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Abstract

The analysis of the dynamic behaviour of genome-scale models of metabolism (GEMs) currently presents considerable chal-
lenges because of the difficulties of simulating such large and complex networks. Bacterial GEMs can comprise about 5000
reactions and metabolites, and encode a huge variety of growth conditions; such models cannot be used without sophisti-
cated tool support. This article is intended to aid modellers, both specialist and non-specialist in computerized methods, to
identify and apply a suitable combination of tools for the dynamic behaviour analysis of large-scale metabolic designs. We
describe a methodology and related workflow based on publicly available tools to profile and analyse whole-genome-scale
biochemical models. We use an efficient approximative stochastic simulation method to overcome problems associated
with the dynamic simulation of GEMs. In addition, we apply simulative model checking using temporal logic property libra-
ries, clustering and data analysis, over time series of reaction rates and metabolite concentrations. We extend this to con-
sider the evolution of reaction-oriented properties of subnets over time, including dead subnets and functional subsystems.
This enables the generation of abstract views of the behaviour of these models, which can be large—up to whole genome in
size—and therefore impractical to analyse informally by eye. We demonstrate our methodology by applying it to a reduced
model of the whole-genome metabolism of Escherichia coli K-12 under different growth conditions. The overall context of
our work is in the area of model-based design methods for metabolic engineering and synthetic biology.

Key words: whole-genome-scale metabolic models; formal analysis; scalability; approximative stochastic simulation; model
checking; reaction profiling; clustering; data analytics; delta leaping; subsystems behaviour; model-based design

Introduction

Currently, models of biochemical networks which can be simu-
lated dynamically are limited in size; for instance, dynamic
models for bacterial whole-genome metabolism are the excep-
tion [1, 2], with the lack of kinetic data usually given as the
main reason. In addition, the dynamic simulation of such large
and complex models is currently a bottleneck, presenting con-
siderable difficulties both for stochastic and deterministic
methods. These two difficulties together impede progress in the

development of dynamic models of these large systems. Even
when these models can be simulated to generate dynamic be-
haviour, there is a further challenge to analyse the large amount
of data produced. Bacterial genome-scale models of metabolism
(GEMs) can comprise about 5000 reactions and metabolites, and
encode a huge variety of growth conditions; such models are far
too large and complex in terms of their structure and number of
observables (metabolite concentrations and reaction rates) to be
checked without sophisticated tool support. Our approach is
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intended to facilitate in the long term the development of dy-
namic whole-genome-scale models, by providing means to
simulate and analyse these models. It can already be applied to
explore properties, which are not dependent on specific kinetic
parameters such as dead subnets, and furthermore be used for
fine-tuning of kinetic parameters via optimization.

In this article, we describe a methodology and related work-
flow comprising methods and associated software tools to ex-
plore the dynamic behaviour of genome-scale metabolic
models, and providing a guidance framework for modellers, ei-
ther specialist or non-specialist in computerized methods. Our
focus here is on analysis and exploration of already constructed
models, rather than on the construction process itself.
Typically, currently available large genome-scale models are de-
signed to be analysed by constraint-based methods, such as
flux balance analysis (FBA), flux variability analysis, etc., which
explore steady-state behaviour [3]. We wish to complement
these approaches by considering dynamic behaviour, which is
required, for example, if the transient behaviour of microorgan-
isms has to be described under changing external conditions, or
when cell growth is crucial for metabolic engineering. Our
methodology integrates the static analysis of graph properties
and dynamic stochastic simulation, within a Petri net setting,
exploiting a rich set of associated tools. This requires some
model preparation before simulation followed by analysis of the
generated time series traces. In this article, we use stochastic
simulation based on d-leaping [4], a recently introduced ap-
proach that permits the efficient simulation of these GEMs, ena-
bling the observation of new and complex behaviours. Our
approach is general, and not bound to Petri net representations.

We demonstrate the use of our techniques to explore model
behaviours under different growth conditions, with a focus on
the reaction perspective related to functionally meaningful sub-
systems (pathways). Other application scenarios include the
comparison of model versions arrived at by model develop-
ment, manual curation, variant exploration (knockout, etc.),
production target-based optimization (e.g. within the frame-
work of synthetic biology or metabolic engineering) across
populations and over generations for evolutionary approaches.
The intention is that our techniques will aid the exploration
and understanding of large models, and comparison between
model versions and configurations. These methods may also
support the modification of such models as part of the design
process in synthetic biology.

