for two pervasive reconstruction algorithms: the historical filtered back-pro-
jection (FBP) and the more modern expectation maximization (EM). We confirm previous
observations that the image reconstructed with the FBP biases all intensity values toward
the mean, likely due to spatial spreading of high intensity voxels. However, we demonstrate
that in both algorithms the variance from high intensity voxels spreads to low intensity vox-
els and obliterates their signal to noise ratio. This finding has profound impacts on the clin-
ical interpretation of hypometabolic lesions. Our results suggest that PET is relatively
insensitive when it comes to detecting and quantifying changes in hypometabolic tissue.
Further, the images reconstructed with EM visually match the original images more closely,
but more detailed analysis reveals as much as a 40 percent decrease in the signal to noise
ratio for high intensity voxels relative to the FBP. This suggests that even though the ap-
parent spatial resolution of EM outperforms FBP, the signal to noise ratio of the intensity of
each voxel may be higher in the FBP. Therefore, EM may be most appropriate for manual
visualization of pathology, but FBP should be used when analyzing quantitative markers of
the PET signal. This suggestion that different reconstruction algorithms should be used for
quantification versus visualization represents a major paradigm shift in the analysis and in-
terpretation of PET images.
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iNTrOducTiON

Positron emission tomographic (PET)

images play a major role in the treatment

and management of a growing number of

maladies. In most cases, the interpretation of

these images relies on the detection of high

intensity lesions by quantifying the relative

distribution of a radioactively decaying

tracer. This tracer is most commonly fluoro-

deoxyglucose (FDG), which allows PET to

quantify the relative glucose metabolism in

tissues. Hypermetabolic lesions indicate the

presence of inflammation, malignancy,

and/or major functional changes. The obser-

vation of these changes has been critical to

the characterization and clinical manage-

ment of central nervous system cancers,

paraneoplastic syndrome, Huntington’s, and,

when scanned during ictus, epilepsy [1,2].

In some cases, PET is used to guide resec-

tive curative neurosurgery [1,3].

The detection of hypometabolic lesions

is equally clinically relevant. PET has been

effectively used to characterize Parkinson’s

disease, Alzheimer’s disease, interictal

epilepsy, cortical dysplasia, tuberosclerosis,

and even mood disorders. In these cases, the

hypometabolic lesions indicate functional

abnormalities or portend the location of fu-

ture atrophic lesions [1-12]. In cortical dys-

plasia, tuberous sclerosis and central

nervous system infections with multiple

structural abnormalities frequently exist, but

only a small subset of these lesions gener-

ates epileptic seizures. The co-localization

these structural abnormalities visualized in

MRI with hypometabolic lesions observed

using PET can be effectively used to deter-

mine which of these structural abnormalities

is generating the seizures [1]. When these

co-localized lesions are resected, 86 percent

of patients achieve favorable outcomes com-

pared to 30 percent to 76 percent without co-

localization [13-15].

PET, however, may be biased against

the detection of these hypometabolic le-

sions. The technology of PET relies on the

emission of positrons from radioactively de-

caying isotopes. The number of positrons

that are emitted from each volumetric pixel,

or voxel, is Poisson distributed. In a Poisson

distribution, the variance of a sample is

equal to its mean. Consequently, the vari-

ance of positron count increases as overall

signal increases. Due to the fact that these

images are reconstructed based on projec-

tions, this noise could potentially spread to

nearby voxels [16,17]. For hypermetabolic

lesions, this would result in the lesion dom-

inating the signal in the reconstructed im-

ages. Unfortunately, the same signal

interaction can allow surrounding normal

tissue to mask hypometabolic tissue. 

