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Abstract: Heparan sulfate proteoglycan 2 (HSPG2) is an essential, highly conserved gene whose
expression influences many developmental processes including the formation of the heart and brain.
The gene is widely expressed throughout the musculoskeletal system including cartilage, bone
marrow and skeletal muscle. The HSPG2 gene product, perlecan is a multifunctional proteoglycan
that preserves the integrity of extracellular matrices, patrols tissue borders, and controls various
signaling pathways affecting cellular phenotype. Given HSPG2’s expression pattern and its role
in so many fundamental processes, it is not surprising that relatively few gene mutations have
been identified in viable organisms. Mutations to the perlecan gene are rare, with effects ranging
from a relatively mild condition to a more severe and perinatally lethal form. This review will
summarize the important studies characterizing mutations and variants of HSPG2 and discuss how
these genomic modifications affect expression, function and phenotype. Additionally, this review will
describe the clinical findings of reported HSPG2 mutations and their observed phenotypes. Finally,
the evolutionary aspects that link gene integrity to function are discussed, including key findings
from both in vivo animal studies and in vitro systems. We also hope to facilitate discussion about
perlecan/HSPG2 and its role in normal physiology, to explain how mutation can lead to pathology,
and to point out how this information can suggest pathways for future mechanistic studies.
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1. Introduction

The human gene heparan sulfate proteoglycan 2/HSPG2 encodes for the secreted molecule
perlecan, which is deposited in all basement membranes including those underlying epithelial and
endothelial cells. It is also found in matrices produced in muscle, cartilage, and bone marrow.
It plays a vital role in the formation of cardiovascular, neural and cartilaginous tissues. In humans,
variations to the HSPG2 gene produce severe developmental defects. Complete loss-of-function
mutations are embryonically lethal, making it difficult to establish a complete genotype-phenotype
relationship. To date, a number of HSPG2 gene variants have been discovered and linked to a functional
outcome and a clinical phenotype [1–8]. Although rare, mutations in HSPG2 are associated with two
classes of human skeletal disorders, known as Schwartz-Jampel syndrome (SJS; OMIM #255800) and
dyssegmental dysplasia, Silverman-Handmaker type (DDSH; OMIM #224410). These two disorders
are characterized by widespread developmental defects of all musculoskeletal tissues. The degree
of severity in these two disorders depends on the location of the mutations and the extent of the
protein core that is preserved, which determine the amount of functional protein that is produced
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and secreted into the various extracellular matrices (ECMs). Studies with the perlecan hypomorphic
mouse [9] showed that when one allele of the perlecan gene was disrupted, an SJS phenotype was
observed, with the amount of perlecan in fibroblasts, skeletal muscle, heart and kidney reduced by
>90%. In addition to its role in development, perlecan also has been implicated in various pathologies
associated with ECM remodeling and tissue repair, including that in cancer, diabetes, cardiovascular
disease, and Alzheimer’s disease [10–13]. This review will describe existing views regarding HSPG2
variations and mutations, and their impact on gene expression, protein function, and tissue phenotype.