Novel techniques that we use include simulative model
checking using libraries of properties and derived network
variables (observers) for reaction behaviour, as well as analysis
of the enlarging/shrinking of property-induced subnets over
time with respect to functional subsystem or network loca-
tion, possibly connected with structural network properties.
Our methodology involves behaviour-based network decom-
position using clustering and model checking, and abstraction
over the data based on functional grouping. We illustrate our
methods by considering metabolic models based on the whole
genome of Escherichia coli K-12, and use a reduced version as
running example.

Outline

In the following section, we introduce the kind of models, which
we consider and our running example. Next, we give an over-
view of our workflow and a detailed presentation of our core
methods. We conclude with a brief summary and outlook on
future work.

Materials

Models. The models that we consider in this article comprise
networks of biochemical reactions, which are often exchanged
via the Systems Biology Markup Language (SBML) [5]. This art-
icle builds on experience gained while working with a set of 55
public domain models of whole-genome metabolism [6] of vari-
ous E. coli and Shigella strains available in SBML [7]. We use a
subset of the information contained in these models
comprising:

• compartments, e.g. cytosol, periplasm and extracellular space;
• metabolites (species), given by their names, initialization values

(set to zero), compartment membership and if they act as inputs

or outputs called boundary conditions; and
• reactions, given by their names, substrates, products and related stoi-

chiometry, subsystem membership, reversibility information and

flux bounds. Kinetic information is not included in the original GEMs.

These public domain models incorporate the ability to repre-
sent different growth conditions by use of the boundary condi-
tions. Individual boundary conditions are switched on or off in a
Boolean manner by allowing/disabling inflow of particular me-
tabolites. This is achieved by modifying the exchange reactions,
which model the transport between the external environment
and internal compartments by setting flux values to maximum
or zero, corresponding closely to the laboratory experimental
protocols used. We replicate this in our approach, although of
course we could modulate rates in a continuous manner.

The growth conditions include a minimal growth medium
based on M9 [8] comprising 25 metabolites, plus a set of add-
itional possible nutritional sources whose exchange reactions
are deactivated by default.

These public domain models also provide subsystem infor-
mation. A subsystem is uniquely defined by a set of functionally
related reactions, which belong uniquely to one subsystem
only, whereas metabolites may be shared between subsystems,
acting as communication channels between them, or they may
be uniquely members of only one subsystem. A biochemical
pathway is a subsystem with a recognized biological function,
for example glycolysis or the citric acid cycle. There is no SBML
tag to indicate the membership of reactions to subsystems, but
this information has been added by the original modellers using
a ‘notes’ annotation, which we assume to be correct.

Biochemical reaction networks can be considered as clas-
sical bipartite graphs, with the two distinct types of nodes rep-
resenting reactions and metabolites. Hence, they can be
immediately encoded as Petri nets, and thus their analysis can
benefit from the rich set of Petri net techniques and tools, not
considered further in this article, covering both qualitative and
(stochastic and deterministic) quantitative aspects. We deploy
standard terminology of Petri net theory; see [9] for a general
introduction, or the Supplementary Data for this article.
Systems biology and Petri nets use related terms, e.g. reactions/
transitions and metabolites/places, which we use interchange-
ably; see Table 1 for a quick reference, and Figure 1 for an intro-
ductory example. Small networks of this kind can then be
composed together to form arbitrary complex networks.

Converting an SBML model into a Petri net is done with the
Petri net editor and simulator Snoopy [10], and involves two
adjustments.

• As required for any discrete modelling approach, reversible reac-

tions are modelled by two opposite transitions representing the

two directions a reversible reaction can occur.
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• Metabolites, which have been declared as boundary conditions,

are associated with additional source and sink transitions called

boundary transitions (Figure 2). This transforms a place-

bordered net into a transition-bordered net, if all boundary pla-

ces (i.e. source/sink places) have been declared as boundary

conditions.

