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ABSTRACT Zinc is essential for almost all living organisms, since it serves as a crucial cofactor for
transcription factors and enzymes. However, it is toxic to cell growth when present in excess. The present
work aims to investigate the toxicity mechanisms induced by zinc stress in yeast cells. To this end, 108 yeast
single-gene deletion mutants were identified sensitive to 6 mM ZnCl2 through a genome-wide screen.
These genes were predominantly related to the biological processes of vacuolar acidification and transport,
polyphosphate metabolic process, cytosolic transport, the process utilizing autophagic mechanism. A result
from the measurement of intracellular zinc content showed that 64 mutants accumulated higher intracellular
zinc under zinc stress than the wild-type cells. We further measured the intracellular ROS (reactive oxygen
species) levels of 108 zinc-sensitive mutants treated with 3 mM ZnCl2. We showed that the intracellular ROS
levels in 51 mutants were increased by high zinc stress, suggesting their possible involvement in regulating
ROS homeostasis in response to high zinc. The results also revealed that excess zinc could generate
oxidative damage and then activate the expression of several antioxidant defenses genes. Taken together,
the data obtained indicated that excess zinc toxicity might be mainly due to the high intracellular zinc levels
and ROS levels induced by zinc stress in yeast cells. Our current findings would provide a basis to
understand the molecular mechanisms of zinc toxicity in yeast cells.
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The transition metal ion, zinc, is an essential cofactor for transcription
factors and enzymes in all eukaryotic cells aswell as an essential nutrient
for life in all living organisms (Hambidge and Krebs 2007). However, it
is toxic to cell growth when present in excess by generating reactive
hydroxyl radicals and disturbing the cellular redox potential (Singh
et al. 2017). In addition, excess zinc competes for the binding sites in
functional proteins for other metals (King et al. 2000). Although Zinc
can function as a member of antioxidant properties, it generates

reactive oxygen species when yeast cells were exposed to high zinc
levels (Pagani et al. 2007; Powell 2000; Hao and Maret 2005). More-
over, metal toxicities are often attributed mainly to the capacity to
induce the unfolded protein response (UPR), the oxidative stress,
DNA damage or even cell death (Nargund et al. 2008; Muthukumar
and Nachiappan 2010; Liu et al. 2018). High intracellular ROS levels
induced by zinc or other metals and stresses can trigger several biolog-
ical molecules, such as DNA damage, lipid peroxidation and depletion
of protein sulphydryl (Howlett and Avery 1997; Chrestensen et al.
2000; Serero et al. 2008). Therefore, the intracellular zinc levels
must be tightly regulated to maintain zinc homeostasis in an opti-
mal level regardless of its supply. As a model organism, the budding
yeast Saccharomyces cerevisiae is used to study the basic mecha-
nisms of many cellular processes, including zinc transport and zinc
homeostasis (Wu et al. 2008).

In budding yeast, zinc homeostasis is tightly sustained via various
transporters. Yeast cells assimilate the extracellular zinc through the
high and low-affinity transport at the plasma membrane (Eide 2009).
Cells uptake the extracellular zinc efficiently via a high-affinity zinc
transporter Zrt1, and two low-affinity zinc transports, Zrt2 and Fet4,
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which are all regulated by the transcriptional factor Zap1 (Waters and
Eide 2002; Zhao and Eide 1996a, 1996b). Inside the cell, two vacuolar
zinc transporters Zrt3 and Zrc1 are responsible for transporting zinc
out or into the vacuolar, respectively, and the heteromeric complex
formed by Msc2 and Zrg17 transports the cytoplasm zinc to the
endoplasmic reticulum when it is in excess. Interestingly, the three
transporters Zrt3, Zrc1 and Zrg17 are also regulated by Zap1 in re-
sponse to zinc level (MacDiarmid et al. 2000; Miyabe et al. 2000; Wu
et al. 2011). The Fet4 transporter involved in uptake of iron and
copper and the high-affinity phosphate transporter Pho84 can also
uptake zinc (Waters and Eide 2002; Bun-Ya et al. 1991).