2. HSPG2/Perlecan: Gene and Proteoglycan

The complex HSPG2 gene encoding the proteoglycan perlecan is located on chromosome
1p36.1-p35 and spans over 120kbp of genomic DNA [14–17]. In humans, a total of 97 exons encode a
core protein product that contains 4,391 amino acids and has a molecular weight of 467 kDa [1,18,19].
The addition of 3–4 glycosaminoglycan (GAG) side chains can extend the molecule over 750 kDa
in size [20,21] making perlecan one of the largest monomeric matrix molecules. The core protein
of perlecan consists of five domains, referred to as domains I–V (Figure 1), which are composed of
tandemly repeating modular motifs arranged in a long linear fashion to resemble a “pearls-on-a-string”
appearance that inspired the naming of the proteoglycan “perlecan” [22]. Domain I contains a Sperm,
Enterokinase and Agrin (SEA) fold, which is found in other matrix and cell surface proteins [23,24].
To date no specific function of this fold has been demonstrated but it is known to appear in protein
regions that are highly glycosylated. Domain I contains three GAG attachment sites that precede the
SEA fold, which can be modified with either heparan sulfate (HS) or chondroitin sulfate (CS) chains
depending on the cell or tissue source [24]. Heparin binding growth factors (HBGFs) involved in key
development processes and wound healing bind to the GAG side chains of perlecan. During wound
healing, perlecan’s GAG chains are cleaved by glycosaminoglycanases (GAGases), releasing HBGFs
directly at the site of injury [25]. GAGases involved in HBGF release include heparanase [26] and
sulfatases such as Sulfs 1 and 2 [27]. Domain II contains four low density lipoprotein (LDL) receptor
motifs and one isolated immunoglobulin-like (IG) fold [18]. Both structures are held together with
disulfide bonds and contribute to the compact modular shape of perlecan [28]. It is likely that this
domain is involved in LDL and calcium signaling. It is also speculated that domain II is involved
in wingless (Wnt) signaling, which is important for many developmental processes [29]. Perlecan’s
modulation of Wnt has been demonstrated in various vertebrates [30]. Domain III contains both
laminin epidermal growth factor (Egf) laminin IV type A (laminin B) domains [31]. Domain III
forms an inflexible rod-like structure that is maintained by disulfide linkages in the laminin EGF
domains. Fgf-18, found in developing growth plates and possesses mitogenic activity on chondrocytes,
binds directly to domain III of perlecan [32]. In humans, domain IV is made up of 21 repeating Ig
C2-type modules that are tandemly linked together. In general, Ig motifs are involved in adhesion,
and found in many ECM and cell surface proteins. Domain IV of perlecan interacts with many ECM
components including nidogen and fibronectin [33]. Proteins containing Ig repeats have been linked to
provision of mechanical stability to flexible proteins that are large and modular, and typically found in
tissues such as cartilage and muscle [34]. Only recently has perlecan been examined in this context [35].
Domain V contains three laminin G, four EGF motifs and has the fourth variable GAG attachment
site. Domain V contains a region that when produced in a soluble form is known as endorepellin [36].
When the core protein is intact, perlecan possesses proangiogenic properties, while endorepellin has
antiangiogenic activity [37]. Endorepellin has largely been studied for its role in controlling tumor
angiogenesis and in neuroprotection following ischemic stroke [38,39]. Perlecan shares homology
with a number of different proteins, owing to its unique ability to interact with so many partners and
participate in a vast array of signaling pathways. The activity of perlecan depends on the cellular
context and the form in which perlecan is presented. Post-translational variations that impact functions
include GAG composition (HS versus CS content), proteolytic processing, exemplified by the matrix
metalloproteinase-7 cleavage of perlecan that alters the semaphorin pathway and cell clustering [40],
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and GAGase trimming (by heparanase, chondroitinases, or the Sulfs). Interestingly, perlecan is one of
few proteoglycans that can be substituted with three different types of GAGs, i.e., heparan, chondroitin,
or keratan sulfate [41]. Additionally, various factors (i.e., cell source, aging, or injury) can influence
GAG composition and therefore impact the function of perlecan [42–44]. Knox et. al. demonstrated
that perlecans obtained from different cell sources differed in their ability to bind fibroblast growth
factor (FGF) 2 and activate its receptors, despite all the tested perlecans having similar HS chains [44].
This study showed that even subtle changes to GAG structure can have profound effects on function.
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Figure 1. Representation of human heparan sulfate proteoglycan 2 (HSPG2)/perlecan proteoglycan
with labelled domains I–V and subdomains. Three 3–4 glycosaminoglycan (GAG) chains are shown
in this image where they are commonly attached on domain I. Additionally, a fourth chain appears
variously on domain V. Adapted from Farach-Carson and Carson [29]. This article also contains a
description of molecules known to be interacting with each domain.

