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A B S T R A C T   

COVID-19 heavily affects breathing and voice and causes symptoms that make patients’ voices distinctive, 
creating recognizable audio signatures. Initial studies have already suggested the potential of using voice as a 
screening solution. In this article we present a dataset of voice, cough and breathing audio recordings collected 
from individuals infected by SARS-CoV-2 virus, as well as non-infected subjects via large scale crowdsourced 
campaign. We describe preliminary results for detection of COVID-19 from cough patterns using standard 
acoustic features sets, wavelet scattering features and deep audio embeddings extracted from low-level feature 
representations (VGGish and OpenL3). Our models achieve accuracy of 88.52%, sensitivity of 88.75% and 
specificity of 90.87%, confirming the applicability of audio signatures to identify COVID-19 symptoms. We 
furthermore provide an in-depth analysis of the most informative acoustic features and try to elucidate the 
mechanisms that alter the acoustic characteristics of coughs of people with COVID-19.   

1. Introduction 

COVID-19 caused by the Severe Acute Respiratory Syndrome Coro-
navirus 2 (SARS-CoV-2) has been declared as a global pandemic by the 
World Health Organization (WHO), and has rapidly spread over more 
than 200 countries worldwide [1]. The main symptoms include fever, 
dry cough, sore throat, dyspnea, fatigue, headache and in severe cases 
multiple organ failure [2–4]. Implicitly, voice is also affected resulting in 
lack of energy to produce sound and loss of voice caused by shortness of 
breath and upper airway congestion. Recurrent dry coughs can further 
influence changes in vocal cords affecting voice quality. Recent study 
has reported changes in the acoustic parameters of voice caused by the 
insufficient airflow through the vocal tract as a consequence of pulmo-
nary and laryngological involvements in people with COVID-19 [5]. 
Therefore, all these respiratory conditions caused by COVID-19 can 
make patients’ voice distinctive, creating identifiable voice signatures. 

Voice has already proved to be a potent digital biomarker for early 
detection and monitoring the disease progress of various medical con-
ditions, with the most prominent examples being the neurological dis-
orders such as Parkinson’s disease [6,7], Mild Cognitive Impairment and 
Alzheimer’s disease [8,9], Multiple Sclerosis [10] and Amyotrophic 
Lateral Sclerosis [11,12]. Other conditions that affect voice include 

Rheumatoid Arthritis [13,14], which may lead to voice hoarseness due 
to cricoarytenoid joint involvement, or Diabetes Mellitus that provokes 
vocal fatigue caused by decreased laryngeal muscle strength in the 
presence of neuropathy [15]. For an exhaustive list of medical condi-
tions that may invoke voice disorders the reader is referred to Ref. [16]. 

With the onset of COVID-19, various efforts were made to develop 
efficient solutions for automatic diagnosis that would supplement the 
standard testing methods. While the Real-time Reverse Transcription- 
quantitative Polymerase Chain Reaction (RT-qPCR) test serves as the 
gold standard for COVID-19 detection, it requires an in-person visit to 
hospital or laboratory for taking an upper respiratory specimen (naso-
pharyngeal and oropharyngeal swab). Local clinics may also lack RT- 
qPCR facilities and skilled staff, requiring transport of specimens and 
further delaying test results. The Rapid Antigen Test (RAT) is an alter-
native that does not require laboratory processing and alleviates the 
time constraint of RT-qPCR, but unfortunately its sensitivity decreases 
with lower viral loads, thus providing false negative results in people 
with lower levels of the SARS-CoV-2 virus [17]. Chest Computed To-
mography (CT) may complement RT-qPCR to compensate false-negative 
tests for COVID-19 suspected patients with pneumonia [18]. An auto-
matic system for discrimination between COVID-19 pneumonias, 
non-COVID-19 pneumonias and controls based on deep convolutional 
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neural networks (Deep COVID DeteCT) that uses 3D model of entire CT 
chest is proposed in Ref. [19]. 

Development of remote diagnosis solutions for COVID-19 detection 
and disease progress monitoring would enable minimizing physical 
contact between medical staff and patients and avoiding their exposure 
to SARS-CoV-2; however, this research has still not reached full matu-
rity. Attempts are made to create low-cost wearable sensing technolo-
gies, that would allow remote monitoring of physiological signals and 
biochemical markers, for either early detection of COVID-19 cases or 
tracking the recovery process during self-isolation at home [20]. 
Another promising technology relies on connection between the sounds 
produced by patients (voice, cough or breathing) and respiratory system 
disorders caused by COVID-19. Analyzing coughs has been successfully 
used for detection of pneumonia, asthma, bronchiolitis and croup [21], 
pertussis [22], chronic obstructive pulmonary disease [23] and tuber-
culosis [24]. 