Zap1 was the first identified fungal zinc-responsive transcription
factor from S. cerevisiae (Zhao and Eide 1997). Zap1 regulates the
expression of about 80 genes by binding to their ZREs (Zinc Responsive
Elements) in the promoter regions, including the genes required for
zinc homeostasis or survival for a long period of zinc starvation (Zhao
and Eide 1997; De Nicola et al. 2007; North et al. 2012; Zhao et al.
1998). At the transcriptional level, Zap1 autoregulates its coding gene
ZAP1 by binding to a ZRE within its own promoter (Zhao et al. 1998).
Zap1 contains seven C2H2-type zinc fingers. Five of these zinc fingers
are needed for DNA binding, while the other two are involved in zinc
sensing to regulate AD2 (Wilson and Bird 2016). For the post-trans-
lational/ regulation of Zap1, zinc regulates the activities of the Zap1DNA
binding domain, AD1 and AD2 independently (Bird et al. 2003; Herbig
et al. 2005; Frey et al. 2011; Zhao et al. 1998). Hence, the activity of Zap1
is strongly enhanced in response to zinc limitation, inducing the expres-
sion of ZRT1 encoding a high-affinity zinc transporter while inhibiting
the expression of ZRT2 encoding a low-affinity zinc transporter (Eide
2003; Wilson and Bird 2016). When espoused to high extracellular zinc
concentrations, Zrt1 is removed from the plasma membrane rapidly by
substrate-induced endocytosis (Schothorst et al. 2017; Gitan and Eide
2000; Gitan et al. 1998). The expression level of ZRT1 is induced over
100-fold in zinc-limited cells by Zap1, while ZRT2 is induced under mild
zinc limitation but then inhibited by Zap1 in severe zinc limitation
conditions (Zhao and Eide 1997; Bird et al. 2004).

Despite these discoveries, it is still largely unknown about the basic
mechanisms by which proteins or pathways regulate the cytosolic zinc
homeostasis or zinc toxicity. Using yeast as a model system, it is easy to
know how a single-gene mutant regulates zinc homeostasis in response
to high zinc (Bleackley et al. 2011). The present work aims to investigate
the toxicity mechanisms induced by zinc stress in yeast cells. We first
screened the zinc-sensitive mutants from a collection of S. cerevisiae
deletion mutants. Specifically, the impact of high intracellular zinc
concentration and ROS production were both addressed in this work.
Also, we analyzed the expression of genes involved in antioxidant
defenses in response to excess zinc.

MATERIALS AND METHODS

Yeast strains and growth conditions
Diploid strains used in this work derived from the BY4743 genetic
background. Yeast cells were grown at 30� in YPD medium (1% yeast
extract, 2% peptone, 2% glucose). ZnCl2 was purchased from Sangon
Biotech (Shanghai, China), and dihydroethidium was purchased from
Sigma (Beijing, China).

Genome-wide screen for zinc-sensitive mutations
A collection of S. cerevisiae deletion mutants of 4,757 non-essential
genes in BY4743 background were purchased from Thermo Fisher
SCIENTIFIC(http://clones.thermofisher.com/cloneinfo.php?clone=yeast,
catalog number: 95400.BY4743) and frozen at -80� in 96-well microtitre

plates in liquid YPD medium containing 15% glycerol. The primary
screen of zinc-sensitive mutations was first performed by transferring
the deletion mutant library to fresh liquid YPD medium (pH �5.5) and
cultured at 30� in new 96-well microtitre plates. Then, 20 mL of each
mutant was transferred to 180 mL fresh liquid YPD medium with or
without 3mΜZnCl2 and incubated at 30� for 12 h.Mutants with a relative
OD600 reduced by more than 30% in liquid YPD medium supplemented
with ZnCl2 relative to wild-type cells but not in liquid YPDmedium were
considered zinc-sensitive. Mutants that appeared sensitive were confirmed
by the serial dilution assay method in solid YPD plates, YPD plates with
6 mΜ ZnCl2, YPD plates with 6 mΜ ZnSO4 and YPD plates with 12 mΜ
NaCl as described previously (Zhao et al. 2013). Namely, the individual
deletionmutants grown overnight in liquid YPD at 30� and serially diluted
by 10 times with ddH2O. Each dilution of 2.5 mL was spotted onto the
above indicated plates and incubated at 30� for 2-3 days.

Determination of the intracellular zinc concentrations
To determinate of the total intracellular zinc concentrations in the
108 zinc-sensitive mutants, cells were first cultured in YPD media to
middle log phase and thenwere treatedwith 3mMZnCl2 for 2 hr. Next,
cells were collected and prepared for measuring the intracellular zinc
concentration using an atomic absorption spectrometer in flame
emission mode as described previously (Zhao et al. 2013). Three
individual colonies for each mutant were measured, where the
wild-type BY4743 cells served as a control.