3. Conservation of HSPG2

To illustrate the variation among the perlecan gene in various species, Figure 2 provides a cDNA
sequence alignment of HSPG2 with orthologs from commonly studied animal models. We focused
on domain IV for our comparative sequence analysis because this region differs considerably among
various species. Until recently, this domain was among the relatively least studied of the five domains,
despite making up half the molecule. The differences in the number of Ig repeats across species is likely
due to insertion or duplication events [45,46]. Although mouse perlecan lacks 7 Ig motifs found in
humans, the protein identity amongst mammals remains nearly 90% [45], but is much lower in animals
from other classes, such as Danio rerio having a less than 20% identity. In humans, a C-terminal region
of domain IV (domain IV-3) has been shown to play a key role in cellular decision making, particularly
in inducing cell cohesion such as occurs in formation of endothelia upon a basement membrane or
condensation in early chondrogenesis [40,47].
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Figure 2. Conservation of HSPG2 among common animal models. The perlecan domain IV cDNA
sequence was analyzed in Homo sapiens (human), Mus musculus (mouse), Gallus gallus (chicken),
Danio rerio (zebra fish), Caenorhabditis elegans (nematode), and Drosophila melanogaster (fruit fly).
The alignment was performed using the software Geneious v5.4 [48]. The top graph represents
consensus sequence identity among the species examined, with green and red representing high and
low base pair conservation amongst all the listed organisms. All sequences are compared to HSPG2
of Homo sapiens, which is highlighted in yellow at the top of the list. Sequences are shown in a grey
color scale, representing low (white) to high (black) similarity to that of the reference cDNA sequence.
The purple arrows parallel the sequence of individual Ig modules.
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Here, we will highlight some of the other major differences between the human form of perlecan
and its orthologs. The mouse form of perlecan contains a unique integrin-mediated RGD binding
site within its domain III, which is absent in human perlecan [49]. Drosophila and C. elegans do
not have a domain I. The evolutionary origin of the perlecan gene was studied recently in hope of
understanding the differences among species and to gain insight into its role in establishing tissue
layers [45]. In this recent study, the perlecan gene was identified in the genome of early metazoans
considered to have relatively simple tissue structures. In silico work revealed the perlecan gene was
conserved in the genomes of Trichoplax adhaerens, a member of the Placozoan phylum defined by its
small flattened amoeba-like body, and Nematostella vectensis, of the Cnidarian phylum that contains
jellyfish and coral, when distinct tissue layers appear [45,50,51]. The perlecan gene was not found
in the genomes of more ancient organisms such as the free-living unicellular Choanoflagellates or
the aquatic and radial symmetric Ctenophores (e.g., comb jellies) [52,53]. Perlecan is also absent in
Capaspora owczarzaki, a unicellular organism that garnered interest from the scientific community
because it contains genes that closely relate to those of multicellular animals [54]. N. vectensis and
T. adhaerens are considered morphologically simple animals and have been used to study tissue
regeneration and evolution of multicellularity, respectively [55,56]. The perlecan gene in T. adhaerens
is encoded by two separate, but adjacent genes, which house all five domains of the human gene in
order. In N. vectensis, the perlecan gene was detected in cells forming key tissue boundaries and was
activated during wound healing and the formation of new basement membranes [48]. Given perlecan’s
complex gene structure, it is surprising this molecule has remained conserved over millions of years of
evolution. This suggests an ancient key function, likely evolving with the emergence of tissue layers
and the need for repair of such tissues after wounding [48].

4. HSPG2 Variants and Homologues

A few HSPG2 splice variants, unrelated to a human condition, have been identified in various
human tissue sources and cell lines. Although, the consequence and/or biological function of
these alternative forms still need to be elucidated [57]. The first HSPG2 splice variant, referred
to as “miniperl”, was discovered by Dodge et al. (published in the NCBI database under the
Accession number AF479675) in the human colon carcinoma cell line WiDr/HT29. This shortened
form arises either from alternate splicing or use of alternative transcriptional start/stop sites events
occurring in domain I. In the human mast cell line, HMC-1, domain I and domain V fragments
were identified and examined in in vitro assays, the latter of which includes endorepellin sequences
and retains anti-angiogenic activity [58]. An examination of all reported HSPG2 transcript variants,
reveals products corresponding to either the C-terminal or N-terminal domains, which may play
separate roles in wound healing and tissue regeneration, although these products have yet to be
characterized [57].

