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Toward practical transparent 
verifiable and long-term 
reproducible research using Guix
Nicolas Vallet   1 ✉, David Michonneau   1,2 & Simon Tournier3

Reproducibility crisis urge scientists to promote transparency which allows peers to draw same 
conclusions after performing identical steps from hypothesis to results. Growing resources are 
developed to open the access to methods, data and source codes. Still, the computational environment, 
an interface between data and source code running analyses, is not addressed. Environments are 
usually described with software and library names associated with version labels or provided as an 
opaque container image. This is not enough to describe the complexity of the dependencies on which 
they rely to operate on. We describe this issue and illustrate how open tools like Guix can be used by any 
scientist to share their environment and allow peers to reproduce it. Some steps of research might not 
be fully reproducible, but at least, transparency for computation is technically addressable. These tools 
should be considered by scientists willing to promote transparency and open science.

Introduction
Transparency is a central concept in science. For instance, validation of experimental data by scientific com-
munity relies on the ability to reproduce or replicate1 any scientific result by independent teams. Transparency 
allows peers to draw same conclusions after performing identical steps from the hypothesis to results1,2. Knowing 
that scientists agree on the existence of a significant crisis of reproducibility and replicability3–5, there is a need 
to move toward practices that ensure that every steps are transparent and verifiable.

Assuming that the final outcome of a scientific result is summarized in the form of a published article, the 
publication describes one hypothesis and the related methods to explore such. Then, by reporting a series of 
results following data analysis, it leads to conclusions about the hypothesis. Firstly, how data are generated is 
usually detailed in Material and Methods sections: samples preparation, reagents and various used instruments. 
Secondly, data analysis is commonly also exposed through Material and Methods section and explained by 
Results section (Fig. 1).

Open research6 and FAIR principles7 promote, among many other practices, transparency for all the stages. 
Having full access to critical stages allows to scrutinize the final outcome, nowadays or in some future. It comes 
in the form of accessible pre-print or open journals or repositories where all material and methods, archived 
data and source codes of analyses are disclosed. For example, the content is now available through several public 
archives: pre-print servers, public source code and data repositories, software hosting platforms. Hence, using 
this framework, one key information is still missing: the interface between generated data, analyses and results. 
This interface may be summarized as the computational environment: all the software and libraries used to 
complete the analysis. This computational environment allows to interact and transform the generated data to 
readable results. However, the computational environment exploited to run the whole chain of analyses is often 
skipped or incompletely described in scientific reports. Therefore, the result fails to some transparency, verifi-
cation and reproducibility.

Computational environment employed to explore initial scientific hypothesis may be described with software 
or library names and their corresponding version. While names and version labels are a step toward transpar-
ency, they are insufficient to allow any future user to rebuild the computational environment on which these 
software are running. This is illustrated, for instance, by reported failures to reproduce analyses5 (Fig. 1).
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The aim of this paper is twofold: to describe the complexity of the issue to tackle, then to introduce tools 
that may help to address such issue. We next apply GNU Guix to provide a practical example in the context of  
cytometry analyses.

Results
The problem: software version is not enough.  A software running on any computer is the result of 
one source code transformed into binary by another software (e.g., compiler). The compiler, also binary, is thus 
obtained from source by other software, so called built-time dependencies. Hence, running a single software 
implies a recursive stack of binaries. This is a well-known chicken or the egg problem named bootstrapping. Even 
after this compilation step, the resulting executable file may also depend on other binaries such as dynamical 
libraries, so called run-time dependencies. For example, let’s consider the broadly used R language8. Once down-
loaded and installed, regular user just runs the command R. Behind the scene, this simple command involves a 
large stack. At first, the command is tangled to a shell script which calls the R interpreter. This R interpreter is a 
program mainly written in the language C, thus it needs to be transformed by one compiler into one executable 
binary. Hence, although two computers run the exact same version of the source code of the R interpreter, there 
is no guarantee that the stack of binaries is identical on both computers, consequently, the produced executable 
binary may not be the same. Then, this executable R interpreter depends on libraries at run-time. Again, there 
is no guarantee that these libraries are the same on both computers. On the top of that, the shell script requires a 
binary shell interpreter, and then, all the explanations drawn above also apply.