A boundary condition is a metabolite whose concentration is
assumed to be constant despite any production or consumption
by the network by assuming appropriate in/outflow from/to the
environment. To transform a network model generated for
constraint-based computation (exploring steady-state behav-
iour) into a general dynamic model that permits transient be-
haviour, boundary conditions can be basically treated in two
ways. In the first approach, the boundary conditions are kept
constant by the simulator. This is achieved for deterministic
simulation by not generating ordinary differential equations for
the boundary metabolites. In contrast in the stochastic case, be-
cause the simulator operates directly on the network, these
conditions have to be flagged to be specially treated during
simulation. The second approach is to generate explicit in/out-
flow transitions for each boundary metabolite, which maps the
assumption underlying constraint-based approaches into a cor-
responding net structure, making the transformed network
available for analysis and simulation by general purpose algo-
rithms that do not need to be aware of boundary conditions. We
prefer to use the second approach because we wish to be able to
apply either continuous or stochastic simulation as appropriate.

Models can be interchangeably represented using SBML or
Petri nets. We distinguish between strain-specific models,
which may be closely related in their metabolic core while dif-
fering otherwise; model configurations—modelling the effect of
different growth conditions on an individual strain; model vari-
ants—describing the effect of genetic modifications, which can
act as designs in synthetic biology. In addition, model versions
are created by the correction of modelling errors.

For all such models, the overall dynamic behaviour is ex-
pected to be a flow of metabolites through the network between
the boundary conditions. Regarding metabolic networks, we are
interested in maintaining flow through the network, and ensur-
ing that all reactions and metabolites are sometimes active
under the conditions for maximal growth that the model
encodes.

A typical bacterium widely used both in modelling and ex-
perimentation is the K-12 strain of E. coli, which has >4000
genes, of which some 1400 are involved in metabolism [6].
When taking into account the compartmental structure of the
organism (periplasm; cytosol; extracellular space), this results
in a model comprising around 3000 reactions yielding about

4000 Petri net transitions, and the about 1200 unique metabol-
ites yield about 2300 metabolites (Petri net places) respecting
the compartmental structure. Although we can simulate and
analyse models of this size, we have chosen to use a smaller ex-
ample for illustration purposes in this article because it is easier
for the reader to reproduce the results. See ‘Discussion and con-
clusions’ section for a discussion of how our techniques scale
up to these large models.

Running example. We use a reduced version of the whole-
genome metabolism of E. coli K-12 as a running example, which
has been developed by Orth [11] to illustrate the basic structure
of metabolic networks and their use in metabolic engineering
(Figure 2). The reduction was originally done by hand [12] based
on an early version of a GEM for E. coli K-12 [13] and subse-
quently used for comparison with the results of an automated
procedure [14]. This model contains 94 reactions of which 46 are
reversible, divided into 10 subsystems, and 92 metabolites of
which 20 are boundary conditions; the corresponding Petri net
model comprises 180 transitions (94þ 46þ 2 � 20 boundary tran-
sitions) and 92 places.

The reduced model also contains a subset of the growth con-
ditions of the full model, seven of which comprise the cut-down
version of M9 used in the reduced model and are all activated
by default, including oxygen resulting in an aerobic environ-
ment (CO2, Hþ, H2O, D-glucose, ammonium, phosphate, O2). We
considered the model under different growth conditions, and
for simplicity, we report here two cases: the default seven min-
imal aerobic growth conditions (min-growth), and a version
(enhanced-growth), which additionally included four deacti-
vated sources that we selected to turn on (L-malate; L-glutam-
ine; fumarate; D-fructose). Our expectation was that more
metabolic reactions in the enhanced-growth model would be
active compared with the min-growth model based on the as-
sumption that there are pathways that are associated with spe-
cific nutritional sources.

Methods

In this section, we describe the elements of our workflow, which
starting from an SBML model enables behaviour analysis over
dynamic simulation traces; an overview is given in Figure 3.

Model preparation

There are several steps required in this stage, including three
which involve graph-based static analysis (3, 4 and 5).

Figure 1. Petri net building block for mass action equation describing basic en-

zymatic reaction.