Detection of the intracellular ROS accumulation
The intracellular ROS level wasmonitoredwith dihydroethidium (DHE)
(Büttner et al. 2007). Before zinc treatment, cells were cultured in YPD
media to the middle log phase and split into two aliquots. Subsequently,
yeast cells were exposed to YPD supplemented with or without 3 mM
ZnCl2 or 8 mM ZnCl2 for 2 hr or 5 hr, respectively. The relative fluo-
rescence units (RFU)weremeasured in a SynergyH4 fluorescence reader
(BioTek) at a fluorescence excitation of 485nm and an emission of
535nm. The RFU was corrected and normalized by the density of OD600

of each correspondingmutant. Three individual colonies for eachmutant
were measured, where wild-type BY4743 cells served as a control.

RNA extraction and quantitative real-time PCR
(qPCR) assay
To extract the total RNA, yeast cells were first grown inYPD to a density
of OD600 = 0.6�0.8 andwere spilt into aliquots Then cells were cultured
in YPD supplemented with or without 3 mM ZnCl2 for an additional
1 hr. Cultures were then collected and the total RNA was extracted by
the hot phenol method. The first-strand cDNA of each sample was
synthesized via the Primer Script RT reagent kit (Cwbiotech, China)
following the manufacturer’s instructions. Quantitative PCR (qPCR)
method was used to detect the relative expression levels ofTRR1, TRX2,
SOD1, GSH1, CTT1, GPX2 with primer pairs listed in Table S1, re-
spectively. The PGK1 gene was used as an internal control. qPCR
reactions were performed in a Thermo Scientific CFX96 instrument
using SYBR Premix Ex Taq (Cwbiotech, China). The results were
abstained through the –DDCt method (Livak and Schmittgen 2001).
Each reaction was carried out in triplicate.

Meta-analysis and protein-protein interaction (PPI)
network construction for the identified genes
Gene Ontology (GO) enrichment analyses of the zinc-sensitive genes
wereperformedusing the powerful web-basedMetascape tool (http://
metascape.org/gp/index.html#/main/step1). P-value , 0.01 was set as
the cutoff criterion, and significance was ranked by enrichment score
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(2 log 10 (P-value)). Aweb-based search tool, STRING(http://string-db.org),
was selected to explore the potential protein-protein interactions of the
screened zinc-sensitive genes. A reliability threshold of a combined
score of .0.4 was considered as significant interaction pair and then
protein-protein interaction (PPI) network was constructed and visual-
ized by Cytoscape software (version 3.6.0, http://www.cytoscape.org/)
(Shannon et al. 2003).

Data availability
Strains are available upon request. The authors affirm that all data
necessary for confirming the conclusions of the article are present
within the article, figures, and tables. Supplemental material available
at figshare: https://doi.org/10.25387/g3.11365043.

RESULTS

Identification of genes involved in zinc tolerance
To identify the genes involved in zinc tolerance, we screened the yeast
diploidnonessential genedeletion library.The results indicated that a set
of mutants for 108 genes showed reduced growth in exposing to 6 mM
ZnCl2 (Table 1). The zinc sensitivity of 48 mutants has been reported
(http://www.yeastgenome.org) (Table 1, underlined; Table S2), while
the zinc sensitivity of the other 60mutants is reported for the first time.

The functional classes of these 108 are related tometabolism (11), cell cycle
and DNA processing (18), transcription (15), Protein fate (synthesis, fold-
ing, modification, destination) (17), cellular transport, transport facilities
and transport routes (32), as well as unclassified proteins (15) (Table 1).

GeneOntology (GO) enrichment analysis showed that the 108 genes
were most enriched in the biological processes of vacuolar acidification,
polyphosphate metabolic process, cytosolic transport, the process uti-
lizing autophagic mechanism and vacuolar transport among the top
20 GO terms in cluster groups (Figure 1A). All the zinc-sensitive genes
were then uploaded to the web-based online tool STRING (https://
string-db.org/) and the information of PPI was gained and visualized
by Cytoscape software (version 3.6.0) (Figure 1B). A total of 76 proteins
were filtered from the 108 candidates, and a significant functional
network was constructed by these 76 nodes and 168 interaction pairs.