Therefore, describing the version of source code is already better than nothing, but it does not provide all 
the useful information for redeploying the computational environment, later or elsewhere. Back to the example, 
reporting that one analysis was done using both R at version 4.1.1 and the list of R libraries is not a guarantee 
that from the source code of R at version 4.1.1 and these R libraries, one might be able to complete this very 
same analysis again. Instead, to be fully transparent and reproducible, the description of the computational 

Fig. 1  Schematic view of research process and the corresponding methods to ensure reproducibility. Main 
steps of a research project are currently addressed within the final version of a manuscript. This manuscript 
can point to several files repositories that host data, scripts or even computing environment in container 
images. Computing environment is not described enough to ensure reproducibility. Even version numbers 
are not enough as they cannot describe all dependencies of one software. Likewise, containers reproduce an 
environment but do not capture all dependencies used for their compilation thus cannot be rebuilt. In this 
example, a computational environment with R v4.1.1 (without packages) requires 304 binaries all bound by 935 
edges. Ideally, the dependency tree should be described to allow reproducibility by any user at any-time. Though 
this huge list may seem daunting, tools like Guix can rebuilt dependency tree with the list of software used and 
the path to Git repositories with the all information to build them from scratch. Sharing these two files allow 
reproduction of computational environment byte-by-byte. For visualization purposes directed acyclic graph 
represents a cropped view of compiled dependencies of R version 4.1.1. A complete view of R dependency tree is 
available the GitLab repository with codes to reproduce graphs.
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environment should not be limited to version labels but should capture the whole computational stack (compil-
ers, built-time and run-time dependencies) (Fig. 1).

Failure to describe the whole computational environment leads to two issues. One is about the level of trans-
parency. If a user is running the same analysis on another computer using another computational stack but using 
same source code versions and does not get the same results, then is it because of a flaw of the analysis or is it 
because of a variation of the computational stack? Similarly, how could one inspect for improving tools when 
the whole computational stack is not described? Then, second is about practical purpose. It seems impossible to 
manually describe the whole stack by providing only version labels since the number of dependencies required 
to just run the R interpreter is already huge: 304 compiled dependencies or 793 dependencies from the full ori-
gin source codes (Fig. 1).

Solutions: build computational environments.  In this section, we highlight the existing solutions and 
how they address the problem. Most of them allow to build and run a computational environment, but they lack 
a feature for being able to re-build later the exact same computational environment.

Package managers: keep under control the dependencies.  The aim of the package managers is to handle the 
binary production and its installation. From a standardized recipe usually specific to one software, the package 
managers deal with both build-time and run-time dependencies, often satisfying constraints on version labels, 
and thus ease the distribution of software. Package managers may be for general purpose as operating system 
(OS)-provided ones or may be oriented as programming language-provided ones (e.g., install.packages from the 
R language ecosystem) or may be mixed as Conda or BioConda9. When reproducing a computational environ-
ment using one package manager, the core question is the influence of the host computer system9. Assuming the 
analysis was run on one specific host computer system, then the ability to re-run later on another host is strongly 
affected by the variation on the two different hosts. Most package managers defeat this criterion (Fig. 2a). Thus, 
they fail to provide reproducible computational environment.

Containers: keep under control the impact of the host.  The aim of containers (e.g., Docker10, Singularity11, or 
“virtual machines”) is to capture the computational environment independently from the host computer system. 
They rely on stable low-level, light-weighted interactions with the host. Therefore, the analysis may be repro-
duced later on another computer system (Fig. 2b). Manual description of all the dependencies is impossible from 

Fig. 2  Methods to build a computational environment. (a) Package managers handle binary production 
and installation from a standardized recipe specific to one software. With several command lines users are 
able to install the version of software and packages required. To build the binary from source, local system 
dependencies will be used. Here it is near impossible to describe the whole stack of dependencies used by one 
system to build the software and packages. (b) Container or virtual machine capture the whole computational 
environment independently from host computer system. Here users can run the analyses in an already compiled 
environment. The dependencies required to build the container are not described within the container. (c) 
Guix workflow uses the list of software and packages combined with a fixed state of dependencies defined 
in a channel. With these two inputs, Guix build the computation environment. Here, all steps of computing 
environment compilation are transparent and reproducible.
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a practical viewpoint. Instead, the binary container is gathered from binaries usually produced by some package 
managers. This approach is widely deployed and, at some extent, has successfully been used for reproducing 
analysis10,12.