Table 1. Analogies Petri nets—systems biology

Petri nets Systems biology

Place Metabolite
Transition Reaction
Arc weight Stoichiometry
Tokens Mass
Token number Concentrationa

Marking State
(Firing) rate Flux
Incidence matrix Stoichiometric matrixb

P-invariant Mass conserving subnet
Minimal T-invariant Elementary mode, extreme pathwayb

aUp to obvious normalization.
bUp to reversible reactions.
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(1) Rectifying typos: Assuming that models pass a standard
SBML check (sbml.org/validator), there may be errors such as
the incorrect naming of metabolites, usually by mixing them
up, for example by confusing metabolites with similar formulae
(e.g. H for H2O). Although these are hard to detect, there are
published approaches to achieve this, for example [20], and
these are not dealt with further in this article.

(2) Converting SBML into internal format: We first need to
ensure that the information regarding reversibility and bound-
ary conditions conforms to the SBML standard regarding the
use of the appropriate tags, which then allows the use of a
standard SBML converter to the required internal format.

(3) Identifying the main connected subgraph and deleting all
others: Models may contain disconnected subgraphs, possibly
because of gaps in knowledge. Disconnected subgraphs cannot
influence each other, and thus can be considered separately. In
the case that the model contains one dominating large compo-
nent, we remove any trivial small isolated subgraphs before
simulation. It is the case that structurally disconnected subnets
may be dynamically connected using for instance modifiers in
the context of kinetics. However, we make use of only those
parts of SBML, which typically occur in constraint-based mod-
els; these do not contain initialization of the metabolites or
kinetic information. Thus, the situation that there are discon-
nected subnets, which are dynamically connected, never occurs
in these models, which we consider. In general, disconnected
components can be an indication of gaps in the model; gap

filling is a large area in its own right; see [3] and references
therein, and is beyond the scope of this article.

(4) Rectifying source and sink places: That is, boundary pla-
ces, which have not been declared as boundary conditions, can
be because of modelling gaps or errors, precluding those source
places associated with growth conditions. These contradict the
expected basic behaviour of sustained flow through the network
under steady-state conditions. The ideal solution is to fill the
gaps; otherwise, possible solutions are to declare them as
boundary conditions, to delete them optionally with their asso-
ciated reactions or to reverse one of their immediately neigh-
bouring reactions.

Constraint-based methods implicitly ignore reactions, which
can never contribute to steady-state behaviour. We take a more
conservative approach, so that we do not generate a network
specialized to one specific growth condition.

(5) Initializing metabolite concentrations: For dynamic simu-
lation, we need to find appropriate initialization values for all
metabolites. In the case of metabolic networks, all initialization
values for metabolite concentrations are typically set to zero be-
cause the publicly available GEMs have been developed for FBA
analysis, which does not require them. Options are to assign
uniform values, impose some ratio over metabolite categories,
e.g. [2], or extract specific values from the literature. Either all
metabolites can be initialized to some non-zero value, or just
the minimal set identified by P-invariant analysis (mass
conservation).

Figure 2. Petri net representation of reduced E. coli K-12 GEM according to [12, 14]; layout generated with Snoopy [10]. Colour code: green: generated boundary transi-

tions, blue: reversible reactions, red: generated reverse direction for reversible reactions, yellow: P-invariants, pink: source places corresponding to the extra growth

conditions, which we switch on in enhanced-growth.

1170 | Gilbert et al.

Deleted Text: paper
Deleted Text: due to
Deleted Text: initialisation 
Deleted Text: , 
Deleted Text: paper
Deleted Text: i.e.
Deleted Text: due to
Deleted Text: steady 
Deleted Text: ,
Deleted Text: steady 
Deleted Text: specialised 
Deleted Text: <bold>Initialising</bold> 
Deleted Text: initialisation 
Deleted Text: initialisation 
Deleted Text: ,
Deleted Text: initialised 


A P-invariant defines a set of places, which induce a subnet
conserving metabolic mass, i.e. the total mass of the metabol-
ites in the subnet is constant. The (minimal) P-invariants of a
network are all those (minimal) sets of metabolites that contrib-
ute to the mass conservation of that network. Owing to this
conservation behaviour, P-invariants need to be initialized with
non-zero mass for dynamic simulation; otherwise, all reactions
with a substrate belonging to a mass-conserving subnet would
never be able to occur. The P-invariants provide the minimal set
of initialized metabolites required to obtain activity in the entire
network, and we use it in this work because this makes it easier
to distinguish between active and never-active subnets.
Initializing all metabolites, which is the common practice,
makes liveness analysis more cumbersome because non-
activity will take longer to emerge.