Elevated intracellular zinc levels evoked by excess zinc
To determine the correlations between zinc sensitivity and intracellular
zinc accumulations in all zinc-sensitive mutants, we analyzed the in-
tracellular zinc concentrations in yeast cells treated with 3 mM ZnCl2.
We showed that the intracellular zinc content of a number of 64 mu-
tants (almost 59% of the total 108 genes) was significantly increased
compared with wild-type cells (Figure 2). Meanwhile, 29 zinc-sensitive
mutants accumulated similar intracellular zinc ions compared with the

n■ Table 1 List of 108 genes whose deletion mutants are sensitive to 6 mM ZnCl2

Systemic name Standard name Systemic name Standard name Systemic name Standard name Systemic name Standard name

Metabolism (11)
YDR127Wa ARO1 YHR106W TRR2 YNL129W NRK1 YPR060C ARO7
YGL234W ADE5,7 YJL216C IMA5 YNL220W ADE12 YDL133Wb SRF1
YHR004C NEM1 YLR425W TUS1 YPL268W PLC1
Cell cycle and DNA processing (18)
YAL015C NTG1 YDL047W SIT4 YJL092W SRS2 YNL271C BNI1
YAL020C ATS1 YDL101C DUN1 YJL208C NUC1 YPL031C PHO85
YAL047C SPC72 YDR137W RGP1 YJR043C POL32 YHR113W APE4
YCR077C PAT1 YER116C SLX8 YLL002W RTT109
YCR086W CSM1 YHR061C GIC1 YNL059C ARP5
Transcription (15)
YCR081W SRB8 YFL001W DEG1 YHR178W STB5 YLR182W SWI6
YDL160C DHH1 YFL049W SWP82 YIL154C IMP2’ YNR052C POP2
YDR028C REG1 YGL071W AFT1 YJL124C LSM1 YPL254W HFI1
YDR310C SUM1 YGR092W DBF2 YKL139W CTK1
Protein fate (synthesis, folding, modification, destination) (17)
YBR131W CCZ1 YDR283C GCN2 YJL004C SYS1 YNL069C RPL16B
YCL001W RER1 YFL016C MDJ1 YJL204C RCY1 YPR133W-A TOM5
YCL045C EMC1 YGL124C MON1 YKL006W RPL14A
YCR079W PTC6 YGL195W GCN1 YLL010C PSR1
YDL045W-A MRP10 YHR076W PTC7 YMR264W CUE1
Cellular transport, transport facilities and transport routes (32)
YBR127C VMA2 YFL004W VTC2 YJL012C VTC4 YLR261C VPS63
YCL038C ATG22 YGL212W VAM7 YJL024C APS3 YLR262C YPT6
YCR037C PHO87 YGL095C VPS45 YJL154C VPS35 YLR268W SEC22
YDL100C GET3 YGR105W VMA21 YJL198W PHO90 YLR396C VPS33
YDR089W VTC5 YHL031C GOS1 YLR242C ARV1 YMR243C ZRC1
YDR186C SND1 YHR026W VMA16 YKL080W VMA5 YNL323W LEM3
YDR276C PMP3 YHR094C HXT1 YKL119C VPH2 YOR270C VPH1
YDR456W NHX1 YHR108W GGA2 YKR020W VPS51 YPL045W VPS16
Unclassified proteins (15)
YCL007C YHR112C YKL044W MMO1 YNL204C SPS18
YDL041W YHR151C MTC6 YLR149C YPL261C
YDR203W YJL211C YLR232W YPR123C
YDR417C YJL218W YMR265C
a
Gene names were listed alphabetically according to their systemic names.

b
The mutations for 48 genes that were reported sensitive to zinc previously were underlined.
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wild-type strain, and mutants for 15 genes (ARO1, ADE5,7, PAT1,
RGP1, VMA16, VPH1, VMA5, VPS51, ARV1, SEC22, VPS22, LEM3,
VPH1, VPS16 and YCL007C) accumulated less intracellular zinc than
that of wild-type cells, respectively.