However, when reproducing an analysis using a container, two core questions need to be addressed: (i) how to 
inspect the binary container for validating the results13, and (ii) how to reproduce later this container. Containers 
defeat the criterion of long term because it is not practically affordable to retain them at scale. Considering the 
storage capacity they require, it is not sustainable to attach an analysis to a container, one-to-one. Therefore, long 
term sustainability implies the ability to reproduce the computational environment, which may, but not only, be 
distributed using a binary container pack format.

Efforts are deployed toward providing reproducible build of containers. For instance, by using a linter, a soft-
ware that check programming coding style requirements14, to Dockerfiles, as the tool Hadolint10. But, because 
they are fed using a package manager, they often hit the lack of the feature from the very package manager to 
time travel. Assuming the container is built today, then an attempt to re-build it later requires at least, (i) that the 
infrastructure behind the package manager is still available, and more importantly, (ii) that the package manager 
can exploit the infrastructure as it is today but later. Some popular Linux distribution provides snapshots of their 
state at specific moments, but, to our experience, their use is complex15.

Online infrastructures: delegate the issue.  On a side note, effort is currently being developed to implement 
interactive scripts within articles16 or interactive web-based interface to analyze data (e.g. Cytobank17, Omiq, 
Metaboanalyst18, Galaxy19). These tools are useful to ease interaction with complex data and to provide a sim-
plified workflow of analyses. However, these do not capture the whole computational environment required to 
run analyses from the source code. Moreover, it raises the question about the long-term support for the compu-
tational infrastructure running these scripts, assuming such infrastructure are fully transparent and verifiable. 
To our knowledge, these online infrastructures hit the same core question as the ones for package managers and 
containers.

Solution: share reproducible computational environment.  For being truly long-term reproducible, 
the solution must capture the whole computational environment, control the complete recursive stack and be able 
to redeploy anytime. Guix (https://guix.gnu.org) attempts to apply principles from functional programming to 
package management, work pioneered by Nix (https://nixos.org). The installable binary package is modelled by 
“pure functions”: the installable binary package corresponds to a process where its output only depends on the 
inputs (build-time and run-time dependencies)20. Therefore, Guix provides a deployment system that ensures 
reproducibility by design.

The Guix system is implemented using the Scheme language21, from the core to the high-level domain-specific 
language (DSL) for specifying and declaring the configuration. To our opinion, the main difference between the 
Guix and Nix systems is, for the former a continuity from the high-level declarative configuration to the core 
which allows to adapt or extend the Guix system, and for the latter, on one hand “Nix expressions” written in a 
DSL specifically designed to define these “pure functions” (derivation), and on the other hand another language 
for the core. This difference is slight in practice but emphasized by the data processing workflow engines Guix 
Workflow Language (GWL) based on Guix and BioNix22 based on Nix (https://youtu.be/pwYhPqaUiGg, https://
youtu.be/tpLcwfRXL28). Last, to our knowledge, the Nix system does not provide yet a mechanism easing the 
time travel.

Reproducible computational environment using Guix.  Here, we describe how computational part 
of the reproducibility cycle is addressed when using Guix. As exposed previously, two components have to be 
provided: the list of software effectively used and an identifier committing the complete stack.

First, the manifest listing the top-level software or library names effectively used by the analysis is provided 
in a text file, e.g., named manifest.scm. For instance, this manifest file contains the software or library names 
which are often already described by some papers. Software are packaged in Guix using a recipe, and this recipe 
notably points to the location of the upstream sources, provides the version label and lists the dependencies for 
building and running. If the required tool is not indexed yet by Guix, the missing package may be then locally 
defined by providing an extra file which describes the recipe to build such tool. Moreover, Guix also provides 
custom channels feature to ease the exchange of such recipes contributed by the community or dedicated to a 
particular field. These channels are imperatively versioned and their history is tracked by the Git version control 
system23. Moreover, the recipes provided by default are part of Guix itself and all is versioned using also a Git 
repository (Fig. 2c).