This potential bias against the detection

of hypometabolic lesions may seem to be an

issue of resolution. Modern reconstruction

techniques such as ordered subset expecta-

tion maximization (OSEM) substantially in-

crease the resolution of reconstructed

images relative to the canonical filtered

back-projection (FBP) [18,19]. One of the

major hurdles to resolution in FBP is the

streaking caused by high intensity voxels. In

X-ray computed tomographic (CT) imaging,

this streaking is regularly caused by bone ar-

tifacts. It is also present, albeit to a lesser de-

gree, in PET [20,21]. The OSEM algorithm

substantially decreases the effect of these

streaks and thereby increases image resolu-

tion [22,23]. This improvement is visually

apparent even to the untrained observer and

has resulted in the pervasive adoption of the

OSEM algorithm for CT and PET recon-

struction. 

These improvements, however, only

focus on decreasing the bias in signal inten-

sity caused by surrounding tissues and ig-

nore effects of noise. A simple theoretical

proof illustrates that maximum variance of

voxel intensity in image space provides an

upper bound for the maximum reconstructed

voxel intensity variance for FBP (see Sup-

plementary Material) [19]. There is no anal-

ogous proof for the iterative EM algorithm,

much less the OSEM algorithm. Therefore,

even though the OSEM algorithm decreases

bias, it has the potential to increase variance

and thereby decrease the signal to noise

ratio. This potential challenge has been

largely ignored because, as humans, we are

exquisitely capable of detecting changes in
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the mean but relatively weak at detecting

changes in the spread. The development of

PET and CT reconstruction has focused on

the generation of visually interpretable im-

ages; therefore, previous literature has fo-

cused almost exclusively on trends of the

mean. As more quantifiable markers of PET

are developed, we believe that an in-depth

treatment of the variance is critically impor-

tant to achieving accurate and clinically rel-

evant measurements.

In this paper, we use Monte Carlo sim-

ulations to characterize the statistical prop-

erties of the variance in both EM and FBP

reconstructed images. We demonstrate that

in both algorithms, the Poisson noise from

hypermetabolic voxels obliterates the signal

to noise ratio for hypometabolic lesions, re-

sulting in a bias against the detection of hy-

pometabolic lesions. The understanding of

this effect has a profound impact on the in-

terpretation of hypometabolic lesions on

PET images.

MaTEriaLs aNd METHOds

In this Monte Carlo simulation, 10 mil-

lion exemplars of reconstructed Poisson

noise were measured from pixels with inte-

ger initial intensity from 1 to 100. Figure 1

illustrates one example of a noisy image and

the two reconstructions with a common in-

tensity scale. Images were sequentially real-

ized until each intensity value had been

reconstructed at least 100,000 times. This

took 2,614 realizations and approximately 7

cpu-days. We constructed our simulation to

match PET images of an average human

brain with (2mm)3 voxels. Each simulation

image was 80 voxels by 80 voxels with cir-

cle of radius 35 voxels centered on the 40th

voxel in each dimension. Each voxel within

the circle was given an initial intensity from

a discrete uniform distribution ranging from

1 to 100. All voxels outside the circle had in-

tensity 0. Poisson noise with parameter

equal to the initial intensity of each voxel

was then added. Radon projections were

used to simulate the actual data collected by

sensors for integer angles from 0 to 179 de-

grees of this noisy image. By realizing many

independent images in this way, edge effects

and the effect of particular configurations

were minimized.

Images were reconstructed from the

simulated sensor data using the filtered

back-projection (FBP) and expectation max-

imization (EM) algorithms. For the FBP re-

construction, the ramp filter and linear

interpolation were used and the image was

padded with zeros up to 126 voxels by 126

voxels. This reconstruction exactly mimics

the canonical implementation of the algo-

rithm. For the iterative EM reconstruction,

the initial image had uniform intensity 1.