The two most commonly studied HSPG2 homologues are those found in C. elegans and Drosophila.
The C. elegans, the HSPG2 homologue is Unc-52 [59]. Unc mutants were first discovered for their
role within the body-wall of muscle cells [60]. Unc-52 mutated phenotype is characterized by
retarded sarcomere construction and progressive paralysis, hence the name “Unc” for uncoordinated
movement [61]. Unlike human HSPG2, Unc-52 codes for several functional isoforms of perlecan.
In general, longer isoforms are involved in the attachment of the myofilament lattice to the muscle
cell membrane, while the role of shorter isoforms is less clear. Unc-52 contributes to gonadogenesis
through regulation of growth factor signaling and by providing structural support to the tissue
surrounding the gonad [62]. The Unc-52 depleted gonad basement membrane interferes with gonadal
cell adhesion signaling and affects the migration of gonadal leader cells [62,63]. Unc-52 mutations
are associated with ECM remodeling defects in developing organs [64]. Unc-52 splicing events
are regulated Smu-1 and Smu-2 (suppressor of Mec and Unc defects) [65] Mec-8 (mechanosensory
abnormality) [66], Hrp-2 (human HnRNP A1 homolog) [67], and Ccar-1 (cell division cycle and
apoptosis regulator 1 homolog) [68].
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Trol, for terribly reduced optic lobes, is the Drosophila homologue of the vertebrate protein
perlecan, [69]. Trol regulates critical development signaling pathways, such as Wnt and Indian
hedgehog, and coordinates cell movement to establish cell and tissue layers. Trol is highly expressed in
the developing central nervous system and the periphery, especially at the motor axon trajectories [70].
Hence its name, Trol modulates semaphorin-mediated repulsive axon guidance in the optic lobes.
It has been shown Trol can augment semaphorin suppression of focal adhesion kinase activation,
suggesting Trol supports the antagonistic effect of semaphorin on integrin signaling [70]. Interestingly,
this same mechanism of focal adhesion kinase (FAK) suppression was found to be conserved in human
cells undergoing cohesive events [40,47]. Similarly, during gastrulation Trol directs the movement
of mesoderm cells to form a single mesoderm cell layer underlying the ectoderm. This process
requires cooperation of FGF signaling. Mutations to the Trol gene not only modulate key signaling
processes, but also influence cell behavior through rearrangements of the territorial matrix. Such is
the case seen during Drosophila hematopoiesis, where perlecan is expressed along the thin basement
membrane surrounding the blood progenitors. Here, perlecan regulates blood cell differentiation,
through modulation of Hedgehog signaling, and provides structural support of the ECM of the lymph
gland [71]. The Wnt signaling pathway is also regulated by Trol and is important for formation of pre
and postsynaptic structures of the neuromuscular junction [30].

5. Developmental Expression of Perlecan

Perlecan expression and deposition begin in the early stages of embryogenesis, were it has been
well-characterized in murine models. Perlecan was detected along the cell surface of blastomeres
at the two-cell stage and during the attachment phase of implantation at the exterior surface of the
trophectoderm [72,73]. Following implantation, perlecan accumulates throughout the developing
cardiovascular system and at sites of cartilage primordia [74,75]. At embryonic day 10.5 (E10.5),
perlecan is found in vascularized tissues such as the heart, pericardium, blood vessels walls,
and in cartilage primordia [74,75]. The highest deposition of perlecan occurs in cartilage undergoing
endochondral ossification, such as the primordium of vertebral bodies and rib cartilage. At later stages
of development, perlecan is expressed throughout the basal lamina of the embryo and organs such as
the lung, kidney, liver, gastrointestinal tract and brain [75].

6. HSPG2 Associated Skeletal Defects

A number of mutations have been identified in both SJS and DDSH), but the
exact genotype-phenotype correlation for each of these mutations has not been proven
experimentally [5–7,76]. As mentioned above, the degree of severity inversely correlates with the
amount of perlecan being deposited into the ECM [77]. The SJS phenotype is the relatively milder of the
two conditions characterized by myotonia and chondrodysplasia [78,79]. Perlecan mutations associated
with SJS lead to reduced levels of normal perlecan secretion into the ECM [6]. Patients with SJS survive
but experience widespread skeletal abnormalities including reduced stature, facial dimorphism,
pigeon breast, and shortened long bones. The neonatal lethal condition DDSH is caused by functional
null mutations to HSPG2, which completely prevent perlecan secretion into the ECM [2]. Clinical
features of DDSH include dwarfism, short and bowed limbs, flat facial features, anisospondyly,
and encephalocele [80].