Second, using the list of dependencies from the recipe, Guix determines a graph modelling the complete 
stack. Each node represents one single tool and the edges identify the dependency relationship. To fully describe 
this graph, the user provides a text file, e.g., named channels.scm, recording the web address of the channels, 
Guix itself and the custom channels if any, and their corresponding revision identifier. The revision identifiers 
(Git commit hash) for each channel allow to determine without any ambiguity the graph and its exact config-
uration, and thus they allow to build the computational environment regardless of the state of the underlying 
host system (Fig. 2c).

Based on these two files manifest.scm and channels.scm, an independent user is able, using the subcom-
mands “environment” (or newly renamed “shell”) and “time-machine”, to deploy the exact same computational 
environment. If the infrastructure requires a container image, Guix has the capacity to directly pack Docker or 
Singularity images (Fig. 3).
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For transparency, it is an encouraged practice7 to version these additional manifest.scm and channels.scm 
files along with the other source files required by the analysis.

Last, when upstream sources are no longer available on their initial web address (URL), Guix provides a 
bridge to the Software Heritage (SWH) initiative. The mission of SWH is to collect, archive and preserve sci-
entific knowledge residing in source code24. Therefore, the computational environment managed by Guix can 

Fig. 3  Comparison of workflows in building and sharing environment. (a) Multiple contributors may 
participate in one project. Even with the same list of software and libraries, local dependencies are required to 
build the environment. Thus, each contributor will use a unique environment that differs from the other ones. 
To circumvent this issue, one user can build a container and share it. But, the container may be lost in the future. 
Since systems and dependencies are evolving fast, there is no guarantee that future scientist will be able to build 
the initial container again. (b) Using Guix, the version of the dependencies graph (channel.scm) is described 
with the list of software and packages (manifest.scm). Any contributor can build the environment or even pack 
a container at any time. One user can thus travel through time of systems dependencies graph just by changing 
the channel.scm file and reproduce a lost container or an old environment on which previous analyses were 
performed. This ensure that reproducibility issues do not come from changings in computational environment.
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be deployed regardless of the availability of all initial sources, if these sources have been archived by SWH and 
upstream is missing, then Guix automatically uses the SWH archive as fallback.

Case study: cytometry analyses on an environment reproduced by Guix.  The Guix workflow is 
straightforward. It requires two components, the list of required software and packages and the graph modeling 
the complete stack of dependencies. To illustrate how Guix may be used for reproducible research, we consider 
a fully open access, open data, open source research article25. This example allows us to point out two levels of 
details: first we present how to implement the Guix workflow at the time of publication; and second, we describe 
how Guix concretely helps in the reproduction once the analysis published. The details of the specific command 
lines and the content of each file is reported in the corresponding Gitlab repository.

The paper had been published on May, 2020. Although Ma et al. work can be considered as high quality in 
standards of transparency and open science, several information about their computational environment is 
lacking. For instance, we could deduce from the reported versions of ncdfFlow (v2.30.1) and flowCore (v.1.50.0) 
that they have used Bioconductor v3.9 released on the May 3, 2019. However, nothing is said about the version of 
R itself nor about the version of one R dependency e.g. the linear algebra library OpenBLAS. From our point of 
view, this illustrates the net about many failures when reproducing: version labels are not enough for capturing 
the computational environment.

Instead, for reproducing, we need to save the revision of the complete graph modeling all the required 
dependencies. It is given by the command line “guix describe” which returns the current state of the graph and 
thus can be saved into the file channels.scm. Namely, this file describes a Git repository containing the recipes 
to build the required packages and pointing to one specific commit hash (state) (Fig. 4a). For one specific state, 
Guix is able to populate a computational environment with the exact same binaries.

Back at the time of publication, to our knowledge, the Guix project had not yet packaged the R library ncd-
fFlow (v2.30.1) but instead the earlier version provided by Guix is v2.32.0. With no loss of generality, and to 
avoid irrelevant details, we consider Bioconductor v3.10 released on October, 2019. We assume that, at the time 
of the publication, the authors provided as Materials and Methods the file channels.scm fixing the Guix state at 
that time.