(6) Adding kinetic rates: All reactions need to have an associ-
ated kinetic rate to permit dynamic simulation. Kinetic rates are
typically state dependent and are described by kinetic laws, the
most basic of which is mass action. The mass action law is
defined by the mathematical product of the concentrations of
the substrates of a reaction and a reaction-specific kinetic rate
constant (also called a kinetic parameter). Note that kinetic
rates and kinetic rate constants are related, but different no-
tions; the former generally vary over time, while the latter are
always constant. Other laws are approximative kinetic abstrac-
tions, Michaelis–Menten [21] or linlog [22], which however are in
general not suitable for faithful stochastic simulation [23]. Thus,
we elect to use the basic mass-action law here as a universal il-
lustration. Because FBA analysis does not require these kinetic
rates, the kinetic laws and associated rate constants are typic-
ally not specified in GEMs. In this case, we assign mass action
laws to reactions, and some default rate constants. Options are

to set rate constants as arbitrary uniform values (e.g. 1), or uni-
form for different categories (transport, etc.), or via literature or
based on FBA values (however, there will be different steady-
state rates under different target conditions). This implies a
constant rate for inflow boundary conditions (as they do not
have any substrate).

Running example. We encountered one typo, which we cor-
rected, involving the reactions R_EX_h2o_e and R_EX_h_e,
where the metabolites for water and hydrogen as products were
incorrectly exchanged. Next, we added explicit SBML tags for
the boundary conditions, identified by the metabolite naming
convention, and adjusted the reversibility tag to be consistent
with flux bounds. There is only one connected subgraph and no
unintentional source or sink places.

There are five P-invariants involving 12 metabolites, com-
puted with Charlie [16] (Supplementary Data B). For simplicity,
we initialized all metabolites belonging to a P-invariant with the
same value.

In the same way as for the large models, the running ex-
ample did not contain reaction rate information, and we added
mass-action kinetics with parameter 1 by default to all reac-
tions. We used this model to test our techniques for behaviour
analysis, which we report below; it will be the subject of future
work to obtain differential rates by curation or optimization. A
particular issue of interest in this respect is the evolution of be-
havioural properties of networks and their constituent subnets,
with respect to reactions as well as metabolites over time.

Scalability. The only step in the preparation phase, which
can be time-consuming, is the computation of the P-invariants
because it is known that in the worst case, there can be expo-
nentially many in terms of the net size. However, in practice,
for these networks, the time required is manageable: computa-
tion of P-invariants for the running example on a standard
desktop computer requires <1 min, and 15 min for the full-size
E. coli K-12 GEM to detect 17 P-invariants involving 39
metabolites.

Model simulation

GEMs typically have an infinite state space, which precludes the
use of exact analysis methods that build on an exhaustive de-
scription of the state space [24]. An obvious choice is thus dy-
namic simulation, i.e. the generation of a representative (finite)
set of finite traces through the infinite state space.

Simulation efficiency. These large systems are highly stiff in
nature, which causes severe numerical problems for continuous
simulation of the set of ordinary differential equations induced
by a biochemical reaction network [2] and unacceptably long
runtimes for stochastic simulation algorithms (SSAs). For ex-
ample, Gillespie’s direct method [25] of the GEM for E. coli K-12
takes in the order of 90 min for 1 run of 1000 time points, or 62.5
days for 1000 runs on a single-core workstation; these figures
increase by about 50% for s-leaping SSA [26].