The canonical full form formula was used

for the updates of the EM. The A matrix was

formed by calculating the explicit point

spread function for all integer angles from 0

to 179 degrees (see Supplementary Material

for algorithmic details). The pervasive

OSEM algorithm is a subset of the EM al-
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Figure 1. These circles illustrate examples in which each pixel intensity is initialized using

a discrete uniform distribution with range of 1 to 100. An independent Poisson random

variable with parameter equal to this intensity is then realized for each pixel. We then used

the filtered back projection (FBP) and expectation maximization algorithm (EM) to recon-

struct this circle based on its projection, as is done for PET images.



gorithm that substantially decreases the

computational load of reconstruction; there-

fore, all results shown for the EM algorithm

generalize to OSEM.

Due to the high spatial frequency in the

focus of the image, 300 iterations were used

for each EM reconstruction. The image did

not appear qualitatively differ-

ent after 20 iterations. The

magnitude of variance was also

observed to decrease asymptot-

ically with iteration number

(data not shown). The choice

of 300 was made to maximize

the potential for high spatial

frequency noise that may bet-

ter match the underlying data. 

All simulations were con-

ducted in MATLAB 7.14

(Mathworks), and all statistical

analysis was conducted in R

(see Supplementary Material:

Regression of Trends in Re-

constructed Voxel Intensity).

Signal to noise ratio was cal-

culated as the ratio of original

intensity to the standard devi-

ation of the reconstructed in-

tensity. This is equivalent to a

hypothesized two-fold change

in original intensity.

rEsuLTs

A detailed statistical

analysis of the reconstructed

images reveals important

trends. Figure 2 illustrates the

probability density of the re-

constructed values with respect

to their initial intensity. In this

figure, all densities above 0.1

are rounded down to 0.1 to fa-

cilitate comparisons between

the distributions. In the right

panel, the Poisson nature of the

original image is evident: the

spread increases linearly with

respect to the original intensity.

The probability densities of the

reconstructed intensities are

markedly different from that of the original

image. For both algorithms, the variance is

much more homogenous and more extreme

values shrink toward the mean. In order to

formalize these observations, we fit statisti-

cal models to these trends. All intervals below

reflect 95 percent confidence intervals.
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Figure 2. This figure illustrates the probability distribution

of the reconstructed voxel intensity for each of the recon-

struction algorithms. For comparison, the right panel illus-

trates the original probability distribution before

reconstruction.

Figure 3. This figure illustrates the magnitude of the recon-

structed intensity bias of each of the algorithms. The line thick-

ness represents the standard error for each point. This

standard error is small due to the large sample size. The FBP

is indicated by cyan and the EM is indicated by green.



First, we address the observation

that all intensities shrink back toward

the mean, albeit less so for EM than

FBP (Figure 3). This regression back to

the mean appears to be linear for FBP

reconstructed voxel intensities (FBP-

RVI) and quadratic for EM recon-

structed voxel intensities (EM-RVI).

This quadratic trend results in fitting

high intensity voxels more closely com-

pared to low intensity voxels. We fit sta-

tistical models to quantify and compare

these trends across reconstruction algo-

rithms. The FBP reconstructed voxel in-

tensities (FBP-RVI) regressed back to

this mean linearly with slope of -0.64

and intercept of 31 units (-0.0642 to -

0.0634 and 31.56 to 31.63). The EM re-

constructed voxel intensities (EM-RVI)

regressed quadratically back to the

mean with acceleration of 0.0018 units-

1(0.00176 to 0.00179). After controlling

for this quadratic term, the EM-RVI had

a slope of 0.038 closer to zero and a 7

units smaller intercept than the FBP-

RVI (-7.44 to -7.37 and 0.037 to 0.040).

The F statistic of this composite model was 3.7

million with 4 and 195 degrees of freedom, re-

sulting in a model-wide p value of less than 10-

16. There was no evidence that the residuals

deviated from the assumption of independent

identically distributed Gaussians. Even though

the EM algorithm converges quadratically to

the maximum likelihood solution [22,23], cal-

culating more iterations does not significantly

change any of these fitted parameters.