Phosphate homeostasis is regulated by SPX domain proteins in
eukaryotes and plays an essential role in the biosynthesis of diverse
cellular components (Secco et al. 2012). Interestingly, in the present
study, deletion mutants for five genes (PHO87, PHO90, VTC2, VTC4
and VTC5) encoding SPX-domain proteins, and one gene (PHO85)
coding for cyclin-dependent kinase Pho85, were all sensitive to
6 mM ZnCl2 and accumulated increased intracellular zinc levels in

response to excess zinc (Table 1, Figure 2). Based on these findings,
we speculate that phosphate homeostasis is significantly involved in
maintaining the intracellular zinc homeostasis under excess zinc con-
ditions in budding yeast.

Yeast V-ATPase, anH+-ATPase localized in the vacuolemembrane,
played crucial roles in regulating the pH values, acidifying intracellular
organelles and cellular homeostasis (Graham et al. 2000; Couoh-Cardel
et al. 2016). In the present study, we showed that deletion of the 8 genes
related to the regulation of the intracellular pH (NHX1, VMA2,
VMA21,DBF2,VPH2,VMA5,VPH1 andVMA16), rendered yeast cells
sensitive to 6 mM ZnCl2, although only mutants for two genes (VMA2

Figure 1 Meta-enrichment analysis summary of zinc-sensitive genes. (A) Heatmap of the top 20 enriched GO terms. For GO terms, each band
represents one enriched term colored according to its -log 10 p-value. The dominant term within each group is used as a group heading. (B) The
protein-protein interaction (PPI) networks of the zinc-sensitive genes. The edges represent the combined score, and the thicker the edge, the
higher the similarity.
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and VMA21) accumulated higher intracellular zinc in response to zinc
stress (Figure 2C). In addition, mutants for 8 genes (VAM7, VPS45,
APS3, VPS35, VPS63, VPS33 and VPS51) encoding proteins associated
with the function of vacuolar protein sorting were also sensitive to zinc
stress. However, only mutants for VPS45, APS3 and VPS35 accumu-
lated higher intracellular zinc in response to zinc stress (Figure 2C).

Autophagy is a fundamental cellular process of all eukaryotic cells
that aged and/or damaged cytoplasmic proteins, lipids, unwanted
organelles and cytosol are translocated to the vacuole and degraded
(Song and Kumar 2012; Yin et al. 2016). Interestingly, 18 mutants for
ATG22, PTC6, VTC2, YPT6, VPS33, GCN2, CCZ1, VAM7, GCN1,
MON1, VTC4, RPL14A, VPS51, PHO85, VPS16, SEC22, GOS1 and
VPS45 enriched in the process utilizing autophagic mechanism, were
sensitive to zinc (Table 1). Of these genes, mutants for 8 genes (PTC6,

VTC2, GCN2, CCZ1, GCN1, VTC4, PHO85 and VPS45) accumulated
higher intracellular zinc thanwide-type cells, indicating their important
roles in maintaining the intracellular zinc homeostasis. The only iden-
tified gene ATG gene in this study, ATG22, encodes a protein involved
in transporting small molecules such as amino acids back to the cytosol
for protein synthesis and other cellular functions (Tyler and Johnson
2018). Three genes of CCZ1, MON1 and YPT6 were required for the
CVT pathway and the autophagy (Cabrera et al. 2014; Suda et al.
2013). VTC (Vacuolar Transporter Chaperone) complex consists of
five subunits (Vtc1, Vtc2, Vtc3, Vtc4 and Vtc5), and functions in
several membrane-related processes, including the microautophagic
scission of vesicles into the vacuolar lumen. Three VTC genes
(VTC2, VTC4 and VTC5) screened out in the present study and
cyclin-dependent kinase gene PHO85 were all involved in phosphate

Figure 2 Intracellular zinc levels of 108 zinc-sensitive gene mutants in response to zinc stress. Log-phase cells were grown with or without 3 mM
ZnCl2 for two hours before they were collected for the measurement of intracellular zinc levels. The intracellular zinc content s of these mutants
were listed according to their categories in comparison to that of wild type cell BY4743. The value is the average of three independent assays for
each strain. The asterisks of “�”and “��” show statistically significant differences of P , 0.05 and P , 0.01, respectively.
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homeostasis, while Pho85 was also a regulator of autophagy (Reggiori
and Klionsky 2013). Gcn2 kinase and its positive regulator Gcn1 were
both identified sensitive to high zinc. Gcn2 is involved in sensing the
level of intracellular amino acids and can be regulated by transcrip-
tion factor Gcn4 and the cyclin-dependent kinase Pho85 (Reggiori
and Klionsky 2013).

