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Purpose: The goal of this study is to develop a hierarchical Bayesian model (HBM) to
better quantify uncertainty in visual acuity (VA) tests by incorporating the relationship
between VA threshold and range across multiple individuals and tests.

Methods: The three-level HBM consisted of multiple two-dimensional Gaussian distri-
butions of hyperparameters and parameters of the VA behavioral function (VABF) at the
population, individual, and test levels. The model was applied to a dataset of quantita-
tive VA (qVA) assessments of 14 eyes in 4 Bangerter foil conditions. We quantified uncer-
tainties of the estimated VABF parameters (VA threshold and range) from the HBM and
compared them with those from the qVA.

Results:TheHBMrecovered covariancesbetweenVABFparameters andprovidedbetter
fits to the data than the qVA. It reduced the uncertainty of their estimates by 4.2% to
45.8%. The reduction of uncertainty, on average, resulted in 3 fewer rows needed to
reach a 95%accuracy in detecting a 0.15 logMAR change of VA threshold or both param-
eters than the qVA.

Conclusions: TheHBMutilized knowledge across individuals and tests in a singlemodel
and provided better quantification of the uncertainty of the estimated VABF, especially
when the number of tested rows was relatively small.

Translational Relevance: The HBM can increase the accuracy in detecting VA changes.
Further research is necessary to evaluate its potential in clinical populations.

Introduction

Visual acuity (VA) is the most important functional
vision metric in the clinic.1 Precise assessment of VA is
of paramount importance for accurate diagnosis of eye
diseases, monitoring disease progression, and evaluat-
ing treatment efficacy, as well as setting classification
and qualification standards in many sports and profes-
sions.2–8 However, VA measurements are intrinsically
noisy and the estimated VA scores carry a lot of uncer-
tainty. This is because human VA behavior is proba-
bilistic in nature.9–12 Given the exact same optotypes,
the responses from a human observer may vary from
trial to trial because of the various noises in the percep-
tual system.13–16 In this study, we apply the Hierarchi-

cal Bayesian Modeling (HBM) approach to improve
quantification of uncertainty in VA assessments.

It is well known that human behavior in optotype
identification can be modeled by the visual acuity
behavioral function (VABF;Fig. 1A), that is, the proba-
bility of correct optotype identification as a function
of optotype size. The function has two parameters, VA
threshold, the optotype size required to reach a certain
performance level, and VA range, which specifies how
fast acuity behavior changeswith increasing or decreas-
ing optotype size.17–20 Although traditional VA assess-
ments have only focused on estimating VA threshold,
both VABF parameters may vary across individuals
and disease stages.18,21–23 A complete characterization
of the VABF requires a joint estimate of both parame-
ters.24,25
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Figure 1. VA behavioral function (VABF) and uncertainty in VA assessments. (A) A VABF with two parameters: VA threshold and range.
(B) Estimated VABFs from repeated ETDRS tests, which sample the theoretical VABF with a number of optotype sizes, each tested five times
(circles). (C) A color density plot of the point VABF parameter estimates across repeated ETDRS tests. (D) Data (circles) from one ETDRS assess-
ment and the best fitting VABF (curve). (E) Probability distribution of the estimated VABFs fromD. (F) The joint probability distribution of the
estimated VABF parameters from D.

The VABF is a theoretical construct that specifies
the probability of correct optotype identification at
every possible optotype size. In actual VA assessments,
the function is only sampled with a finite number of
optotype sizes, and each with a small number of trials.
As a result, the empirical VABFs and the correspond-
ing VABFparameters vary across repeated assessments
(Figs. 1B, 1C). Figure 1C is a color density plot of the
point estimates across multiple tests. It illustrates the
joint probability of different point estimates of VABF
parameters from many repeated measurements. In this
scheme, each VA assessment results in a single estimate
of the VABF parameters, so repeated assessments are
required to quantify the uncertainty.