7. Mechanisms Underlying Perlecan Developmental Defects

The mechanism underlying perlecan disorders have been studied in mice. Perlecan-null mice,
mimicking the DDSH phenotype, display normal formation of basement membranes during the first
few days of development, but these soon deteriorate at areas undergoing increased mechanical stress
such as contraction of the myocardium and expansion of brain vesicles [81–83]. Perlecan-null mice
typically die around embryonic day (E) 10–12, attributed to heart and brain defects. In the heart,
the loss of perlecan weakens the basements membranes around the heart wall, leading to a “leaky”
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interface between cardiomyocytes and surrounding endothelial cells [81,83]. As a result, embryos die
of heart arrest from blood leaking into the pericardial cavity [81]. The cardiomyocytes maintain proper
sarcomere form, tight junctions and have functional expression of ion channels, suggesting defects are
related to loss of basement membrane integrity [81,83].

Cephalic defects on the surface appear to be quite strange given that perlecan is not expressed in
the central nervous system [75]. Exencephaly usually occurs from improper neuronal tube closure,
however, perlecan-null mice have a normal neural tube and proper closure of the neuropores [81,82].
Under normal conditions there is a solid layer of ectodermal cells encompassing the brain tissue,
but in the absence of perlecan, small clefts about 20–30 µm wide are formed. Cephalic mesenchyme
moves through these clefts and invade the ectoderm layer. The barrier separating the brain tissue
from ectoderm is disrupted allowing the brain to fuse with the neighboring ectoderm. The laminar
architecture surrounding the brain is severely distorted indicating the basement membrane barrier is
lost [81]. The embryos also develop holes in their fore- and midbrain and have collapsed brain vesicles.
Perlecan-null mice also experience severe bleeding within several tissues, such as the lung, skin and
brain, caused by weakening of the blood vessel wall.

Reduced levels of perlecan in mice, mimicking the SJS phenotype, lead to failure of the
chondro-osseous junction of developing bones [82]. The reduction of perlecan interferes with normal
growth plate organization, causing bones to become shorter, thicker and misshapen. This is commonly
seen in long bones, sternum, and innominate bone. Under normal circumstances, chondrocytes form
columnar structures of cell layers (i.e., resting, proliferative, pre-hypertrophic and hypertrophic zones),
but when perlecan expression is reduced these zones become highly disorganized and expand [81,82].
The chondro-osseous junction is lost and chondrocytes from the perichondrium layer invade the
surrounding tissue and generate ectopic ossification [81]. The matrix of the perichondrium layer
otherwise maintains normal levels of glycosaminoglycans and aggrecan, and maintains proper
organization of collagen and fibronectin fibrils, yet overall tissue architecture is lost [76]. The catabolic
turnover of perlecan’s HS chains by GAGases, such as heparanase and chondroitinase, at the
chondro-osseous junction supports vascular endothelial growth factor (VEGF) signaling and promotes
angiogenesis for cartilage matrix remodeling and bone formation [84,85]. At the hypertrophic zone of
the growth plate, intact perlecan containing GAGs chains acts as barrier separating the mineralized
bone tissue from cartilage. Perlecan deficient mice develop brittle bone due to changes in bone elastic
modulus, mineral density, and cortical bone thickness [86]. Poor bone quality in perlecan deficient mice
results from the disruption of the lacunar-canilicular system (LCS) of mineralized bone, where perlecan
is part of the pericellular matrix (PCM) surrounding the osteocytic processes that preserve fluid
flow throughout bone tissue [87]. When perlecan levels are reduced, there is encroachment of the
canalicular wall and decreased pericellular space, yet another barrier function of perlecan, as it prevents
mineral formation. This in turn affects solute transport through the LCS. Disrupting the normal fluid
flow pattern impacts the amount of drag force and shear stress experienced by osteocytes, and thus
forces bone to adapt differently [88]. Perlecan is thought to function as an osteocyte sensing tether,
transmitting extracellular fluid flow drag forces to the osteocyte cell surface [86–88]. The abnormal
bone loading response observed in perlecan deficient mice best supports this claim. Increasing
evidence suggests perlecan contributes to the mechanical stability of tensional and weight bearing
tissues. Perlecan is part of the chondrocyte PCM in cartilage, where it interacts with collagen type
VI to provide structural support, protection from compressive loading, and facilitate chondrocyte
mechanotransduction [89–92]. Similarly, perlecan is involved in maintaining muscle composition and
mass under loaded/unloaded conditions [93,94].