Discrete-time d-leaping [4] is a method that can be efficiently
applied even to large models, typically taking <1 s for 1 run or
close to 14 min for 1000 runs for a GEM. It converts the underlying
continuous-time Markov chain into an equivalent discrete-time
Markov chain and improves the efficiency via discrete-time
leaps, even though this results in an approximate simulation
method. In SSA, the firing frequency depends solely on the rates,
while in d-leaping, it is a binomially distributed random variable.
This means that for SSA, reactions with lower rates occur less
frequently than reactions with higher rates; reactions with low
rates (rare events) occur very infrequently, and are thus hard to

Model preparation for dynamic simulation
Rectifying typos

Converting SBML into internal format1
Identifying main connected subgraph and deleting all others2

Rectifying source and sink places2

Initialising metabolite concentrations2,3

Adding kinetic rates following the mass action law2

Model simulation (trace generation)
Model selection (strains, versions or variants)

Model configuration (selecting growth conditions)2

Simulator configuration (selecting solver, number of runs, simulation time and 
observation steps, observed variables), and execution1

Trace analysis
Over reactions, metabolites and subsystems for one or more models 

(strains, versions, variants, growth conditions)

     Simulative
model checking5

Whole systems
data analytics6

Subsystems 
data analytics6

Models

Traces

Figure 3. Workflow, exploiting the following tools: 1Snoopy [10], 2graph editing

routines in GNU Prolog [15], 3Charlie [16], 4Marcie [17], 5MC2 [18] and 6 R package

[19].
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observe. In principle, this holds for d-leaping too, but d-leaping is
much less sensitive to large differences in reaction rates (stiff
models) in terms of runtime, so it is able to perform more simula-
tion runs, and hence report more observations, than SSA in the
same execution time.

The discrete-time leap method is able to reproduce the dy-
namic behaviour (including the occurrence of switches, oscilla-
tions and tipping points) of a stochastic model comparable with
the Gillespie algorithm as long as the following condition is ful-
filled for all transitions t:

0 � htðmÞ
edtðmÞ

� d � 1;

where ht(m) stands for the transition’s rate and the edt(m) is its
enabledness degree. A violation of the condition in the above
equation would not lead to negative values or incorrect mark-
ings (states), i.e. in all cases, a marking is reached that is part of
the model’s state space. However, the temporal behaviour of
the model, simulated with d-leaping, would not coincide any-
more with the behaviour of exact SSAs. This may have two pos-
sible causes. First, the model’s timescale is smaller than the
chosen d, i.e. reducing the d would gain correct results.
Secondly, some transitions’ rate functions are not scaled cor-
rectly, i.e. stochastic reaction rates have to be scaled with re-
spect to their reaction order [27].

The discrete-time leap method is supported by Snoopy and
Marcie [17], both of which are publicly available at http://www-
dssz.informatik.tu-cottbus.de/DSSZ/Software/Software.

Types of traces. Traces are time series reporting the current
variable values at the nþ 1 time points si of a specified output
grid i¼ 0,. . .n, typically splitting the simulation time into n
equally sized time intervals. We consider two types of traces:

• Traces of metabolite concentrations, i.e. time series of the cur-

rent concentration of the metabolites at the specified time points

of the simulation run:

sðsiÞ : P! N, with sðs0Þ ¼ m0, that is, s(si) are place vectors over all

metabolite concentrations, indexed by the set of places P.
• Traces of reaction rates, i.e. time series of the number of occur-

rences, which each individual reaction had in total in the latest

time interval,

vðsiÞ : T ! N, with v(s0)¼ 0, that is, v(si) are transition vectors over

all reaction rates indexed by the set of transitions T.

Reading a reaction rate vector as Parikh vector immediately
leads us to the state equation specifying the relation between
both traces:

sðsiÞ ¼ sðsi�1Þ þ C � vðsiÞ; i ¼ 1 . . . n;

where C is the incidence matrix of a Petri net (Supplementary
Data A).

Thus, the metabolite trace can be derived from the rate
trace, but generally not vice versa. In the stochastic setting, the
reaction trace cannot be uniquely deduced from the metabolite
trace because of alternative and parallel reactions, which specif-
ically holds for individual traces. Therefore, we directly record
the reaction traces during simulation. Often, we consider aver-
aged traces to reduce stochastic noise, even though the average
of a set of stochastic traces is itself stochastic (except in the
case of that the number of traces is infinite). Thus, the individ-
ual values at each time point are non-negative real numbers in-
stead of natural numbers. When model checking, rare events
are more obvious in an averaged trace than in single traces.