In the real world, where repeated VA assessments
are most often not possible, how do we gauge uncer-
tainty from a single VA assessment? This can be
done with several modeling approaches.26 Given the
results from a single VA assessment (Fig. 1D), the
probability distribution of VABF can be estimated by
their likelihood or Bayesian inference (Fig. 1E). The
corresponding parameters and the associated proba-
bilities form a joint distribution of the estimated
VABF parameters (Fig. 1F). The mean and spread
of the joint distribution can be used to quantify

the estimated parameters and their uncertainties,26–30
which is often quantified by the half width of the
68.2% credible interval (68.2% HWCI) of the distribu-
tion,26,27 defined as the smallest interval that contains
the true value of the estimated quantity with 68.2%
probability. The estimated uncertainties from repeated
tests (see Fig. 1C) and a single measurement (see
Fig. 1F) are equivalent under ideal experimental
conditions.26,30,31

Traditional VA assessments, including the printed
VA charts and computerized tests, sample the VABF
with optotypes that are 0.1 logMAR apart, each tested
on a row with a small number of optotypes.32–34 The
method of limits and heuristic termination rules are
used to determine a single VA score (but see Ref.
35). Although uncertainty is usually not estimated,
studies with repeated tests found large uncertainties
(approximately 0.07–0.34 logMAR)33,36–43 because of
the coarse sampling of the VABF as well as the use of
heuristic termination rules that depend on the proba-
bilistic behavior of the human observer. In addition,
the exact performance level (probability of correct
optotype identification) associated with each heuris-
tic termination rule depends on the range parameter
of the VABF.24,25 We cannot meaningfully compare
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Figure 2. Evolution of the joint distributions of VABFparameter θ ij of individual i in test j, fromprior (A) to posterior probability distributions
after 15 (B), and 45 (C) rows in a qVA test.

VA scores from patients with different VA range
parameters or interpret changes of VA scores of the
same patient with range parameter changing between
assessments.18,19

The quantitative visual acuity (qVA) method24,25 is
a Bayesian inference procedure developed to charac-
terize the full VABF and quantify the uncertainty in
each assessment of individual i in test j. In the qVA,
the VABF (see Fig. 1) is characterized with param-
eter θ ij = (αij, β ij), where αij is VA threshold, corre-
sponding to the d ′ = 2 performance level, β ij is the
range parameter of the function that covers d ′ = 1
to d ′ = 4 performance levels.24,25 The qVA incorpo-
rates high density optotype size sampling and starts
with a broad joint prior distribution of θ ij, represent-
ing existing knowledge of the general pattern of the
VABF (Fig. 2A). An active learning approach is used
to optimize stimulus selection to reduce the expected
uncertainty of the posterior distribution of θ ij in each
trial (see Fig. 2). Bayes’ rule is used to compute the
joint posterior distribution of θ ij (Figs. 2B, 2C), which
allows us to quantify not only the VABF parame-
ters but also their uncertainties from a single measure-
ment. In computer simulations, we showed that the
qVA could assess VABF parameters with virtually no
bias, and very small uncertainty in αij (HWCI = 0.028
logMAR) and small uncertainty in β ij (HWCI = 0.092
logMAR), reflecting 52.5% and 49.5% uncertainty
reductions of the estimated αij relative to the electronic-
early treatment diabetic retinopathy study (E-ETDRS)
andFreiburg Visual Acuity andContrast Test (FrACT)
methods, respectively.25 The results were confirmed in
a psychophysical study: estimated θ ij from the qVA
exhibited very small (αij = 0.019 logMAR HWCI) and
relatively small (β ij = 0.062 logMAR HWCI) uncer-
tainty. In addition, we found a significant correlation
(r = 0.412, P < 0.001) between estimated αij and
β ij across individuals and tests in the psychophysical
experiment.25

Figure 3. (A) The qVA models the VABF of individual i in test jwith
two parameters: VA threshold αij and range β ij, θ ij = (αij, β ij). (B) A
three-level hierarchical Bayesian model (HBM) of the VABF across
multiple individuals and tests. At the population level, μ and � are
themean and covariance hyperparameters of the population. At the
individual level ρ i and ϕ are themean and covariance hyperparame-
ters of individual i. At the test level, θ ij is the VA threshold and range
of individual i in test j. The same generative model in the qVA, the
VABF (θ ij), determines the likelihood of response rijk of individual i in
trial k of test j.