The focus of this report is the signal to

noise ratio of reconstructed voxels. Control-

ling for the biases addressed above, the sig-

nal to noise ratio to detect a hypothesized

two-fold change in intensity was substan-

tially reduced for EM reconstructions com-

pared to FBP reconstructions (Figure 4). The

maximum signal to noise ratio for FBP-RVI

was 60 percent larger than that of the maxi-

mum for EM-RVI. For both algorithms, this

original intensity dependent increase in the

signal to noise ratio with respect to original

intensity reflects similar trends in variance

as seen in the bias. The FBP-RVI variance

increases linearly with intercept of 73 units2

and slope of 0.013 units (73.36 to 73.82 and

0.009 to 0.017). The EM-RVI variance in-

creased quadratically with acceleration of

0.004 (0.0040 to 0.0044). After controlling

for this quadratic term, the EM-RVI vari-

ance had a 13 units2 smaller intercept and a

1 unit larger slope (-13.6 to -12.8 and 1.04 to

1.08). This means that the EM performs

slightly better for extremely low intensity

voxels, but variance in EM-RVI and FBP-

RVI also quickly increases as original inten-

sity increases. The F statistic of this

composite model was 280,000 with 4 and

195 degrees of freedom, resulting in a

model-wide p value of less than 10-16. There

was no evidence that the residuals deviated

from the assumption of independent identi-

cally distributed Gaussians. 

discussiON

These striking results have a profound

impact on the interpretation of PET images

using quantitative and visual measures. We

demonstrated in our simulations that PET is
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Figure 4. This figure illustrates the magnitude of the

signal to noise ratio of the reconstructed intensity

each of the algorithms. Signal to noise ratio was cal-

culated as the original intensity divided by the stan-

dard deviation of the biased reconstructed intensity.

This corresponds to a hypothesized two-fold change

in intensity. The line thickness represents the stan-

dard error for each point. This standard error is

small due to the large sample size. The FBP is indi-

cated by cyan, and the EM is indicated by green.



insensitive to all but large scale changes in

hypometabolic regions. Therefore, we cau-

tion against the interpretation of hypometa-

bolic lesions when reading PET images both

visually and quantitatively. However, we

confirm that EM improves the spatial reso-

lution of reconstructed images by decreasing

the bias introduced by nearby voxels when

compared to the FBP, but we also illustrate

that this bias correction results in a substan-

tial decrease in the signal to noise ratio. Con-

sequentially, even though EM reconstructed

images are more consistent with our knowl-

edge of the underlying biological structures,

this increased spatial resolution comes at the

cost of decreased statistical power of quanti-

tative measures of the signal. 

When interpreting PET images, our re-

sults suggest that one should focus on re-

gions that are normally hypermetabolic

relative to the surrounding tissue and cau-

tion against interpretation of changes in hy-

pometabolism. For example, this is

particularly important when interpreting im-

ages from patients with tuberous sclerosis

for identification of epileptic foci. The tu-

bers that characterize this disease can be

small and distributed throughout the brain.

Lee & Salamon suggests that hypometabolic

lesions corresponding with structural abnor-

malities are candidates for epileptic foci [1].

If a structural lesion is in a hypometabolic

region, however, our results suggest that

there is very little power to detect metabolic

abnormalities. This has the potential to in-

crease the false negative rate for foci detec-

tion and thereby lead to patients with

multifocal epilepsy being diagnosed with

focal epilepsy. This misclassification can

lead to patients undergoing focal surgical

treatment that fails to control their seizures

[13-15]. 

However, this does not hinder the abil-

ity of PET to recognize changes in relatively

hypermetabolic tissue. It is important when

reading PET images for one to consider the

expected metabolism in the region of inter-

est. If the expected metabolism is high, then

most observed changes are interpretable and

clinically relevant. Conversely, if the ex-

pected metabolism is low, then one should

recognize that only comparatively large

changes in metabolism are interpretable. 