Several studies have already explored the usability of voice, cough 
and breathing for detection and screening of COVID-19 [25–31]. 
Crowdsourced dataset of cough and breathing samples is collected and 
used for distinguishing between individuals tested positive and negative 
to COVID-19, as well as participants diagnosed with asthma [25]. 
Handcrafted acoustic features and features automatically extracted 
using the VGGish model were used in combination with a simple logistic 
regression classifier. Similar feature extraction approach was followed 
in Ref. [28] in combination with Recurrent Neural Networks for the 
classification task. Five-level empirical mode decomposition and 5-level 
discrete wavelet transform, as well as deep features extracted from 
scalogram images using ResNet50 and MobileNet networks, were 
extracted from user coughs and classified into positive and negative to 
COVID-19 using the Support Vector Machines classifier in Ref. [29]. 
Large-scale crowdsourced cough dataset externally validated and 
labeled by expert physicians was collected within the COUGHVID study. 
The labels include a diagnosis, severity level, and existence of audible 
anomalies in cough sounds, such as dyspnea, wheezing or nasal 
congestion [30]. Vocal biomarkers initially designed for detection of 
Alzheimer’s disease were successfully used for identification of 
COVID-19 from forced cough recordings, showing the ability to almost 
perfectly detect even the asymptomatic cases [26]. This is in contrast to 
results given in Ref. [31], where the substantial performance decrease is 
observed for distinguishing asymptomatic positive cases from healthy 
participants. Although the preliminary results for identification of 
COVID-19 from voice and respiratory sounds are promising, pointing 
out to the relevance of using audio signatures to detect COVID-19 
symptoms, the results are still inconclusive and further efforts are 
required to reach the maturity and confirm the effectiveness of the 
proposed models over different datasets and a variety of voice sounds. 

We add to existing efforts of the community by collecting a dataset of 
speech, cough and breathing samples of both people diagnosed positive 
to COVID-19 and non-infected individuals via large scale public 
involvement. While cough and breathing are language independent, the 
collected speech data is multilingual in 8 different languages (English, 
German, French, Spanish, Portuguese, Arabic, Luxembourgish and 
Serbian) and represents, to the best of our knowledge, the first dataset 
that takes into account cross-linguistic variations. It can be used to assess 
to what extent the language a person speaks might affect the perfor-
mance of a speech-based COVID-19 predictive model. Recent study has 
shown that despite the universality of speech motor system involved in 
speech production there are language-specific differences in aspects 
such as phonation or prosody that influence the perception of speech 
impairment in Parkinson’s disease [32], that are also reported in some 
cases of people with COVID-19 [33,34]. 

While cross-linguistic analysis of speech stands as a mid-to long-term 
objective, we report in this paper preliminary results on detection of 
COVID-19 from cough patterns, since dry cough was identified as one of 
the most frequent symptoms in our dataset. In contrast to other related 
research which mostly tries to show that a particular machine learning 

model is appropriate for a COVID-19 detection task, we go a step further 
and provide an in-depth analysis of the most informative acoustic fea-
tures, trying to elucidate the exact mechanisms that alter the acoustic 
characteristics of coughs of people with COVID-19. Furthermore, we 
show that wavelet scattering transform is a very promising feature 
extraction method that is robust to noise present in the data, but also 
able to learn features from the limited data resources. This work com-
prises a step toward the development of low-cost and easy-to-use com-
puter aided tools for the automatic assessment of respiratory symptoms 
related to COVID-19 and remote patient monitoring during the recovery 
process. 

Section 2 gives a detailed description of the collected dataset, data 
preprocessing and feature extraction techniques, as well as classification 
models for COVID-19 detection used in this paper. Section 3 provides 
experimental results and discusses the efficiency of various audio feature 
extraction and modelling approaches, while section 4 gives concluding 
remarks and directions for further research. 

2. Material and methods 

2.1. Dataset collection via CDCVA study 

The ability to successfully identify COVID-19 patients from their 
voices heavily depends on collection of a large dataset that contains 
speech, coughs and breathing of people diagnosed positive to COVID-19, 
non-infected individuals, but also people who might suffer from other 
respiratory conditions. Although there is no standard protocol for data 
collection, we propose within CDCVA1 (COVID-19 Detection by Cough 
and Voice Analysis) study to collect the sounds emitted from human’s 
mouth using five vocal tasks: sustained phonation of a vowel/aaaa/, 
coughing (3 times), breathing deeply in and out through mouth (3 
times), number counting from 1 to 20, and reading a specified text. 
Counting and reading task are provided in a language of the partici-
pant’s choice. The data is collected using a multilingual web-based 
platform which is designed in 8 languages (English, German, French, 
Spanish, Portuguese, Arabic, Luxembourgish and Serbian) to cover a 
large range of potential participants, but also the most used languages in 
the greater region of Luxembourg. Besides vocal data, information about 
the participant’s age, gender, country of residence, native language, 
weight, height, smoking and drinking habits is also collected, as well as 
COVID-19 related symptoms and comorbidities. Health status of the 
participant (positive or negative to COVID-19) is determined based on 
the self-declaration confirmed by the standard RT-qPCR or RAT test, 
with the date of testing. The participants can also provide the infor-
mation whether they are currently in home isolation or hospitalized. 