Mutations nullifying the perlecan gene (Figure 3) are rare and lethal, making it difficult to study
the mechanism underlying such mutations and their effects. Although there have been a number
of reported cases of DDSH, only eight cases have been molecularly characterized. Here, we will
discuss those few mutations associated with the complete loss of perlecan secretion and the resulting
clinical phenotype of DDSH. Figure 3 is used to reference the position of subsequent mutations to be
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discussed. Although all known mutations associated with perlecan disorders are shown (including
those associated with SJS), not all will be discussed in this review. In addition, a single mutation
alone does not represent a patient phenotype; rather a clinical outcome is observed when both
alleles are affected as in a compound heterozygous or homozygous mutation. The first study to
uncover HSPG2 null mutations was carried out by Arikawa-Hirasawa and colleagues [2]. This study
identified perlecan null mutations in three patients (cases 1–3), including a pair of siblings born to
consanguineous parents and a third unrelated patient. The two siblings were homozygous for an
89 base pair duplication between base pairs 4683 and 4684 of exon 34 of HSPG2, corresponding to
domain III. The other unrelated patient was heterozygous for point mutations at the 5′ donor site of
intron 52 and within exon 73 (domain IV), leading to the skipping of exons 52 and 73, respectively.
Shortened HSPG2 transcription products were observed in all three patients, likely caused by a
frameshift that introduced a premature stop codon. Immunological analysis demonstrated that the
truncated perlecan core protein was not detected in the PCM of patient derived cartilage tissue; instead,
the mutant fragments were retained intracellularly where they could be subjected to proteolytic
degradation. Reiubland and colleagues [7] identified a fourth patient (case 4) having a homozygous
four base pair deletion, c.3876–3879 delGTGC, in exon 31 of domain III. Similar to the other confirmed
cases, this mutation created a frameshift and introduced a premature stop codon in exon 32. In another
study, three patients (cases 5–7) from two different families were diagnosed with DDSH [95]. Two of
these patients, born from nonconsanguineous parents and of the same family, were heterozygous
for nonsense mutations c.646 G > T (exon 7) and c.5788C > T (exon 46). The third patient from this
study, not related to the previous two and with consanguineous parents, had a homozygous deletion
at exon 12 (c.1356-27_1507 + 59del). In this case, the parents were both heterozygous suggesting
an autosomal recessive condition. Recently, an eighth individual (case 8) was reported in only one
of twins born in a dizygotic pregnancy. The affected twin brother was homozygous for a c.4029
+ 1 G > A mutation within exon 32, while the female twin sister was healthy having normal fetal
anatomy and growth. The pregnancy was from consanguineous parents, for which the mother was a
heterozygous carrier and state of the father remains unknown. Although a limited amount of human
patient data exists, there are some clear observations from which we can gain insight. For instance,
DDSH appears to result only when both alleles are mutated. As to date, a DDSH patient having only a
single heterozygous mutation has yet to be identified. Additionally, mutations at the C-terminal end
may be more catastrophic, in that they create shortened non-functional premature forms or disrupt
key domains involved in protein folding.
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Figure 3. Location of HSPG2 mutations identified in Schwartz-Jampel syndrome (SJS) and
dyssegmental dysplasia, Silverman-Handmaker type (DSSH) patients. Schematic representation
of HSPG2 domain (I–V) encoding organization with corresponding locations of mutations. Mutation
types are indicated by colored circles, with white and black indicating whether the mutation was
identified in either a SJS or a DDSH patient, respectively. Mutations are identified by their cDNA
sequence (Genbank M85289.1) as depicted below and follow the accepted nomenclature system [96].

However, not all truncations completely prevent perlecan secretion and loss of function. It appears
that terminations occurring at the C-terminal region of the protein core are better tolerated, and the
result is the less severe SJS rather than DDSH. For example, a SJS patient was diagnosed having a



Genes 2018, 9, 556 8 of 14

heterozygous transition mutation at the last nucleotide of exon 64 in allele 1 (c.8464 G > A) and had
a 9 base pair deletion at the acceptor junction of intron 66 and exon 67 in allele 2 (c.8759-3del9) [6].
These mutations resulted in the skipping of exons 64 and created abnormal splicing with retention
of intron 66 or skipping of exon 67, respectively. Interestingly, the c.8464 position appears to be a hot
spot for mutations, as it has appeared in multiple SJS patients [1,5,6]. Similarly, another SJS patient
was found to have truncations that exclusively removed large regions from the C-terminal region of
domain V [6]. In this case the patient was diagnosed having a homozygous deletion that removed
7108 base pairs beginning at the 5′ region of exon 96 up to the 3′ flanking sequence of the HSGP2
gene (12920del7108), which lead to the retention of intro 95 or the failure to splice introns 94 and 95.
As a result, the two transcript products created protein fragments lacking ~35 and ~64 amino acids
from the C-terminus of domain V, respectively.