In its current implementation, each qVA test
(Fig. 3A) starts with a broad prior. It does not take
advantage of any knowledge across individuals and
tests such as the observed correlation between αij and
β ij,24,25 which could be useful in further constraining
the estimated θ ijs and thereby reducing their uncer-
tainties. In other words, the broad prior and indepen-
dent treatment of each qVA test may overestimate the
uncertainty of the estimated VABF. Although the qVA
has greatly reduced the uncertainty of αij estimates, the
uncertainty of β ij estimates is still relatively large.25

The observed correlation between estimated αij
and β ij across individuals and tests in our previous
study25 motivated us to develop a three-level HBM
(Fig. 3B) to quantify uncertainties at the population,
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individual, and test levels in a single model. At the
population level, p(η), the joint distribution of VABF
hyperparameter η across all the individuals, is modeled
as a mixture of 2-dimensional Gaussian distributions
with mean μ and covariance �, which have distribu-
tions p(μ) and p(�). At the individual level, p(τ i|η),
the joint distribution of VABF hyperparameter τ i of
individual i across all the tests performed by the individ-
ual, is modeled as amixture of 2-dimensional Gaussian
distributions with mean ρ i and covariance ϕ, which
have distributions p(ρ i|η) and p(ϕ). p(ρ i|η) denotes that
ρ i is conditioned on η. At the test level, p(θ ij|τ i), the
joint distribution of the VABF parameters of individ-
ual i in test j, θ ij, is conditioned on τ i. The cross- and
within-individual regularities are modeled as covari-
ances � and ϕ in the HBM.44–48 Bayes’ rule is then
used to update the joint prior distribution of all the
parameters and hyperparameters to their joint poste-
rior distribution,49–53 which allows us to quantify the
estimated hyperparameters and parameters as well as
their uncertainties at the population, individual and
test levels.49,54,55

The HBM has been used in many different disci-
plines to model data with hierarchical structures,
including astronomy,56 ecology,57,58 genetics,59 and
cognitive science.50,51,53,60–65 By decomposing the
variability of an entire dataset into distributions at
multiple levels of the hierarchy, it can better quantify
uncertainty at each level.59,52,65 Here, we developed an
HBM and evaluated its performance relative to that
of the qVA using the qVA data in 14 eyes tested in 4
Bangerter foil conditions.25 Our goal was to improve
quantification of uncertainty at the test level. We
hypothesized that theHBMwould account for the data
better than the qVA and reduce the uncertainties of
estimated VABF parameters in single VA tests relative
to the qVA.

Methods

Data

The dataset used in this study included a total of 56
tests: 14 eyes (left and right eyes of 7 subjects), each
tested with the qVA with 3 levels of Bangerter foils66,67
and without foil.25 Each qVA test consisted of 45 rows
(K = 45) of 3 optotypes (Fig. 4). In each qVA trial, 3
letters on a row, randomly sampled without replace-
ment from the 10 Sloan letters (C, D, H, K, N, O,
R, S, V, and Z) and with their size determined by the
qVA, were presented to the subject. The subject was
instructed to report the identity of the letters verbally.
The joint posterior distributions of VABF parameters

Figure4. Asample stimulus sequence in aqVA test. Stimuli on rows
1, 2, 3, 43, 44, and 45 are shown, with three optotypes in each row.

in each qVA test after k = 5, 10, 15, 20, 25, 30, 35, 40,
and 45 rows were used to conduct statistical analysis.
The details of the qVA can be found in prior publica-
tions.24,25

Apparatus

All analysis was conducted on a Dell computer with
Intel Xeon W-2145 @ 3.70 GHz CPU (8 cores and
16 threads) and 64 GB installed memory (RAM). The
qVA was implemented in Matlab R2013a (MathWorks
Corp., Natick, MA, USA) and the HBM was imple-
mented with JAGS68 in R.69

The HBM

Likelihood Function for a Single Test
The likelihood function of a model is defined as

the probability of the observed data given a particular
set of parameter values in the model. The VABF (see
Fig. 1A) in qVAwas used to compute the probability of
individual i’s response rijk (the number of correct identi-
fications: 0, 1, 2, or 3) of the 3 optotypes with optotype
size osijk in row k of test j:

p
(
ri jk|θi j, osi jk

) = f
(
g

(
osi jk, θi j

)
, n

)
, (1a)

where g(osijk,θ ij) is the VABF of correct identification
of a single optotype with size osijk and model param-
eters θ ij = (αij, β ij); f(g(osijk, θ ij), n) is the probabil-
ity of observing the number of correct identifications
given g(osijk, θ ij) and a specific chart design (e.g. n = 3
optotypes on a row). The details of functions f and g
can be found in Supplementary Materials A and previ-
ous publications.24,43 The probability of obtaining the
observed responses in all rows in test j from individual
i is the product of the probability of responses in all
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rows (Equation 1a):

p
(
ri j,1:K |θi j, osi j,1:K

) =
K∏

k=1

p
(
ri jk|θi j, osi jk

)
. (1b)

Three-Level Hierarchy
To account for the entire dataset with all the individ-

uals and tests, we constructed anHBMwith three levels
(see Fig. 3). In this model, the population level distri-
bution of VABF hyperparameters sets the prior for
the mean hyperparameters of each individual, which in
turn sets the prior of the parameters of the individual
in all her/his tests.We describe the distributions at these
three levels in more details below.