Next, we describe the software (R libraries) used for the analyses in the file manifest.scm (Fig. 4b,c). Note 
that the package “r-cydar” is not part of the package collection that Guix provides by default. We thus need 
to extend the package collection and describe by ourselves the recipe to build this package from its sources 
hosted on Github. Guix provides facilities to obtain such recipe (https://guix.gnu.org/manual/devel/en/guix.
html#Invoking-guix-import) (Fig. 4d). The recipe we used can be found within the file “my-pkgs.scm” in the 
directory “my-pkgs”.

From these two files manifest.scm and channels.scm, any independent observer can now reproduce the com-
putational environment of interest at any time. Using the command line “guix time-machine -C channels.scm”, 
Guix instantiates the graph of the dependencies at the state specified by the file “channels.scm” and thus it builds 
the exact same computational environment specified by the file “manifest.scm”.

Last, a container is sometimes required or the computations need to run in a foreign infrastructure where 
Guix is not running. Guix is able to pack the binaries and return a container (Docker or Singularity). Herein, 
the container is transparent and reproducible since it is built using the two files described above. Moreover, the 
binary container may also be optionally self-contained and hold an internal reference to Guix: when extracted 
restore the content of the files “channels.scm” and “manifest.scm”. As a proof of concept for inspection, we 
partially run the analysis using Gitlab.com runners as foreign infrastructure, partially because we applied a 
downsamplig to reduce the size of the data in order to satisfy the resource offered on this public Gitlab instance.

Using this framework, the environment as it was used at time of publication is saved and can be rede-
ployed in other systems or in the future. If the addresses of source code are unavailable, Guix automatically 
will fetch source code from SWH (Fig. 4e). This last feature allows long-term reproducibility of computational 
environment.

The main challenges for reproducing the output from the markdown file were not related to software but to 
data access. Data had to be fetched manually because of the lack of public application programming interface 
(API) on Flowrepository. In addition, Flowrepository does not provide file integrity check so there is no guaran-
tee that the repository remained unchanged after the publication.

Discussion
Computational reproducibility is not only a matter of transparency but also a matter of backward compatibility. 
Hardware and software are evolving fast. Old digital supports are no more compatible with current technologies. 
Likewise, source codes of analyses from 10 years ago are difficult to reproduce nowadays26.

Here we described how Guix, a package manager, may be used in daily practice to perform analyses on 
transparent and reproducible computational environment. One of the main advantages of Guix is its back-
ward compatibility. Unexpectedly, Guix development provided a practical example of such software evolution 
and how potential incompatibilities may be tackled. While we wrote this manuscript, a new subcommand, 
“shell”, that aims at replacing the “environment” one was introduced (https://guix.gnu.org/en/blog/2021/
from-guix-environment-to-guix-shell). Reproducibility of computation from the source code written for this 
manuscript is guaranteed by the subcommand “time-machine”. Although the subcommand “environment” is 
disappearing, by pointing to the older revision in which this subcommand is available, Guix is able to build an 
old version of itself. Then, because this old version of Guix capture the graph of dependencies, it becomes sim-
ple to instantiate again the exact same computational environment as we demonstrated when reproducing one 
paper from two years ago.
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Fig. 4  Anatomy of Guix workflow used in the case-study paragraph. (a) The channels.scm file defines the 
channel that will be used to build the graph of dependencies from a list of recipes. This list is fixed at one time in 
a Git repository. This time-point is accessed with the commit number written in the channel definition. (b) The 
manifest.scm file defines the list of software and packages used in the computational environment. The “r-cydar” 
package is not defined in the channel thus we have to write the recipe to build it. The command line “guix import” 
is used to access the recipe from Guix. (c) Guix uses the recipes defined in the channel to build the environment, 
from compilers to the list of software and libraires defined in the manifest.scm. (d) All software and packages 
are defined with the same arguments that are described on the figure. Briefly, a list of dependencies (modules) is 
defined at the start of the recipe, then the package definition starts with a commit number to version the package. 
Because the package comes from Git, a git-fetch method is used to gather the source code which is checked for 
integrity with a hash number (sha256). Next, the method to build the binary is defined with the run-time and 
build-time dependencies that will be required to run the package. (e) The previous steps rely on the hypothesis 
that URL addresses of the source codes and channels are available to build the environment. In case these 
addresses are lost, Guix provides a bridge to Software Heritage source code archive to ensure long-term support.
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Guix implementation is straightforward for users used to command lines interactions. Guix already support 
more than 20,000 packages and more are regularly added. With only two text files, users can define their com-
putational environment. For most users, the state of all the dependencies are usually specified at the beginning 
of a project and consists on describing the revision of Guix (commit number). This can be achieved by running 
one command line that do not require knowledge on Guix Git repository. Readers can access the “R_workflow” 
directory of our Git repository to start using Guix to build a simple R environment and create their first “chan-
nels.scm” and “manifest.scm” files. Moreover, the required tools are just listed in a file and the missing one, if 
any, can be locally added. Compared to containers, the Guix approach is more flexible and transparent. The 
environment is not fixed and can evolve alongside with the project without requiring to build new container 
when new tools must be implemented.