The SJS patients lacking domain V tend to show skeletal defects much earlier than those patients
that can produce a mutant full-length version of perlecan. This suggests domain V plays a key role
in the early onset of chondrodysplasias. Normal domain V function primarily involves cell-matrix
interactions; it has shown both pro- and anti-angiogenic activity through endothelial cell integrin
binding [36,97]. Furthermore, it has been shown that the C-terminal domain V contributes to
supramolecular assembly and cell-basement membrane connections through β1-integrin cell adhesion,
heparin, nidogen and fibulin-2 binding [98]. Thus, it is possible that domain V binds to chondrocyte
integrin receptors and stabilizes the cartilage matrix, contributing to normal cartilage development [6].
Therefore, with the loss of domain V, the cartilage matrix does not develop properly, leading to the
chondrodysplasia symptoms associated with SJS.

Two potential mechanisms have been proposed for the myotonia symptoms associated with the
SJS caused by perlecan mutation. First, full length perlecan may serve to cluster acetylcholinesterase at
the membrane of the neuromuscular junction by binding to the enzyme at HS binding domains and
the membrane dystroglycan at domain V [46,99]. The loss of localization function may contribute to
a slower degradation of acetylcholine that results in the hyperexcitability exhibited in SJS. This loss
of localization function may occur through mutations in domain V that prevent the protein from
binding to the membrane. Second, domain V may bind directly to sodium or chlorine ion channels
on the muscle, modifying their function and leading to the indicated hyperexcitability myotonia
symptoms of SJS [1]. Domain V also has been associated with conditions beyond skeletal defects.
Specifically, an adenine to guanine substitution (c.11827 G > A; NM_005529.6) results in an alanine
to threonine amino acid replacement (A3943T) that appears in certain SJS patients suffering from
ectopic mineralization in the kidney resulting in juvenile nephrolithiasis and associated osteopenia
(Lada Beara Lasic and Farach-Carson, unpublished). A proposed mechanism for this development that
is presently under investigation is that the mutation produces a new hydrogen bond, thus changing
the protein folding pattern and revealing potential calcium binding sites that serve as nucleators for
calcium deposition.

8. Conclusions

Perlecan is a modular multifunctional ECM proteoglycan that serves vital roles in development,
wound healing and tissue morphogenesis. It influences multiple signaling pathways that determine key
cell fate decisions and tissue phenotype. It is ancient and highly conserved across species, indicating
that selective pressures during evolution have favored retention of the gene encoding the protein as a
long modular monomer. Given its essential role in tissue formation during development, mutations
in the HSPG2 gene are particularly difficult to study since most are embryonic or neonatal lethal.
Those recorded non-lethal human mutations result in two skeletal defects: SJS and DDSH, and perhaps
in ectopic mineralization. HSPG2 mutations in viable organisms typically occur near the region of
the gene encoding the C-terminus, allowing most of the protein to be secreted. In mouse models,
perlecan-null mice suffered lethal complications in the heart and brain in addition to hemorrhage in
various other tissues and organs. In hypomorphic mice with reduced levels of perlecan, the barrier
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functions of the protein were not sufficiently met, leading to complications in bone development
and integrity. In humans, four cases of DDSH have been characterized. Milder mutations that occur
closer to the C-terminus in domains IV and V have shown to produce the milder SJS phenotype.
Much work remains to be done toward the investigation of non-lethal perlecan mutations and
variations that may more subtly influence phenotype. The growing access to whole genome sequencing
in large patient populations and popular personal sequence repositories such as 23andMe, Inc.
(Mountain View, CA, USA) and AncestryDNA® (Ancestry LLC, Lehi, UT, USA) may provide the
opportunity to explore further the mutational and variant landscape for this fascinating gene.
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