These findings also provide further mo-

tivation for the development of focused ra-

dioactive PET tracers to improve sensitivity

[24]. Focused tracers target particular re-

ceptors or tissue types. For example, in

Parkinson’s disease, there is increased neu-

ral death in the substantia nigra, resulting in

decreased metabolism [25]. As we have

shown, the power to detect these subtle,

highly localized hypometabolic lesions is

limited with FDG-PET. Our results suggest

that the radioactive serotonin analog, 18F-

DOPA, that differentially localizes to the

substantia nigra in normal tissue has a

stronger signal to noise ratio compared to

FDG [26]. If the relative localization of this

tracer is reduced, this may provide early di-

agnostic or more detailed prognostic infor-

mation for the patient [27]. From a research

perspective, this early detection could result

in the development of novel pharmaceutical

intervention that could slow the progression

of disease. This also suggests that PET ex-

periments will have higher signal to noise

ratios if they are designed such that they

focus on changes in tissue that is the target

of the tracer.

The implication of these findings is par-

ticularly salient for quantitative PET analy-

sis that has the potential to capture more

subtle or distributed trends in metabolism.

Conventional analysis of PET segments the

brain into focused regions of interest and av-

erages the reconstructed metabolic rate

across the entirety of each region [28,29].

Although it is tempting to suggest that this

averaging improves the signal to noise ratio

with respect to the factors we have modeled,

this is, unfortunately, not the case. Instead,

the linearity of the noise spreading suggests

that the variance from hypermetabolic vox-

els spreads across the entire projection and is

not corrected by reconstruction algorithms.

This suggests that the noise across a local

hypometabolic region is correlated. Because

of this correlation, the average then esti-

mates the value of the signal plus the noise

instead of separating the two. Therefore, our

results suggest that PET is systematically in-

546 Kerr and Lau: Poisson noise obscures hypometabolic lesions in PET



sensitive to the detection of changes in hy-

pometabolic tissue even when averaged over

lower resolution regions of interest.

Our guidance to bias against interpreta-

tion of changes in hypometabolic tissue,

however, is most generalizable to high reso-

lution changes in metabolism. If these

changes are widely distributed over tissue,

then the number of hypermetabolic voxels

that contribute to each projection decreases.

Consequently, the noise is dominated only

by the voxel with highest metabolism within

the larger region. This is especially relevant

to current analysis of epileptic foci because,

due to the low spatial resolution of surgical

procedures, only large magnitude, low reso-

lution changes are clinically meaningful.

The substantial decrease in signal to

noise ratio caused by the EM reconstruction

suggests that while it vastly outperforms the

FBP in manual interpretability and spatial

resolution, EM may be not be appropriate

for quantitative analysis of the PET signal.

Based on our results, studies based on EM

reconstructed images need 2.5 more patients

or images than studies based on FBP recon-

structed images to achieve the same signal

to noise ratio (see Supplementary Material).

Computation time for both reconstructions

is relatively inexpensive; therefore, our re-

sults suggest that both methods should be

employed. The EM reconstruction should be

used for visual interpretation and the FBP

reconstruction should be used for statistical

inferences. This guidance, however, is bal-

anced by the fact that FBP reconstructed im-

ages are more biased than EM reconstructed

images. Using the mean squared error,

which incorporates both bias and variance,

the signal to noise ratio for the EM remains

less than the FBP for the majority of voxel

intensities.

It is unclear if alternate reconstruction

algorithms not studied here address the lim-

ited signal to noise ratio of hypometabolic

voxels. Our recommendation that manual

image analysis should be modulated by the

expected metabolism can be incorporated

into reconstruction algorithms by using a

Bayesian prior as was done in [30]. This

prior would decrease the variance of the re-

constructed image, but it may introduce fur-

ther bias against detecting hypometabolic le-

sions that are incommensurate with the

prior. Additionally, in each of the projections

from which images are reconstructed, the

magnitude of the noise from hypermetabolic

voxels likely obscures any signal changes in

hypometabolic voxels, as we illustrate and

discuss here. The improved recovery of this

and other information is a major motivation

for the continued efforts to improve recon-

struction techniques.