At the population level, p(η), the joint distribution
of hyperparameter η, is modeled as a mixture of two-
dimensional Gaussian distributions N with mean μ
and covariance �, which have distributions p(μ) and
p(�):

p (η) = N (η, μ, �) p (μ) p (�) . (2)

At the individual level, p(τ i|η), the joint distribution
of hyperparameter τ i of individual i, is modeled as a
mixture of two-dimensional Gaussian distributions N
with mean ρ i and covariance ϕ, which have distribu-
tions p(ρ i|η) and p(ϕ):

p (τi|η) = N (τi, ρi, φ) p (ρi|η) p (φ) , (3)

where p(ρ i|η) denotes that ρ i is conditioned on η.
At the test level, p(θ ij|τ i), the joint distribution of

parameter θ ij is conditioned on τ i.
The probability of obtaining the entire dataset is

computed by probability multiplication:

p (r1:I,1:J,1:K |X, os1:I,1:J,1:K ) =
I∏

i=1

∏J
j=1 p

(
ri j,1:K |θi j, osi j,1:K

)
p
(
θi j |τi

)
p (τi|η) p (η)

=
I∏

i=1

∏J
j=1 p

(
ri j,1:K |θi j, osi j,1:K

)
p
(
θi j |τi

)N (τi, ρi, φ)

p (ρi|η) p (φ)N (η, μ, �) p (μ) p (�) ,
(4)

where X = (θ1:I, 1:J, ρ1:I, ϕ, μ, �) are all the parameters
and hyperparameters in the HBM, I is the total number
of individuals, and J is the total number of tests on each
individual.

Bayesian Inference
We start with prior distributions of μ, �, and ϕ.

p0 (μ) = U (μ0,min, μ0,max) , (5a)

p0
(
�−1) = W

(
�−1

qVA/ν, ν
)

, (5b)

p0
(
φ−1) = W

(
φ−1
qVA/ν, ν

)
, (5c)

where U is a two-dimensional uniform distribution
with μ0,min = (−0.5, 0.1) logMAR and μ0,max = (1.3,
1.5) logMAR; precision matrices ϕ−1 and �−1 are
the inverse of covariance ϕ and �; W (Y

ν
, ν ) denotes

a Wishart distribution with expected mean precision
matrix Y and degrees of freedom ν = 2; φ−1

qVA is
the inverse of the average covariance matrix ϕqVA
computed from the joint posterior distributions across
all qVA tests in the dataset;�qVA

−1, is the inverse of the
covariance matrix �qVA computed from the estimated
θ ij across all qVA tests.

Bayes’ rule is used to compute the joint posterior
distribution of all the parameters and hyperparameters
in the HBM:
p
(
X |r1:I,1:J,1:K , os1:I,1:J,1:K

) =∏I
i=1

∏J
j=1 p(ri j,1:K |θi j ,osi j,1:K )p(θi j |τi )N (τi,ρi,φ)p(ρi |η)p0(φ)N (η,μ,�)p0(μ)p0(�)

∫ ∏I
i=1

∏J
j=1 p(ri j,1:K |θi j ,osi j,1:K )p(θi j |τi )N (τi,ρi,φ)p(ρi |η)p0(φ)N (η,μ,�)p0(μ)p0(�)dX

,
(6)

where the denominator is the integral of the probability
of obtaining the entire dataset (Equation 4) across all
possible values of X and is a constant for a given dataset
and HBM.

Computing the Joint Posterior Distribution
In this study, an individual refers to a combination

of subject, eye and foil level, with the total number of
individuals I = 56. In addition, each individual was
only tested once (J = 1).