As the data collected is highly personal, extensive discussions were 
undertaken on the ethical approach of the project. The participants 
involved are asked to give their informed consent. Information relating 
to data protection issues is also provided. From a design point of view, 
the user interface was developed to be as simple to use as possible and to 
work across a range of browsers and operating systems. 

The dataset is entirely crowdsourced; therefore, it is uncontrolled 
and we have to rely on the participants in our study to infer ground truth 
labels. Another challenge is related to the use of different devices, mi-
crophones, web browsers and recording conditions for data collection, 
resulting in data stored in different formats and with different quality of 
recordings. Hence, preprocessing techniques have to be applied to unify 
the recording samples prior to further use. 

After removing items with either missing audio files or demographic 
data (therefore labels could not be retrieved), a total of 1103 partici-
pants were identified in the study, out of which 92.38% declared as 
negative to COVID-19 (1019) and 7.62% as positive (84), as shown in 
Table 1. Approximately half of participants are in the age range between 

1 https://cdcva.list.lu/. 
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31 and 50 years, with more male participants (56.03%). A large majority 
of participants originate from Luxembourg and Serbia (77.61%), as a 
consequence of the media campaign that was done in these two coun-
tries. The choice of the survey language reflects the international and 
multilingual structure of population in Luxembourg, where most of the 
participants in the study come from, but is partly influenced by the fact 
that the default language of the web platform is English. Hence, English 
was a dominant choice with 38.74% of participants, followed by French 
(20.97%) and Serbian (19.69%). Note that for 6 participants in the study 
it was not possible to determine the language, since they provided only 
voice samples for language independent tasks (coughing, breathing and/ 
or sustained vowel phonation). 

Distribution of symptoms across participants declared as positive to 
COVID-19 in the study reveals that loss of smell was the most prevalent 

symptom (48.81%), followed by dry cough (38.1%) and loss of taste 
(28.57%), as shown in Fig. 1. Approximately 17% of COVID-19 positive 
participants were asymptomatic and 5% were hospitalized. Majority of 
COVID-19 negative participants did not report any symptoms (58%), as 
expected. Interestingly, 16 participants negative to COVID-19 reported 
loss of smell and 10 reported loss of taste, which are typical COVID-19 
symptoms rarely observed in general population. Taking into account 
that 32 non-COVID-19 participants also reported being in home isola-
tion, suggests that some of the participants were very likely to be posi-
tive to COVID-19 according to symptoms, but were probably not tested 
or were falsely negative, leading to incorrect labeling in our dataset. 
These participants are excluded from further experiments. Distribution 
of comorbidities that might also affect voice is similar in both pop-
ulations and not significant to affect overall results (see Fig. 2). 

2.2. Data preprocessing 

Preprocessing is performed to account for the potential missing, 
incomplete or noisy data in the dataset. Various problems were observed 
in the dataset, such as missing data instances for particular vocal tasks, 
substitution of vocal tasks (e.g. coughing recorded instead of breathing), 
or incomplete and missing demographic data. 

All audio data instances were converted to WAV audio format with 
44.1 kHz sampling rate and 32-bit floating point bit-depth. Stereo re-
cordings were converted to mono before further processing. Leading and 
trailing silences were removed from all audio recordings. Since cough 
audio recordings consisted of 2–5 single coughs (the participants were 
instructed to cough 3 times), all cough recordings were segmented to 
individual cough signals, keeping the track about the participant that 
produced each of the individual coughs. 

Some recordings contained an ambient noise (e.g. chatting, laughing, 
TV, traffic noise in the background etc.); hence, noise reduction was 
applied prior to further signal processing. Audacity v2.4.2 was used to 
remove the background noise using the spectral noise gating. Quiet 
sound segment with background ambient noise was preselected to es-
timate the spectrum of pure tones that make up the background noise, to 
create a fingerprint of the background noise in the audio file. When 
applied to the entire audio signal, the noise reduction algorithm reduces 
all pure tones that are not sufficiently louder than their average levels in 

Table 1 
Statistics of the CDCVA dataset.   