There are several limitations to Guix. The first one is that Guix operates only the Linux kernel. To our knowl-
edge, the full control of the build-time environment is the key to success in reproducible research and such 
fined-grained control is only available using low-level Linux kernel features requiring special privileges. This 
limitation about running on the Linux operating system is rooted in solving the chicken or the egg problem 
of bootstrap (the deep roots of the graph). This limitation is counterbalanced by the fact that Guix requires 
root access only in the installation process and then any user is able to run Guix commands without special 
privileges. Furthermore, users without root access or who are not using Linux, can still run the transparent and 
reproducible container images generated with Guix. Another limitation is that proprietary software are poorly 
not supported by Guix and pipelines requiring their use cannot be reproduced in that way. This limitation is 
strongly moderated by the fact that opaque proprietary software is not transparent and thus does not support 
open research.

The availability of data, source code, scripts, paper, material and methods are necessary requirements for 
open research but not a sufficient condition for inspecting such research. For instance, their availability tends to 
decrease after being reported in an article27,28. Open access implicitly implies the resilient lookup. It asks, for one 
about robust identifier and integrity verification, and for two about distributed workload. This latter is out of our 
scope and it refers to addressing the link rot phenomenon by designing other networks, such as IPFS (https://
ipfs.io), GNUnet (https://www.gnunet.org/en/index.html) or RINA (http://csr.bu.edu/rina/index.html). For the 
former, intrinsic identifiers, which only depend the content itself, opposed to extrinsic identifier attributed by an 
external authority, aims at providing persistent, unforgettable and verifiable systems. For example, a version of 
source code referred by a label name is extrinsic and the identification is not always straightforward because this 
label is not necessarily unique or immutable. On the other hand, Git commit hash summarizes the content itself 
and thus identifies the source code without any ambiguity (modulo hash function collision). Other examples 
of intrinsic identifier for citing software are used by the Software Heritage source code archive and discussed in 
detail by Alliez et al.29. Long-term open research requires resilient open access based on such intrinsic identifiers.

Reproducibility of the computational environment is driven by transparency. To be fully reproducible one 
computational environment must be defined by (i) the source code of the software and libraries used (ii) the 
various options or configuration are required at build-time or run-time and (iii) the complete graph that fixes all 
the dependencies. Package manager like Nix22 and Guix are designed around these three requirements. By using 
Nix or Guix, scientists are now able to easily share their computational environment. This will allow contempo-
rary and future peers to use the same pipeline of analyses in the exact same computational conditions. The issue 
of dependencies is not addressed by package managers that will use the locally installed dependencies to build 
the environment. Containers or virtual machines addresses this issue by providing an already packed environ-
ment but they do not provide any information on how the image was build. Thus, the image is not reproducible 
because of lack of transparency inherent to container compilation.

To conclude, all the steps of the research may not be exactly reproducible. Notably, generating data from 
experiment may vary for many reasons: sample availability, reagent batches, missing essential piece of informa-
tion on protocol or simply for financial reasons. At least, the transparent computational part of the reproduc-
ible cycle is technically addressable. Guix provides features that allow scientists to share their computational 
environment, so that, coupled to open data, every computational analysis may be checked and anyone has the 
capacity to fully inspect them at any time. Guix paves the way and should be considered by scientists willing to 
promote transparency and open research.