The complexity of the HBM increases exponen-
tially with the number of hyperparameters and param-
eters. It would take practically infinite time to compute
all the points in the 232-dimensional hyperparame-
ter/parameter space defined in Equation 6.We used the
JAGS68 package in R69 to evaluate the joint posterior
distribution (see Equation 6). JAGS uses an efficient
sampling algorithm to generate representative samples
of the joint posterior distribution of all the param-
eters and hyperparameters in the HBM via Markov
Chain Monte Carlo (MCMC). Each MCMC gener-
ated 15,000 samples via a random walk process (see
Supplementary Materials B for details). Because the
initial part of the random walk was largely influenced
by the arbitrary starting position, steps in the burn-in
and adaptation (further optimization of the sampling
algorithm by JAGS) phases were discarded and not
included in the analysis. The exact number of steps
discarded differ for each model. In this study, 20,000
and 100,000 steps were used for burn-in and adaptation
in eachHBMmodel based on results from pilot studies.
Convergence of each parameter was evaluated with
Gelman and Rubin’s diagnostic rule70 based on the
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ratio of between- and within-MCMC variances along
each dimension, that is, the variance of the samples
across MCMC processes divided by the variance of
the samples in each MCMC process. The HBM was
deemed “converged”when the ratios for all the param-
eters were smaller than 1.05. The data with k = 5, 10,
15, 20, 25, 30, 35, 40, and 45 rows were fit by the HBM
separately.

Simulations

Each simulated dataset consisted of 56 qVA tests
from 56 individuals, each tested once. The VABF
parameters for the simulated observers were randomly
sampled from the posterior distributions of θ i1
obtained from the HBM fit to the real data. Each qVA
test consisted of 45 three-optotype rows, and the row-
by-row responses were determined by the VABF speci-
fied with the parameters of the simulated observer. The
HBM was fit to the simulated dataset of 56 tests. The
procedure was repeated 10 times.

Statistical Analysis

Goodness-of-Fit
Bayesian predictive information criterion

(BPIC)71,72 was used to quantify and compare the
goodness-of-fit of the HBM against that of the qVA.
The BPIC quantifies the likelihood of the data based
on the joint posterior distribution of the parameters
of a model and penalizes model complexity.

Uncertainty
We compared the uncertainties of estimated θ i1

from the qVA and HBM. The uncertainty of each
estimated parameter was quantified by the 68.2%
HWCI of its marginal posterior distribution.26,27
Paired t-test (R function t.test69) was used to compare
the 68.2% HWCIs between the two methods.

Discrimination Accuracy
To demonstrate effects of uncertainty reduction, we

computed the accuracy in detecting a 0.15 logMAR
VA threshold (αi1) change, a 0.15 logMAR range (β i1)
change, and a 0.15 logMAR change of both parame-
ters. We chose 0.15 logMAR as the magnitude of αi1
change because a greater-than-15-letter VA improve-
ment (0.3 logMAR) is considered by the US Food
& Drug Administration (FDA) as an acceptable end
point of a clinical trial, although a greater-than-10-
letter VA improvement (0.2 logMAR) has been used
when the benefits can outweigh the safety risks of
the proposed method or product.73 We chose 0.15
logMAR as the magnitude of β ij change, because a

similar change has been reported in eyes with degraded
vision.18,25

Discrimination accuracy was quantified by the
area under receiver operating characteristic curve
(AUROC). Given a change-criterion, specificity is
defined as the probability of correctly identifying no
change, whereas sensitivity is defined as the probability
of correctly identifying a change.74 Whereas sensitiv-
ity and specificity depend on the change criterion, the
AUROC in signal detection theory provides a criterion-
free estimate of the accuracy of a test to detect a
change.74 It only depends on the discriminability d ′ that
weighs the evidence against uncertainty and quantifies
the signal (change) to noise (HWCI) ratio of two proba-
bility distributions of the estimates in two conditions.

For one-dimensional distributions, d ′ is defined as74:

d ′ = �

HWCI
, (7)

where � is the magnitude of change. For multidimen-
sional difference distributions, d ′ is defined as75:

d ′ =
√

� ∗ cov(�)−1 ∗ �T , (8a)

cov (�) =
[
HWCI2threshold covariance
covariance HWCI2range

]
, (8b)

covariance = corr × HWCIthreshold × HWCIthreshold
where � = (0.15, 0.15), cov(�) is the covariance
matrix of the VABF parameter difference distribution,
cov(�)−1 is the inverse of cov(�), �T is the transpose
of �, * represents matrix multiplication, and corr is the
correlation coefficient at the test level in the HBM.