Positive Negative Total 

Participants 84 (7.62%) 1019 (92.38%) 1103 (100%) 

Gender 
Male 38 (45.24%) 580 (56.92%) 618 (56.03%) 
Female 46 (54.76%) 437 (42.88%) 483 (43.79%) 
Other 0 (0%) 2 (0.20%) 2 (0.18%) 

Age 
≤20 3 (3.57%) 62 (6.08%) 65 (5.89%) 
21–30 16 (19.05%) 180 (17.66%) 196 (17.77%) 
31–40 28 (33.33%) 260 (25.51%) 288 (26.11%) 
41–50 20 (23.81%) 243 (23.85%) 263 (23.85%) 
51–60 12 (14.29%) 174 (17.08%) 186 (16.86%) 
61–65 3 (3.57%) 51 (5.01%) 54 (4.90%) 
>65  2 (2.38%) 49 (4.81%) 51 (4.62%) 

Country 
Luxembourg 50 (59.52%) 415 (40.73%) 465 (42.16%) 
Serbia 20 (23.81%) 371 (36.41%) 391 (35.45%) 
France 3 (3.57%) 42 (4.12%) 45 (4.08%) 
Germany 1 (1.19%) 32 (3.14%) 33 (2.99%) 
Other 10 (11.91%) 159 (15.60%) 169 (15.32%) 

Language 
English 25 (29.76%) 400 (39.49%) 425 (38.74%) 
French 24 (28.57%) 206 (20.34%) 230 (20.97%) 
Serbian 8 (9.53%) 208 (20.53%) 216 (19.69%) 
German 10 (11.90%) 97 (9.57%) 107 (9.75%) 
Luxembourgish 11 (13.10%) 96 (9.48%) 107 (9.75%) 
Other 6 (7.14%) 6 (0.59%) 12 (1.10%)  
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Fig. 1. Distribution of symptoms across participants in CDCVA dataset.  
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Fig. 2. Distribution of comorbidities across participants in CDCVA dataset 
DM: Diabetes Mellitus; COPD: Chronic obstructive pulmonary disease; PHTN: 
Pulmonary hypertension; GERD: Gastroesophageal reflux disease; LPR: Lar-
yngopharyngeal reflux; PD: Parkinson’s disease; MS: Multiple sclerosis; Neck 
scars: Scars from neck surgery or from trauma to the front of the neck. 
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the fingerprint; thus, preserving the useful signal (e.g. voice or cough) 
and minimizing noise. An example of the waveform and the spectrogram 
of the cough signal before and after the noise reduction is provided in 
Fig. 3. The clicking noise present in Fig. 3a is mostly suppressed in both 
time and frequency directions, as shown in Fig. 3b. Note that noise 
reduction was applied before segmentation and silence removal. 

2.3. Feature extraction and feature selection 

Instead of using handcrafted acoustic features as in Ref. [25] or Mel 
frequency Cepstral Coefficients (MFCCs) as in Ref. [27], we opt to 
experiment with standard acoustic feature sets, such as the Geneva 
Minimalistic Acoustic Parameter Set (GeMaps), extended Geneva Mini-
malistic Acoustic Parameter Set (eGeMaps) and ComParE feature set, 
which are used as baseline feature sets for various acoustic tasks. They 
extract a large number of potentially useful acoustic features, and we 
further apply a data driven approach to automatically derive the rele-
vant features and their correlations to patient’s COVID-19 status. All 
used feature sets comprise of supra-segmental features, meaning that the 
acoustic low-level descriptors (LLDs) are summarized over variable 
length audio segments by applying statistical functionals (e.g. mean, 
standard deviation, skewness, kurtosis, quartiles, etc.) to obtain a 
feature vector of constant length [35]. 

GeMaps feature set is a minimalistic set of voice parameters selected 
according to their potential to address physiological changes during 
voice production. It contains 62 acoustic features including 18 energy/ 
amplitude, frequency and spectral parameters and 6 temporal features, 
as well as statistical functionals applied to these parameters (arithmetic 
mean, standard deviation, percentile etc.) [36]. eGeMaps is an extended 
GeMaps feature set which contains 26 additional acoustic parameters, 
leading to a set of 88 acoustic features [36]. Finally, ComParE is a brute 
force acoustic feature set composed of 65 LLDs and various statistical 
functionals applied to these LLDs, leading to a total of 6737 features 
extracted for each of the variable length data instances. This feature set 
is used as a part of Computational Paralinguistics Challenge that takes 
place each year at the INTERSPEECH conference [37]. All features are 
extracted using openSMILE v3.0 software [38]. 

We furthermore experiment with the wavelet scaterring features 
which are used to extract low-variance representations from audio 
signal by applying a wavelet scattering transform, i.e. a series of wavelet 
decompositions and modulus operators. The resulting structure is 
similar to a convolutional neural network, but does not require training. 
The obtained time-averaged signal representations are invariant over 
large time scales, much longer than in MFCCs. Wavelet scaterring fea-
tures provide state-of-the-art results in musical genre classification and 
phone segment classification tasks [39]. We define the wavelet 

scattering network with two wavelet filter banks: the first one having 8 
wavelets per octave and the second one having 1 wavelet per octave, 
whereas the invariant time scale is 0.5 s. Each audio sample is divided 
into a number of scattering time windows across 411 paths in the scat-
tering transform, leading to a total 411 features extracted per each time 
window. After the acoustic or wavelet scattering features are extracted, 
only a subset of most relevant features are used for the classification task 
based on the mutual information criterion, which measures the de-
pendency between two random variables. It is equal to zero if the var-
iables are independent, whereas higher values denote the higher 
dependency [40]. We sort the features in descending order according to 
the mutual information and use only the subset of features that have the 
largest influence on classification task. All features were standardized 
before further use, i.e. the mean was removed and they were scaled to 
unit variance. 