Methods
Methods and step-by-step procedures to reproduce environments are detailed in out Gitlab repository: https://
gitlab.com/nivall/guixreprodsci (Tag: v1.0-pre2) and the version at submission time is archived on Software 
Heritage at https://archive.softwareheritage.org/swh:1:snp:eb790762a716cb8541a96636ed08659955dc2b15.

Data availability
Data used to reproduce cytometry analyses were obtained from FlowRepository https://flowrepository.org/id/
FR-FCM-Z2CP.

Code availability
All source codes are available on our Gitlab repository: https://gitlab.com/nivall/guixreprodsci (Tag: v1.0-pre2) 
and the version at submission time is archived on Software Heritage at https://archive.softwareheritage.org/
swh:1:rev:707f00afef8f6ef1f29a7a4c961dd714f82833f5.

Received: 23 February 2022; Accepted: 26 September 2022;
Published: xx xx xxxx

https://doi.org/10.1038/s41597-022-01720-9
https://ipfs.io
https://ipfs.io
https://www.gnunet.org/en/index.html
http://csr.bu.edu/rina/index.html
https://gitlab.com/nivall/guixreprodsci
https://gitlab.com/nivall/guixreprodsci
https://archive.softwareheritage.org/swh:1:snp:eb790762a716cb8541a96636ed08659955dc2b15
https://flowrepository.org/id/FR-FCM-Z2CP
https://flowrepository.org/id/FR-FCM-Z2CP
https://gitlab.com/nivall/guixreprodsci
https://archive.softwareheritage.org/swh:1:rev:707f00afef8f6ef1f29a7a4c961dd714f82833f5
https://archive.softwareheritage.org/swh:1:rev:707f00afef8f6ef1f29a7a4c961dd714f82833f5


9Scientific Data |           (2022) 9:597  | https://doi.org/10.1038/s41597-022-01720-9

www.nature.com/scientificdatawww.nature.com/scientificdata/

References
	 1.	 Plesser, H. E. Reproducibility vs. Replicability: A Brief History of a Confused Terminology. Frontiers in Neuroinformatics. 11, 76 

(2018).
	 2.	 Erik Gundersen, O. The fundamental principles of reproducibility. Philosophical Transactions of the Royal Society A: Mathematical, 

Physical and Engineering Sciences. 379, 20200210 (2021).
	 3.	 Baker, M. 1,500 scientists lift the lid on reproducibility. Nature. 533, 452–454 (2016).
	 4.	 Errington, T. M., Denis, A., Perfito, N., Iorns, E. & Nosek, B. A. Challenges for assessing replicability in preclinical cancer biology. 

eLife. 10, e67995 (2021).
	 5.	 Errington, T. M. et al. Investigating the replicability of preclinical cancer biology. eLife. 10, e71601 (2021).
	 6.	 McKiernan, E. C. et al. How open science helps researchers succeed. eLife. 5, e16800 (2016).
	 7.	 Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 3, 160018 (2016).
	 8.	 Tippmann, S. Programming tools: Adventures with R. Nature. 517, 109–110 (2015).
	 9.	 Grüning, B. et al. Practical Computational Reproducibility in the Life Sciences. Cell Systems 6, 631–635 (2018).
	10.	 Nüst, D. et al. Ten simple rules for writing Dockerfiles for reproducible data science. PLOS Computational Biology 16, e1008316 

(2020).
	11.	 Kurtzer, G. M., Sochat, V. & Bauer, M. W. Singularity: Scientific containers for mobility of compute. PLoS ONE. 12, e0177459 (2017).
	12.	 Silver, A. Software simplified. Nature. 546, 173–174 (2017).
	13.	 Zittrain, J., Bowers, J. & Stanton, C. The Paper of Record Meets an Ephemeral Web: An Examination of Linkrot and Content Drift 

within The New York Times. SSRN Journal, https://doi.org/10.2139/ssrn.3833133 (2021).
	14.	 Hunter-Zinck, H., de Siqueira, A. F., Vásquez, V. N., Barnes, R. & Martinez, C. C. Ten simple rules on writing clean and reliable 

open-source scientific software. PLoS Comput Biol. 17, e1009481 (2021).
	15.	 Arnaud Legrand, Pedro Velho. [Re] Velho and Legrand (2009) -Accuracy Study and Improvement of Network Simulation in the 