Results

Goodness-of-Fit

The BPIC for the qVA and HBM were 4867 and
4832, respectively, indicating that the HBM fit the data
better than the qVA. Figure 5 shows the posterior
distributions of the estimated VABFs in one test from
the qVA and HBM after 5, 15, and 45 rows. Although
the HBM fit the data better and reduced the uncer-
tainty of the estimated θ1: I, 1, it did not significantly
change the expected values of the estimated θ1:I, 1:
the average absolute differences of the estimates from
the qVA and HBM across all individuals were 0.002
and 0.022 logMAR, respectively, indicating that HBM
and qVA estimates exhibited virtually the same central
tendency.
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Figure 5. Posterior distributions of the estimated VABFs in one test from the qVA (A, B, C) and HBM (D, E, F) after 5, 15, and 45 rows. Open
circles represent data.

Posterior Distributions From the HBM

Figure 6 illustrates the joint posterior distributions
of hyperparameters μ, �, and η after 45 rows. Whereas
μ and � were from the HBM fits to the data (see
Equation 6), η was constructed from the distributions
of μ and� (see Equation 2). The correlation coefficient
between η1 and η2 was 0.662. (P < 0.001). Figure 7
illustrates the joint posterior distributions of hyper-
parameters ϕ, and ρ i, and τ i for 8 out of the 56
individuals after 45 rows. Whereas ρ i and ϕ were from
the HBM fits to the data (see Equation 6), τ i was
constructed from the distributions of ρ i and ϕ (see

Equation 3). Figure 8A illustrates the joint posterior
distributions of parameters θ i1 from the 8 correspond-
ing individuals in Figure 7 after 45 rows. Figure 8B
shows the mean θ i1 of all the 56 tests.

Uncertainty of θi1 Estimates

Figure 9 shows the estimated joint posterior distri-
butions of θ i1 after 5, 15, and 45 rows for one individ-
ual, obtained from both the qVA and HBM. Across all
the individuals and tests, the average 68.2% HWCI of
the estimated θ i1 decreased with the number of rows
in both methods (Fig. 10, Table 1). With 5 rows, the

Figure 6. Illustrations of the joint posterior distributions of hyperparameters μ (A),� (B), and η (C) after 45 rows at the population level in
the HBM.



Hierarchical Bayesian Modeling of Visual Acuity TVST | October 2021 | Vol. 10 | No. 12 | Article 18 | 8

Figure 7. Illustrations of the joint posterior distributions of hyperparameters ρ i (A), ϕ (B), and τ i (C) for 8 out of the 56 individuals after
45 rows in the HBM.

Figure 8. (A) Illustration of the joint posterior distributions of
parameters θ i1 from 8 tests of the 8 individuals in Figure 7 after 45
rows in the HBM. (B) Mean θ i1, θ̄i1 = (ᾱi1, β̄i1 ), (circles) of all the 56
tests, with the 8 tests in A highlighted in red.

68.2% HWCIs of the estimated αi1 (t(55) = 14.8, P <

0.001) and β i1 (t(55) = 13.7, P < 0.001) were signif-
icantly different between the methods. With 45 rows,
the 68.2% HWCIs of the estimated αi1 (t(55) = 4.63,
P< 0.001) and β i1 (t(55)= 6.74,P< 0.001) were signif-
icantly different between the methods. Relative to the
qVA, the HBM reduced the HWCI of the estimated αi1
by 4.2% to 26.9%, and β i1 by 20.8% to 45.8%.

Uncertainty of the estimated parameters is quanti-
fied as the HWCI of the (marginal) posterior distribu-
tion of θ i1. Because the trial-by-trial data and distribu-
tion of τ i were different for each individual and test, the
uncertainties were different across individuals and tests
in the HBM (Fig. 11).

Simulations

The HBM recovered the parameters of the
simulated tests very well. The HBM solutions had
near-zero bias for αi1 (−0.0024 logMAR) and β i1
(0.0057 logMAR) across all the simulations. The
average root–mean-square errors (RMSEs) between
the HBM estimates and the true values (0.019 and

0.047 logMAR for αi1 and β i1) were comparable to the
HWCIs of the parameter estimates (0.019 and 0.050
logMAR for αi1 and β i1), indicating good convergence
of the HBM fits. In addition, the HWCIs from the
simulations were also comparable to those from the
experimental data (0.018 and 0.048 logMAR for αi1
and β i1), suggesting that the simulations captured the
uncertainties in the real experiment.