Notably, consistent with a previous study (Pagani et al. 2007;
Mesquita et al. 2016), we found that deletion of AFT1 encoding a
transcription factor, ZRC1 encoding a protein transporting zinc into
vacuolar, rendered yeast cells sensitive to 3 mΜ ZnCl2, although the
intracellular zinc content of the two mutants reveal no significant dif-
ferences in response to zinc stress (Figure 2B, C).

Oxidative stress induced by zinc stress
Excess zinc can generate reactive oxygen species (ROS) when it accu-
mulates to toxic levels in cells (Pagani et al. 2007). It was reported that
ROS stress was induced when the wide-type cells were treated with
10 mM. A low concentration of zinc (5 mg/L, about 77 mM) did not
induce ROS production (Mesquita et al. 2016), while 5 mM zinc pro-
duced a weak ROS response in wild-type cells (Pagani et al. 2007).
However, some zinc-sensitive genes might be involved in this process.
To further confirm this possibility, we measured the intracellular ROS
levels following 3 mM ZnCl2 or 8 mM ZnCl2 treatment, respectively.
When the concentration of ZnCl2 is 3 mM, the intracellular ROS level
in wild-type BY4743 cells treated with zinc showed no significant dif-
ference compared with the untreated cells. Of these 108 zinc-sensitive
mutants, the intracellular ROS levels of about 27 mutants were in-
creased by extracellular zinc stress (Figure 3), including 11 genes in-
volved in cellular transport (ATG22, NHX1, VTC2, VAM7, VMA16,
ARV1, YPT6, SEC22,VPS33, LEM3 andVPH1), five genes of transcrip-
tional process (SWP82, AFT1, DBF2, CTK1 and SWI6), four genes of
metabolism (ARO1,NRK1, PLC1 andARO7), two gens of cell cycle and
DNA processing (SPC72 and PAT1), one genes of protein fate (CUE1),
and other three unidentified genes (YCL007C, MMO1 and YLR149C).
It indicated that these 27 genes were all crucial for dealing with the
oxidative damage induced by 3 mM ZnCl2. The other 81 mutants
accumulated similar (73 mutants) or even lower (18 mutants) intracel-
lular ROS levels when treated with zinc compared with the no treated
cells (Figure S1), respectively. When these mutants were treated with

8 mM ZnCl2, it was showed that 51 mutants displayed increased ROS
levels, including 23 mutants in which the intracellular Zn levels were
higher than that of the wild type cells (Figure S3). These results sug-
gested that these genes might be involved in the regulation of intracel-
lular ROS levels induced by higher level of zinc.

The expression of genes involved in redox homeostasis
is regulated by zinc stress
It was reported that zinc induced the expression of a number oxidative
stress scavenging genes, including CTT1, GAD1, GPX1, SOD1 and
SOD2, etc (Pagani et al. 2007). To investigate whether the zinc-sensitive
genes were involved in regulating the expression level of genes involved
in redox homeostasis, we pick up 11 mutants for ARO7, NRK1, SPC72,
DBF2, CUE1, VPH1, LEM3, PLC1, ATG22, ARO1, and YCL007C ac-
cumulated the most relative ROS levels when treatment with zinc (Fig-
ure 3), to test the mechanism of oxidative damage induced by zinc.
Next, we measured the expression of TRR1 (thioredoxin reductase),
TRX2 (thioredoxin 2), GSH1 (glutamylcysteine synthetase), SOD1
(copper/zinc superoxide dismutase), CTT1 (cytosolic catalase T) and
GPX2 (2-Cys peroxiredoxin), in these 11 mutants by qPCR assay. Four
genes of TRR1, TRX2, SOD1 and CTT1 were significantly up-regulated
after treatment with zinc in the wild-type cells (Figure 4), however, no
significant difference was showed for the expression of GSH1 or GPX2
in the presence or absence of zinc (Figure S2). Interestingly, both of the
expression levels of TRX2 and SOD1 were decreased in the 11 mutants
compared with wild type cells (Figure 4B, C). Furthermore, the expres-
sions of TRR1 and CTT1were also reduced in these mutants except the
mutants for SPC72 and NRK1, respectively (Figure 4A, D). Based on
these analyses, we concluded that the decreased expression of TRR1,
SOD1, CTT1 and TRX2 might be responsible for the high intracellular
ROS levels evoked in these mutants.