SimGrid Framework. The ReScience journal. Preprint at https://hal.inria.fr/hal-03764314/document (2021).
	16.	 Lewis, L. M. et al. Replication Study: Transcriptional amplification in tumor cells with elevated c-Myc. eLife. 7, e30274 (2018).
	17.	 Kotecha, N., Krutzik, P. O. & Irish, J. M. Web‐Based Analysis and Publication of Flow Cytometry Experiments. Current Protocols in 

Cytometry. 53 (2010).
	18.	 Pang, Z. et al. Using MetaboAnalyst 5.0 for LC–HRMS spectra processing, multi-omics integration and covariate adjustment of 

global metabolomics data. Nat Protoc. 17, 1735–1761 (2022).
	19.	 Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids 

Res. 44, W3–W10 (2016).
	20.	 Sabry, A. What is a purely functional language? J. Funct. Prog. 8, 1–22 (1998).
	21.	 Steele, G. L. COMMON LISP: the language. (Digital Press, 1990).
	22.	 Bedő, J., Di Stefano, L. & Papenfuss, A. T. Unifying package managers, workflow engines, and containers: Computational 

reproducibility with BioNix. GigaScience. 9, giaa121 (2020).
	23.	 Pittard, W. S. & Li, S. The Essential Toolbox of Data Science: Python, R, Git, and Docker. in Computational Methods and Data Analysis 

for Metabolomics (Springer US, 2020).
	24.	 Di Cosmo, R. & Zacchiroli, S. Software Heritage: Why and How to Preserve Software Source Code. iPRES 2017: 14th International 

Conference on Digital Preservation. Preprint at https://hal.archives-ouvertes.fr/hal-01590958/document (2017).
	25.	 Ma, C. Y., Marioni, J. C., Griffiths, G. M. & Richard, A. C. Stimulation strength controls the rate of initiation but not the molecular 

organisation of TCR-induced signalling. eLife. 9, e53948 (2020).
	26.	 Perkel, J. M. Challenge to scientists: does your ten-year-old code still run? Nature. 584, 656–658 (2020).
	27.	 Serghiou, S. et al. Assessment of transparency indicators across the biomedical literature: How open is open? PLoS Biol. 19, e3001107 

(2021).
	28.	 Vines, T. H. et al. The Availability of Research Data Declines Rapidly with Article Age. Current Biology 24, 94–97 (2014).
	29.	 Alliez, P. et al. Attributing and Referencing (Research) Software: Best Practices and Outlook From Inria. Comput. Sci. Eng. 22, 39–52 

(2020).

Author contributions
Conceptualization: D.M., N.V., S.T., Case study: S.T., N.V., Git conceptualization: N.V., S.T., Visualization: N.V., 
Original Draft: N.V., S.T., Writing - Review and Editing: D.M., N.V., S.T.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to N.V.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2022

https://doi.org/10.1038/s41597-022-01720-9
https://doi.org/10.2139/ssrn.3833133
https://hal.inria.fr/hal-03764314/document
https://hal.archives-ouvertes.fr/hal-01590958/document
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Toward practical transparent verifiable and long-term reproducible research using Guix

	Introduction

	Results

	The problem: software version is not enough. 
	Solutions: build computational environments. 
	Package managers: keep under control the dependencies. 
	Containers: keep under control the impact of the host. 
	Online infrastructures: delegate the issue. 

	Solution: share reproducible computational environment. 
	Reproducible computational environment using Guix. 
	Case study: cytometry analyses on an environment reproduced by Guix. 

	Discussion

	Methods

	Fig. 1 Schematic view of research process and the corresponding methods to ensure reproducibility.
	Fig. 2 Methods to build a computational environment.
	Fig. 3 Comparison of workflows in building and sharing environment.
	Fig. 4 Anatomy of Guix workflow used in the case-study paragraph.