Discrimination Accuracy

Discrimination accuracy increased with the number
of rows (Table 2, Fig. 12). The HBM estimates exhib-
ited higher accuracy than the qVA, especially when the
number of rows was relatively small. To reach 95%
accuracy, 10 and 7 rows were needed to detect a 0.15
logMAR αi1 change with the qVA and HBM, and
10 and 6 rows were needed to detect a 0.15 logMAR
change of both αi1 and β i1, respectively.

Discussion

In this study, we developed an HBM to improve
uncertainty quantification in VA assessment. By explic-
itly quantifying regularities at the population, individ-
ual, and test levels, the HBM utilized knowledge of
VABF across multiple assessments to constrain param-
eter estimates, and decompose the variability of an
entire dataset into distributions at three levels. Apply-
ing the model to a dataset that consisted of qVA
assessments of 14 eyes in 4 Bangerter foil conditions,
we showed that the HBM provided better fits to the
data than the qVA and reduced the HWCI of the αi1
estimates by 26.9%, 12.2%, and 4.2%, and β i1 estimates
by 45.8%, 35.3%, and 20.8% for tests with 5, 15, and 45
rows, respectively. Simulations showed that the HBM
recovered αi1 spanning about 0.8 logMAR (−0.15 to



Hierarchical Bayesian Modeling of Visual Acuity TVST | October 2021 | Vol. 10 | No. 12 | Article 18 | 9

Figure 9. Joint posterior distributions of θ i1 for one individual in one qVA test after 5 (A), 15 (B), and 45 (C) rows. Joint posterior distributions
of the corresponding θ i1 of the same test in the HBM after 5 (D), 15 (E), and 45 (F) rows.

Figure 10. Average 68.2% HWCI (± standard error: dotted lines) of
the estimated αi1 (A) and β i1 (B) as functions of number of tested
rows in the qVA (open squares) and HBM (filled circles).

approximately 0.68 logMAR) and β i1 spanning about
0.4 logMAR (approximately 0.11 to 0.49 logMAR).
The simulation results also provided validity for the
discrimination accuracy analysis.

The HBM exhibited its largest advantage relative
to the qVA when the number of tested rows in each
qVA test was small (see Table 1). This is because the
HBM reduces uncertainty by incorporating knowl-
edge across all individuals and tests. As the number
of rows increased, more knowledge in each qVA test
became available and provided better constraints on
the parameters. The results highlight the importance of
theHBMwhen fewer rows are tested, which is often the

case in clinical settings. In fact, the current HBM can
be readily used to analyze data from other VA tests,
such as the ETDRS (Lu et al. IOVS. 2021;62: ARVO
Abstract 3546329).

The HBM reduced the uncertainty of the estimated
θ i1 and improved the discrimination accuracy of the
tests. The reduction of uncertainty, on average, resulted
in 3 fewer rows needed to reach 95% accuracy in
detecting changes of 0.15 logMAR in αi1 or both
αi1 and β i1 than the qVA (see Table 2, Fig. 12). The
increased accuracy in detecting β i1 changes in the
HBM may enable a new range endpoint in functional
vision,5 because it has been documented that poor VA
thresholds were accompanied by wider VA ranges.25
In addition, using the joint distribution of θ i1 can
further increase the accuracy in detecting changes of
VA behavior because the two-dimensional distribu-
tions may contain more information than the one-
dimensional marginal distributions.76–78

In this paper, we constructed a simple three-level
HBM without considering any structure related to
test conditions because our goal was to quantify the
uncertainty of the estimated VABF in each test. The
HBM can be extended to model regularities between
different experimental conditions (e.g. before and after
treatment) with covariance. A positive covariance
between conditions can enhance the ability to detect
differences between conditions, and therefore improve
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Table 1. Average 68.2% HWCI (logMAR) of the Estimated αi1 and β i1 in the qVA and HBM

Number of Rows

5 10 15 20 25 30 35 40 45

αi1 qVA 0.069 0.044 0.034 0.028 0.026 0.024 0.022 0.020 0.019
HBM 0.051 0.036 0.029 0.025 0.023 0.022 0.021 0.019 0.018
Reduction 26.9% 17.3% 12.2% 9.2% 8.4% 6.3% 5.6% 4.9% 4.2%

β i1 qVA 0.210 0.144 0.111 0.091 0.085 0.080 0.073 0.067 0.061
HBM 0.114 0.086 0.072 0.062 0.058 0.059 0.056 0.052 0.048
Reduction 45.8% 40.5% 35.3% 31.1% 31.7% 26.2% 23.3% 22.8% 20.8%

Figure 11. Histograms of 68.2% HWCI of the estimated αi1 (A) and
β i1 (B) for tests in the qVA (blue) and HBM (red) after 45 rows.