Meta model. To facilitate simulating a model under various
conditions, we have implemented a meta model, which takes ad-
vantage of in-built parameter selection in the simulation engines
that we use—Marcie and Snoopy. This enables us to use one
model, which can be configured for simulation under different
conditions, rather than a set of model variants, one per condition
(e.g. aerobic/non-aerobic, min-growth/max-growth, typos-fixed/
typos-not-fixed). The meta model approach eliminates the dan-
ger of typographical errors, which can creep in when variants of a
model are created. See Supplementary Data C for more details.

Running example. The analysis techniques discussed in the
following were applied to d-leaping simulation traces averaged
over 1000 runs for 1000 time points to reduce the effects of bio-
logical noise, but they could also be applied to any kind of sto-
chastic or continuous traces. The window of 1000 time steps
has been determined pragmatically, based on a few initial ex-
ploratory simulations; there will always be a need to make a de-
cision about the length of the simulation. We consider the two
versions of the running example, min-growth and enhanced-
growth, focusing on the differences in their behaviours.

Scalability. We use d-leaping on the running example be-
cause of its scalability up to (unreduced) GEMs. The size of the
generated average trace file from simulating the GEM of E. coli
K-12 is 19 MB for reactions and 10 MB for metabolites, compared
with 600 and 300 KB, respectively, for the running example.
These traces are used in the model checking step for analysing
transient behaviour. Simulation times on a standard desktop
computer (four cores and eight threads) were 7 s for the running
example (1000 runs, 1000 time points and observations,
initialized with 100 tokens), and 184 s with the same conditions
for the E. coli K-12 GEM.

Simulative model checking

Basic principles. Model checking permits us to determine if a
model fulfils given properties specified in temporal logics, e.g.
probabilistic linear-time logic, PLTL [18]; see examples below. In
this research, we have used simulative model checking over
time series traces of metabolite and reaction behaviours. In
principle, this could be done over individual runs generated by a
stochastic model, yielding probabilistic results, or over one trace
averaging the individual runs—although this trace is still sto-
chastic, model checking it will return a Boolean result instead of
a probability. In this article, we use the latter approach, which
technically belongs to a non-probabilistic subset of PLTL. For
consistency with the model checker MC2 [18] that we used, we
give the properties in PLTL format, with the results belonging to
the set {0, 1} rather than in being in the range [0–1].

Model checking generally requires that the properties of
interest have to be known, often motivated by observations in
the wet lab, e.g. The concentration of metabolite A is always above a
certain threshold, let us say 10:

P�1½GðA > 10Þ �:

If one is not so sure about an appropriate threshold, one could
use the established concept of a free variable $x [28, 29], i.e. which
ranges over all possible values, to determine the probability dis-
tribution of the threshold, so that A fulfils the property:

P�1½GðA > $xÞ �:

In our setting, we do not know (yet) the PLTL properties cer-
tain observables (metabolites, reactions) are supposed to
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exhibit, which brings us to a new scenario, where we wish to
ask: Which variables fulfil a given property pattern?, expressed as:

P�1½Gð�y� > 10Þ �;

with «y» being a meta variable ranging over all entities (metab-
olites, reactions) in the model.

Properties of interest. We assume that there are generally
desired behavioural characteristics. Liveness is a well-established
notion for reactions (transitions) in Petri net theory. A reaction is
live if for any point in time it exhibits future activity, i.e. it occurs.
We extend this notion to metabolites (places): a metabolite is live
if for any point in time at least one of the reactions involving the
metabolite (as substrate or product) is live. A reaction network is
reaction-live if all reactions in the network are live. Likewise, a
network is metabolite-live if all metabolites in the network are
live. If a network is reaction-live, then it is metabolite-live, how-
ever, generally not vice versa. Thus, metabolite-liveness is less
strict than reaction-liveness for networks. A reaction is forever
dead from a point in time after which it never exhibits activity. A
metabolite is forever dead from a point in time after which all re-
actions involving the metabolite are dead.