2.4. Models for detection of COVID-19 from coughs 

Features extracted in Section 2.3 are further fed into three ensemble 
models: random forests, boosted and bagged decision trees. Random 
forests classifier with 250 trees was used to perform classification into 
participants positive and negative to COVID-19. Fully grown and un-
pruned trees are used with Gini index as the criterion to split the node. 
The features are randomly permuted at each split. Bootstrap aggregation 
or bagging model is configured with 250 decision trees with the 
maximum depth equal to 4. Finally, AdaBoost.M1 algorithm was used 
for adaptive boosting with 250 decision stumps, i.e. one-level trees with 
two leaf nodes. 

Beside the ensemble models, Multi-Layer Perceptron (MLP) is 
applied for classification using the same standard acoustic feature sets 
and wavelet scattering features. MLP architecture consists of an input 
layer with the number of nodes that corresponds to the number of 
selected features, three hidden layers with 128, 64 and 16 neurons 
respectively, and an output layer with two neurons that correspond to 
the number of classes to perform the classification task. Softmax acti-
vation function is used in the output layer, while the Rectified Linear 
Unit (ReLU) activation function, which allows to reduce the likelihood 
of vanishing gradient, is used in the hidden network layers. The Adam 
optimization algorithm is applied to update the network weights itera-
tively during the training, with cross-entropy as an objective function. 

Beside features presented in Section 2.3, we also extract deep audio 
embeddings using VGGish and OpenL3 models. VGGish feature 
extractor extracts 128-dimensional audio embeddings directly from 
non-overlapping 960 ms frames of audio signal. Each frame is further 
divided into 25 ms windows with 10 ms overlap and short-time Fourier 
transform is computed to obtain the spectrograms integrated in 64 mel- 

Fig. 3. The waveforms and the spectrograms of the cough signal a) before and b) after noise reduction.  
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spaced frequency bins, resulting in 96 × 64 bins log-mel spectrograms 
[41]. The input audio signals are resampled to 16 kHz to match the 
requirements of the VGGish network. VGGish network is composed of a 
series of convolutional, ReLU activation layers and max pooling layers, 
followed by three fully connected layers. The network is pretrained on 
the Audio Set large-scale dataset for audio event classification which is 
composed of over 1.7 millions of 10 s excerpts from YouTube videos 
(4971 h of audio in total) classified into 632 audio events [42]. We 
remove the output layer from pretrained VGGish network and add 
instead one fully connected layer with 128 nodes, followed by a ReLU 
activation and a dropout layer with dropout rate equal to 0.5 to prevent 
the overfitting. Finally, we add an output layer with 2 nodes to perform 
the classification. 

For extracting OpenL3 embeddings we use model pretrained on the 
environmental subset of AudioSet, which includes human and animal 
sounds, as well as other sounds in natural acoustic environments. The 
model uses a Mel-spectrogram time-frequency representation with 256 
Mel bands and extracts a 6144-dimensional audio embedding per each 
signal frame [43]. Each cough file is segmented into 1 s overlapping 
frames with a hop size of 0.5 s, leading to multiple embeddings for each 
cough file. Majority voting is used to determine the label of a single 
cough file, based on the labels of its corresponding frames. Classification 
is performed using MLP with two hidden layers with sizes 512 and 128 
nodes respectively, each followed by a dropout layer with dropout rate 
equal to 0.5, and finally an output layer with 2 nodes. 

2.5. Hyperparameter optimization 

Grid search was used for tuning the hyperparameters in the proposed 
classification models, as shown in Table 2. For tuning the bagging 
classifier the number of base estimators (individual trees) and the 
maximal number of samples to train each base estimator, given as the 
share of total number of samples, were used as the hyperparameters. In 
addition to this two hyperparameters, the maximal number of features 
to consider for each split, given as the share of total number of features, 
is used for random forests. The number of base estimators was the only 
hyperparameter optimized in case of the boosting classifier. 

For training OpenL3 and VGGish networks, the number of fully 
connected hidden layers on top feature extraction layers, the number of 
nodes in the fully connected layers, the mini-batch size, as well as the 
dropout rate were tuned using the grid search. 

Concerning MLP, the optimal number of hidden layers, as well as the 
optimal number of nodes in the hidden layers are evaluated using the 
grid search. 

3. Results and discussion 

3.1. Experimental setup 

We perform preliminary experiments for detection of COVID-19 
using cough signals only. Given the highly imbalanced dataset that we 
collected, we create a balanced subset that includes coughs of all par-
ticipants positive to COVID-19 and the same number of non-infected 
participants matched by age and gender, without the medical history 
of conditions that affect voice, and without symptoms to COVID-19. 