DISCUSSION
The main goals of this study were to identify the genes involved in
zinc tolerance, and to investigate the toxicity mechanisms induced
by zinc stress in yeast cells. Zinc serves as a crucial structural and
catalytic cofactor for many functional proteins such as transcrip-
tional factors containing zinc-finger (s), molecular chaperones,
DNA or RNA polymerases, lipid-binding proteins, some metabolic

Figure 3 Increased intracellular ROS levels of zinc-sensitive gene mutants in response to 3 mM ZnCl2. The relative ROS levels of these mutants in
response to zinc treatment are normalized against their related untreated cells. Log-phase cells were grown with or without 3 mM ZnCl2 for 2 hr
before harvesting and measurement of intracellular ROS levels using dihydroethidium. Results are averages of three independent assays for each
strain. The asterisks of “�”and “��” show statistically significant differences of P , 0.05 and P , 0.01, respectively.
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enzymes, etc (Singh et al. 2017). However, it is toxic at high intracel-
lular levels as zinc can generate reactive oxygen species and thus
trigger several biological molecules damaged to cell growth (Howlett
and Avery 1997; Chrestensen et al. 2000; Serero et al. 2008; Pagani
et al. 2007). Therefore, zinc homeostasis must be tightly controlled. In
the present study, we identified 108 zinc-sensitive gene deletion mu-
tations from a genome-scale screen in budding yeast, including
60 mutants that have not been reported previously. It was reported
the vacuole integrity was essential for chloride homeostasis (Jennings
and Cui 2008), therefore we pick up some of the mutants to investi-
gate whether they are sensitive to another Zn-containing compound
ZnSO4, as well as NaCl. However, the results showed that these mu-
tants shared the similar sensitivities in 6 mM of ZnCl2, ZnSO4 and
12 mM NaCl was not affected the growth of these mutants (Figure
S3). The results indicated that the zinc sensitivities of these mutants
were not influenced by the chloride homeostasis. Our finding might
imply that excess zinc toxicity might be mainly due to the high in-
tracellular zinc levels and/or ROS levels induced by zinc stress in yeast
cells, although not all mutants revealed high intracellular zinc levels
and ROS levels in response to high zinc.

In budding yeast, ten genes encode SPX domain proteins, which
are named after S yg1, P ho81, X PR1 (Secco et al. 2012). Of the ten

SPX domains proteins, nine have been identified to relate to Pi
metabolism, including two plasma membrane Pi importers,
Pho87 and Pho90 (Wykoff and O’Shea 2001; Bun-ya et al. 1996;
Hürlimann et al. 2007); a vacuolar Pi exporter, Pho91 (Hürlimann
et al. 2007); a cyclin-dependent kinase inhibitor Pho81, which
regulate the activity of Pho80/Pho85 (Schneider et al. 1994); and
a glycerophosphocholine phosphodiesterase, Gde1 (Fisher et al.
2005). Four SPX domains proteins (Vtc2, Vtc3, Vtc4 and Vtc5)
involved in producing polyP, are part of the Vacuole Transporter
Chaperone (VTC) complex, which play functional roles in sorting
of H+-translocating ATPases, endocytosis, ER-Golgi trafficking, vacuole
fusion, vacuolar polyphosphate homeostasis and the microautophagic
scission of vesicles into the vacuolar lumen (Müller et al. 2002; Müller
et al. 2003; Desfougères et al. 2016). The tenth SPX domain protein with
unknown function is encoded by SYG1 and localizes in plasma mem-
brane, whichmight have a function in exporting Pi (Vaughan et al. 2012).
Interestingly, the results indicated that six genes involved in the process of
phosphate mechanism were sensitive to zinc and accumulated higher
intracellular zinc, indicating their crucial roles in maintaining the intra-
cellular zinc homeostasis under excess zinc conditions in budding yeast.