Table 2. Discrimination Accuracy (%) in Detecting a
0.15 logMARαi1 Change, a 0.15 logMARβ i1 Change, and
a 0.15 logMAR Change of Both Parameters

Number of Rows

5 10 15 20 25 30 35 40 45

αi1 qVA 86.4 96.0 98.9 99.7 99.9 100.0 100.0 100.0 100.0
HBM 93.4 98.3 99.6 99.9 100.0 100.0 100.0 100.0 100.0

β i1 qVA 64.4 70.4 75.5 80.1 81.7 83.0 85.2 87.3 89.6
HBM 75.0 81.4 85.6 89.0 90.7 90.2 91.4 93.1 94.4

θ i1 qVA 86.8 96.2 99.0 99.8 99.9 100.0 100.0 100.0 100.0
HBM 94.2 98.6 99.7 99.9 100.0 100.0 100.0 100.0 100.0

statistical power in clinical trials (unpublished commu-
nication: Zhao Y, Lesmes LA, Hou F, Lu Z-L.
Hierarchical Bayesian modeling of contrast sensitivity
functions in a within-subject design, 2021). The HBM
can also be extended to model repeated tests of the
same individual, with parameters θ ij of all the tests
conditioned on τ i.

Without explicit consideration of the full experi-
mental design (e.g. two eyes from each subject), the
current HBM may under- or overestimate the uncer-
tainty from the tests, depending on the nature of
the correlation (positive or negative) and experiment
design. To check the impact of the simplification, we
ran 50 iterations of the HBM on the data from one
randomly selected eye of the 7 subjects in 4 conditions.

The procedure eliminated the correlation between eyes.
We obtained virtually the same estimated θ i1 as the
original HBM fit to the 14 eyes, with slightly higher
HWCIs of the estimated β i,1 (0.018 ± 0.00082 and
0.050 ± 0.00184 logMAR for αi1 and β i1 in the 7 eye
fits, versus 0.018 and 0.048 logMAR in the 14 eye fit).
The RMSEs between the HBM fits to the 7 and 14
eyes were 0.00078 and 0.00793 logMAR for αi1 and β i1,
and 0.00036 and 0.00350 logMAR for the correspond-
ing HWCIs. The results also suggest that the original
experimental dataset with 14 eyes tested in 4 conditions
was sufficient to constrain the HBM because cutting
the amount of data to half generated virtually the same
estimates.

Uncertainty in assessing the probabilistic VA behav-
ior is determined by three factors: prior knowledge of
the VA behavior, data collected in the assessment, and
data analysismethod.We developed theHBMas a data
analysis tool in this study. The posterior distributions
of the hyperparameters η and τ i at the population and
individual levels from the HBM can also be used to
construct informative priors (see Figs. 6C, 7C) within
the hierarchical adaptive design optimization (HADO)
framework79,80 for new individuals (see Fig. 6C) and
repeated tests of the same individual (see Fig. 7C),
respectively. In the HADO framework, the joint distri-
bution in the HBM is updated after each test and used
as an informative prior in the next test to improve
test efficiency for new individuals or repeated tests of
the same individual. The 6-hour computation time of
the HBM on a desktop computer makes it realistic to
incorporate it within the HADO framework with daily
updates of the joint posterior distribution.

Conclusion

We developed a three-level HBM to utilize knowl-
edge of VA behavior across multiple individuals
and tests by explicitly modeling cross- and within-
individual covariances. The HBM reduced the
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Figure 12. Discrimination accuracy in detecting a 0.15 logMAR αi1 change (A), a 0.15 logMAR β i1 change (B), and a 0.15 logMAR change of
both parameters (C) as functions of number of tested rows in the qVA (open squares) and HBM (filled circles).

uncertainties of the estimated VABF parameters,
especially when the number of tested rows was
relatively small. We applied the HBM to a qVA
dataset of normal healthy subjects with simulated
visual degradations. The benefit of the HBM in real
clinical populations needs further research.
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