Note that the balanced subset contains 82 participants positive to 
COVID-19, out of 84 in the initial dataset, since cough signals were 
missing for two users. Participants positive to COVID-19 were between 
14 and 69 years (mean 40.11, standard deviation 12.21), whereas non- 
infected participants were between 15 and 68 years (mean 40.26, 
standard deviation 12.1). To make the experiment more realistic, 
smoking was not taken as an exclusion criterion from the balanced 
subset. Prevalence of smoking was higher in control group (28.05%) 
than in the COVID-19 positive group (17.07%), as shown in Table 3. 

Although we instructed the users to cough three times, the number of 
single coughs per audio sample varied from 2 to 5. Therefore, we 
decided to segment the balanced subset of coughs, and analyse instead 
the individual cough signals, leading to a dataset that was composed of 
496 cough signals in total, 249 of which were produced by COVID-19 
positive participants and 247 by non-infected subjects. 

We provide data visualization for the segmented subset of coughs 
using t-distributed Stochastic Neighbor Embedding (t-SNE) [44]. t-SNE 
generates a reduced feature space where the similar features are rep-
resented by points close in space and vice versa. Fig. 4 describes an 
example of two-dimensional graph for selected features extracted using 
the ComParE features set, as the most comprehensive set of acoustic 
features. The graph could be split into two regions: 1) Top-left high-
lighted with a red rectangle, where the subjects diagnosed positive to 
COVID-19 and described by red points are mostly present; 2) Down-right 
highlighted with blue rectangle for non-infected individuals. Although 
both regions contain overlapping data points, data distribution suggests 
that it is possible to discriminate between two groups of participants in 
our study. 

Given a limited dataset size, 5-fold stratified cross-validation is used 
for splitting the data into five subsets (folds), four being used for 
training, and the remaining one for testing. Each class is approximately 
equally distributed across folds, preserving the class distribution of the 
original dataset. The procedure is repeated 5 times to obtain perfor-
mance estimates for each of the test folds, and then averaged over all 
folds. Since the dataset contains multiple cough signals from each of the 
participants, splitting into folds was done with respect to the partici-
pants, meaning that the coughs of the same speaker cannot appear in 
both training and test subset. 

The model performance was assessed using accuracy, sensitivity and 
specificity as performance measures. Accuracy is the ratio of the number 
of correctly classified data instances and the total number of data in-
stances. Sensitivity represents the ability of the model to correctly detect 
COVID-19 positive subjects, whereas the specificity is the model ability 
to correctly identify non-infected participants. 

Table 2 
Hyperparameter optimization for the classifiers.  

Hyperparameter Classifier Range 

# base estimators Bagging, Boosting, RF [100–500] in steps of 50 
Max # samples Bagging, RF [0.6 − 1.0] in steps of 0.1 
Max # features RF [0.6 − 1.0] in steps of 0.1 
# hidden layers OpenL3, VGGish, MLP 1–3 
# nodes per layer OpenL3, VGGish, MLP 16, 64, 128, 256, 512, 1024 
Dropout rate OpenL3, VGGish [0 − 0.5] in steps of 0.1 
Mini-batch size OpenL3, VGGish 16, 32, 64, 128  

Table 3 
Statistics of the balanced CDCVA subset used for detection of COVID-19 from 
coughs.   

Positive Negative   

Age  Age 

Gender # Mean 
(SD) 

Min- 
Max 

# Mean 
(SD) 

Min- 
Max 

Male 36 
(43.90%) 

41.19 
(12.62) 

14–67 36 
(43.90%) 

40.41 
(12.26) 

15–68 

Female 46 
(56.10%) 

39.26 
(11.95) 

18–69 46 
(56.10%) 

39.43 
(11.77) 

18–68 

Total 82 
(100%) 

40.11 
(12.21) 

14–69 82 
(100%) 

40.26 
(12.10) 

15–68  

Smoking habits Smoking habits 
Gender Smoking Non-smoking Smoking Non-smoking 

Male 5 
(13.89%) 

31 (86.11%) 10 
(27.78%) 

26 (72.22%) 

Female 9 
(19.57%) 

37 (80.43%) 13 
(28.26%) 

33 (71.74%) 

Total 14 
(17.07%) 

68 (82.93%) 23 
(28.05%) 

59 (71.95%)  
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3.2. Numerical results 