Autophagy is well conserved from budding yeast to human cells and
is also crucial for maintaining the cellular and organismal homeostasis,

Figure 4 Relative expression levels of genes involved in oxidative stress response. TRR1, TRX2, SOD1, CTT1, genes in the S. cerevisiae. Gene
expression is quantified using RT-qPCR and comparative critical threshold (2 -DDCt) method. The PGK1 gene was used as internal control and the
ratio of the fold-change without treatment was standardized to 1.0. These values represent the average of three independent experiments. The
asterisks of “�”and “��” show statistically significant differences of P , 0.05 and P , 0.01, respectively.
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immunity and organismal development (Yin et al. 2016). There two
types of autophagy in yeast, macroautophagy and microautophagy, a
nonspecific or direct process, respectively (Tyler and Johnson 2018).
The process of autophagy is regulated by nitrogen, glucose depletion,
amino acid and phosphate starvation, mitophagy, pexophagy, tran-
scriptional control and lipid metabolisms (Reggiori and Klionsky
2013). Zinc depletion induces non-selective autophagy in a Zap1-in-
dependent manner and this process may play a role in releasing zinc
from the degraded proteins for other purposes (Kawamata et al. 2017).
Interestingly, we identified 18 genes involved in the process of auto-
phagy mechanism, were sensitive to zinc. Two groups of proteins,
autophagy-related (ATG) or vacuolar protein sorting (VPS) proteins,
mediate the process of autophagy. Importantly, the cytoplasm-to-vac-
uole targeting pathway (Cvt pathway) is used to deliver various cargos
to the vacuole, and is considered a specialized form of autophagy.
Furthermore, three genes related to amino acids synthesis (APE4,
ARO1 and ARO7) and four genes involved in lipid homeostasis
(ARV1, SRF1, NEM1 and LEM3), were all required for zinc tolerance.
The SNARE (soluble N-ethylmaleimide-sensitive factor attached pro-
tein receptor) complex, a protein complex involved in membrane fu-
sion, is also required for autophagy (Tyler and Johnson 2018). In this
study, six genes (VAM7, VPS33, VPS51, SEC22, GOS1 and VPS45)
encoding proteins belong to the SNARE complex were identified sen-
sitive to zinc stress, indicating their crucial role in the process of auto-
phagy under excess zinc conditions. Based on these analyses, we
hypothesized that autophagy may play a significant role in maintaining
the cellular zinc homeostasis possibly by transporting the excess zinc to
vacuolar (Figure 5).

Under thehighzinc treatment,weobserved27mutants increased the
intracellular ROS levels comparing with the wild-types, consistent with
their growth defect. We pick up 11 mutants for ARO7, NRK1, SPC72,
DBF2, CUE1, VPH1, LEM3, PLC1, ATG22, ARO1, and YCL007C,
which accumulated the highest relative ROS levels than that of wild-
type cells in response to high zinc (Figure 3), to investigate the

mechanism of oxidative damage induced by zin stress. Apparently,
the expression of some antioxidant defenses genes was down-regulated
by zinc stress in these mutants, suggesting that these zinc-sensitive
genes might involve in maintaining the redox balance in response to
high zinc. However, the rest 81 mutants accumulated similar or even
lower ROS levels compared wild-type cells. Since the ROS stress was
induced when the zinc concentration reached 10 mM in the wide-type
cells (Pagani et al. 2007), these zinc-sensitive genesmight be involved in
ROSprocess when the extracellular zinc content was higher than 3mM.
They could also play a role in detoxification of excess zinc by yeast cells,
but further investigations are required.

CONCLUSIONS
In conclusion, our work has identified 108 yeast single-gene deletion
mutants that are sensitive to 6mMZnCl2 by screening the yeast diploid
nonessential gene deletion library. We have shown that 64 mutants
accumulated higher intracellular zinc levels than wild-type cells in re-
sponse to excess zinc, indicating their crucial role in maintaining the
intracellular zinc homeostasis. Our data showed that the intracellular
ROS levels in 51mutants were significantly higher than that of the wild-
type cells under high zinc stress. Our findings make it likely that excess
zinc can generate oxidative damage to yeast cells through up-regulating
several antioxidant defenses genes. Our current findings would provide
a basis to understand molecular mechanisms of zinc toxicity in yeast
cells.
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uolar, respectively, and the
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by Msc2 and Zrg17 transports
the cytoplasm zinc to the endo-
plasmic reticulum when it is in
excess. Excess zinc can generate
reactive oxygen species (ROS)
induce the oxidative stress scav-
enging genes. The process of
autophagy may play a significant
role in maintaining the cellular
zinc homeostasis possibly by
transporting the excess zinc to
vacuolar.
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