One could naturally suggest acquiring

multiple PET images from the same patient

to better quantify the noise distribution, but

this practice is limited by expense. Statisti-

cally, one can expect that collecting multi-

ple samples will increase the signal to noise

ratio by a multiplicative factor of the square

root of the number of samples. For hy-

pometabolic voxels, however, the signal to

noise ratio is so low that hundreds of PET

images would be insufficient to reveal rela-

tively large changes. Each PET, however,

has substantial cost in physician, scanner,

and patient time and resources. Simply split-

ting each scanning session into smaller time

windows also does not solve the problem

because the spatial resolution is a function

of the total number of positrons observed

[20,21]. The acquisition and incorporation

of three-dimensional projections of the PET

data could, however, increase the number of

informative samples per image to improve

the signal to noise ratio [31,32]. For ex-

tremely hypometabolic lesions, however, we

expect that the inherent signal to noise ratio

is so low that the signal is not recoverable

through these techniques.

The knowledge that the noise in recon-

structed space is likely heteroscedastic can be

incorporated into statistical models of the sig-

nal in two theoretically equivalent ways.

From a frequentist perspective, this can be

done by relaxing the assumption that the

residuals of the model are identically distrib-

uted. Instead, the variance of the residuals can

be modeled as a linear or quadratic function

of signal strength. By modeling this source of

noise, therefore removing its contribution to

the standard error of the model, we expect
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that the fit of the model would increase [33-

35]. From a Bayesian perspective, one could

introduce a prior that linearly or quadratically

de-weights the contribution of hypometabolic

regions. This de-weighting may also help ill-

posed models, like those used in machine

learning, to reduce their propensity to over fit

the data by incorporating additional knowl-

edge. As shown recently by Chu et al., this in-

corporation of additional biological and

physical information may result in improved

predictive performance [36].

These simulated results can be extended

to address the signal to noise ratio in specific

regions of interest. In particular, this ap-

proach of simulating the Poisson noise can

be used to determine the sensitivity of FDG-

PET to detect differences in numerous re-

gions of interest in the brain. This could be

used to give a more detailed explanation of

the power of PET to describe high resolution

metabolic changes. This could lead to an im-

proved interpretability of smaller magnitude

changes that indicate subtle phenomena. In

particular, these subtle changes could be used

in the aging population to predict which pa-

tients will progress to Alzheimer’s disease,

as is currently being actively addressed using

genotypic and MRI-based measures [37].

In order to maximize the interpretability

of our results and reduce computational com-

plexity, we made a number of simplifying as-

sumptions. The regular shape and voxel

intensities were chosen to improve the inter-

pretability of our results. This is illustrated in

the linear and quadratic trends in Figures 3

and 4. We do not expect that the discrete uni-

form distribution of voxels in the original

image space to have any other effect on re-

constructed intensities. This simplification re-

sulted in a deeper understanding of the forces

generating our results. The results can be eas-

ily generalized to the interpretation of a di-

verse set of hypometabolic lesions on cranial

PET. The diversity of lesion location and type

is prohibitively large to address in a single

publication. Similarly, our results focus on the

effect of Poisson noise from radiologic decay

in FBP and EM reconstructed PET images.

We hypothesize that similar limitations will

be present in images reconstructed with other

algorithms but more investigation is needed

to explore this hypothesis.

We also ignore the effects of attenuation,

randoms, scatter, dead time, detector normal-

ization, scan length, decay, interpolation and

the specific reconstruction filter because their

inclusion does not influence our conclusions.

These factors either uniformly increase the

variance of the reconstructed intensities or ex-

aggerate the contribution of hypermetabolic

voxels to the total variance of the image. Even

though these are two dimensional images, the

concepts are readily generalizable to three di-

mensions (see Supplementary Material). 
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