Performance is evaluated using three ensemble models (random 
forests, bagging and boosting), MLP, VGGish and OpenL3 networks. 
Three standard feature sets are used for feature extraction with 
ensemble models, i.e. GeMaps, eGeMaps and ComParE, as explained in 
Section 2.3. Since GeMaps and eGeMaps feature sets are relatively small 
no feature selection was applied. Considering the size of the ComParE 
feature set only 1% of the most informative features are kept based on 
the mutual information criterion. Obtained results provided in Table 4 
reveal that although minimalistic sets of acoustic features, such as 
GeMaps and eGeMaps, are capable of learning intrinsic features from 

coughs, substantially better results are obtained using a brute force 
audio feature extraction approach with ComParE features, leading to 
accuracy and sensitivity approximately equal to 87% for random forests, 
whereas specificity goes up to 90.87% in case of bagging. Random for-
ests and bagging outperform boosting for all standard acoustic feature 
sets, which may be explained by the principle differences in design of 
these ensemble models. Unlike random forests and bagging where trees 
are grown independently, in boosting each subsequent model improves 
the performance of the previous one by learning from its mis-
classifications. Therefore, boosting is by nature more sensitive to out-
liers that might be present in our dataset due to crowdsourced data 
collection. MLP provides in general lower performance results than the 
ensemble models. 

We want to furthermore contribute to the explainability of the 
ensemble models by trying to discover the exact mechanisms that alter 
the acoustic parameters of coughs in people with COVID-19. In order to 
do that we analyse in Fig. 5 the ten most informative features in 
ComParE acoustic feature set. The best indicator of COVID-19 coughs 
according to the mutual information criterion is the root mean square 
signal frame energy smoothed by a moving average filter with window 
length equal to 3 (pcm_RMSenergy_sma_perc1.0). Being an explosive 
sound, cough has bursts of energy increase in a short interval of time 
which are more evident in signals produced by people with COVID-19. 
Since dry cough is the second most prevalent symptom observed in 
almost 40% of participants positive to COVID-19 (see Fig. 1), higher 
energy levels in comparison to forced coughs of non-infected individuals 
are expected. 

Spectral harmonicity, the second most informative feature, describes 
the harmonic structure of an audio signal in which the sound frequencies 
are integer multiples of the fundamental frequency. It is typically 
observed in voiced speech, but recent study has shown that 2 to 3 har-
monics can be observed in forced coughs of healthy individuals, whereas 
no clear pattern in the harmonics’ structure is visible in wet coughs [45]. 

Fig. 4. Two-dimensional graph for selected features generated by t-distributed Stochastic Neighbor Embedding approach. Features are extracted using ComParE 
feature set and selected using mutual information criterion. 

Table 4 
Performance evaluation using standard acoustic features sets, wavelet scaterring 
features and audio embeddings.    

Accuracy Sensitivity Specificity 

Random Forests GeMaps 72.35% 70.21% 74.06%  
eGeMaps 73.32% 71.25% 74.52%  
ComParE 87.31% 87.37% 87.72%  
Wavelet 87.50% 86.94% 87.74% 

Bagging GeMaps 73.96% 65.33% 82.20%  
eGeMaps 74.16% 66.56% 81.35%  
ComParE 87.12% 83.71% 90.87%  
Wavelet 84.92% 88.75% 81.06% 

Boosting GeMaps 69.51% 68.72% 70.64%  
eGeMaps 68.65% 65.44% 71.86%  
ComParE 82.70% 78.79% 87.33%  
Wavelet 88.52% 87.19% 89.82% 

MLP GeMaps 64.79% 61.6% 67.1%  
eGeMaps 62.2% 56.8% 67.6%  
ComParE 70.0% 66.2% 74.19%  
Wavelet 80.0% 72.2% 87.6% 

VGGish  76.73% 80.84% 72.86% 
OpenL3  76.65% 81.89% 71.12%  
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Our study confirms that spectral harmonicity may be also used to 
distinguish between coughs of people positive to COVID-19 and 
non-infected subjects. 

The cough signal has a typical physiological mechanism which starts 
with inspiratory phase, followed by closure of glottis and rise in intra-
thoracic pressure in the compression phase, and sudden glottis opening 
resulting in fast expiratory airflow and cough sound in the expiratory 
phase. Several subsequent partial glottis closures may lead to additional 
voiced sounds [46]. Spectral slope as the third most informative feature 
is closely related to the speed of glottis closure during the cough pro-
duction, resulting in a steeper spectral slope for slower closure of glottis 
[47]. 

RASTA processing uses band-pass filters on time trajectories of 
speech feature vectors to suppress the spectral components that change 
more quickly or slowly than in a typical speech signal; thus, it can be 
used to suppress the additive noise in speech recognition or speech 
enhancement techniques [48]. Although RASTA features were not pre-
viously studied in cough signal processing, 6 out of 10 most informative 
features in our study are related to either the absolute position of the 
maximum or minimum value (in frames), or the maximum segment 
length of one of 26 RASTA filtered auditory bands, suggesting that it is a 
very potent indicator of coughs produced by people with COVID-19. 

Results obtained with wavelet scaterring features and ensemble 
models (accuracy 88.52%, sensitivity 88.75%, specificity 89.82%) sug-
gest that they are very powerful data representations which are able to 
minimize within-class differences, emphasizing at the same time 
dissimilarity between coughs of people positive to COVID-19 and non- 
infected subjects. Although similar in structure to convolutional neural 
networks, wavelet scattering transform does not learn the filters during 
optimization, but applies them a priori, which may be beneficial when 
training data is limited, as in our case. Considering the nonstationary 
and stochastic nature of cough, wavelet transform enables decomposing 
the cough signal in time and frequency domain, while focusing on the 
local signal structures to capture efficiently frequency changes at any 
time moment [49]. In contrast to standard acoustic features, boosting 
provides slightly improved performance for wavelet scattering features 

in comparison to other ensemble models, indicating that wavelet 
filtering is robust to noise in the data [50]. Note that the results provided 
in Table 4 for wavelet scaterring features are obtained after applying 
feature selection with 10% of most informative features based on mutual 
information criterion. 

In order to explore the influence of feature selection, the experiments 
are repeated with wavelet scattering features and boosting as the best 
performing individual model, but with different sizes of feature vectors. 
The results given in Table 5 show that using a large number of irrelevant 
features adds uncertainty to the prediction and reduces the overall 
model performance. Best individual results for accuracy, specificity and 
sensitivity are obtained using only 10% most relevant features (88.52%, 
87.19% and 89.82%, respectively). Further decrease of feature size de-
grades the performance. Beside improving the performance, feature 
selection reduces also the computational costs of the model. 

We furthermore experiment with high-level audio feature embed-
dings extracted from cough recordings using an existing pretrained 
VGGish model. The idea is to transfer the knowledge from the domain 
where data is easier to collect by pretraining the model on a large-scale 
audio event classification dataset and benefit from learning the generic 
audio features that can be shared across domains. The model is trained 
using Adam optimizer with mini-batch size of 64, L2 regularisation 
parameter equal to 0.005 and adaptive learning rate which drops by a 
factor of 10 if no improvement is observed after 3 iterations (initial 
learning rate was equal to 0.001). The model converges after 6 epochs 
and achieves accuracy equal to 76.73%, sensitivity 80.84% and speci-
ficity 72.86%, showing the ability to learn reasonable feature repre-
sentations directly from audio signals and avoiding the need for hand- 
crafted feature extraction. However, the model is still not able to 
reach state-of-the-art performance achieved with wavelet scattering or 
ComParE features. A reason for lower performance might be the fact that 
due to the requirements of the VGGish model, the signal was down-
sampled to 16 kHz, whereas the sampling frequency for the wavelet 
scaterring features and the standard acoustic features sets was 44.1 kHz. 

Similar performance is obtained with OpenL3 cough embeddings 
(accuracy 76.65%, sensitivity 81.89%, specificity 71.12%). The model is 
trained for 50 epochs using Adam optimizer with mini-batch size of 64. 
We expect that by collecting more data and combining different voice 
modalities beside the cough, better audio embeddings can be learned, 
the impact of transferred learning will be larger, and the deep learning 
models will generalise better to a target dataset. 

4. Conclusions 

A new crowdsourced multilingual dataset of speech, cough and 
breathing samples of people diagnosed positive to COVID-19 and non- 
infected individuals is presented in this study, as well as preliminary 
results for detection of COVID-19 from cough signal, which point out to 
the relevance of using audio signatures to detect COVID-19 symptoms. 
In contrast to other related research which mostly tries to prove that a 
particular machine learning model is appropriate for a COVID-19 
detection task, we go a step further and provide an in-depth analysis 
of the most informative acoustic features, trying to elucidate the 
mechanisms that alter the acoustic characteristics of coughs of people 
with COVID-19. 

Although not intended to be a reliable diagnostic system for COVID- 
19 that can replace RT-qPCR or RAT tests, the proposed solution can be 
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Fig. 5. The list of 10 most informative features in ComParE acoustic feature set 
based on the mutual information criterion. 

Table 5 
Performance evaluation using wavelet scattering features and boosting with 
different dimensions of feature vectors.  

Feature size 1% 5% 10% 30% 50% 100% 

Accuracy 84.53% 87.31% 88.52% 85.71% 86.29% 82.47% 
Sensitivity 82.27% 85.08% 87.19% 81.61% 83.52% 79.29% 
Specificity 86.50% 89.46% 89.82% 89.32% 88.63% 85.36%  
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used for monitoring of people on a very large scale, in a short period of 
time (e.g. at airports or at border controls). Challenges related to 
disambiguation with other respiratory pathologies with similar symp-
toms remain to be addressed. The system is still highly experimental; 
however, with enough training examples it can be tuned to a reasonable 
performance, and potentially become a valuable tool for disease 
screening. 

Future work will include other vocal modalities collected within this 
study, such as breathing, speech and sustained vowel phonations, in 
addition to cough analysed in this paper. We expect that by combining 
various signals affected by COVID-19 the model performance may be 
further improved. 
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