The notions of liveness (respectively, deadness) above are
defined over infinite traces. In our case, because we are using
simulation generating finite traces, we need corresponding no-
tions over time windows, and this is what we call (reaction or
metabolite) activity. A reaction is dead over a period of time
from t1 to t2 if it does not exhibit any activity from t1 to t2.
Similarly, a reaction is active from t1 to t2 if it exhibits activity at
some point between t1 and t2. A metabolite is dead over a period
of time from t1 to t2 if all of the reactions involving the metabol-
ite are dead in the given time window, and a metabolite is active
over a period of time from t1 to t2 if at least one of the reactions
involving the metabolite is active in the time window.

Property libraries. A library of appropriate property patterns
now allows us to categorize all observables into (not necessar-
ily disjunctive) sets fulfilling the individual property patterns.
We compiled two such libraries of properties for reaction and
metabolite behaviour, which are provided in Supplementary
Data D accompanied by descriptions in natural language. The
properties were derived from our extensive experience in
model checking such models. We have previously used an
automated approach using machine learning over sets of ex-
amples [30]. In the current case, the properties are so general
that an automated approach is not fruitful, as it relies on the
selection strategy for the example set. Of course, the current
property libraries could be enhanced by automatically derived
properties, or hand-crafted properties specific to the set of
models under consideration.

One desired behavioural characteristic that we are inter-
ested in is that under conditions for maximal growth, all reac-
tions and metabolites are active over the period of the trace. In
the following, we give two examples from the reaction library,
which define dead behaviour. Note the use of the meta variable
«x», which ranges over all reactions.

(1) Never active reactions, i.e. always dead reactions:
P�1½Gð�x� ¼ 0 Þ �,

which is equivalent to P�1½ :Fð�x� 6¼ 0 Þ �:

(2) Reactions with changing activity and finally a steady state
of zero activity (d— differential operator):
P�1½ Fðdð�x�Þ 6¼ 0Þ ^ FðGð�x� ¼ 0 ^ dð�x�Þ ¼ 0ÞÞ �:

Running example. Model checking the min-growth and
enhanced-growth models, we found that the number of reac-
tions fulfilling property (1) reduced from 13 to 0, and for prop-
erty (2) from 94 to 4, confirming our earlier expectation that
more metabolic reactions in the enhanced-growth model would
be active compared with the min-growth model. A closer ana-
lysis revealed that these four are rare events. In the ‘Whole sys-
tem data analytics’ section, we introduce time blocks to better
distinguish between rare and zero events.

Subnets. We distinguish two categories: property subnets
are defined by sets of entities sharing a certain temporal logical
property, the composition of which can vary over time, unlike
functional subnets (subsystems), which are statically defined by
sets of reactions contributing to the same biological function.

In this article, we focus on a specific class of property sub-
nets, called dead subnets, which exhibit no activity from the
current time point onwards. The existence of such subnets can
be an indication of a modelling fault, missing information in the
network structure (e.g. gaps because of unidentified genes), or
unused parts of the network because of the set of environment
conditions imposed (e.g. the growth conditions).

There are two classes of dead subnets: reaction dead subnets
and metabolite dead subnets. A reaction dead subnet over a
period of time from t1 to t2 is induced by reactions (transitions),
which are dead over that period of time; it includes those reac-
tions and their substrates and products. At least one of the sub-
strates has to be dead, but not all the substrates and products
are necessarily dead because they can be involved in alternative
pathways. A metabolite dead subnet over a period of time from
t1 to t2 is induced by metabolites (places), which are dead over
that period of time; all reactions involving the metabolites are
dead in that time window.

A metabolite that is always from some point in time in a
steady state (a constant concentration of zero or above) can be
so because either (i) its production matches its consumption,
and these rates are non-zero, or (ii) it is neither produced nor
consumed. We are interested in the latter category, as they in-
duce dead subnets. A reaction that is in a steady state can be so
because either (i) it has a steady non-zero activity, and is ‘tick-
ing over’, or (ii) it is non-active, i.e. with zero activity. We are
particularly interested in the latter category because reactions
with zero activity belong to dead subnets, and we can directly
monitor/observe reaction activity over time. This justifies why
we are looking at reaction dead subnets because otherwise we
could not distinguish between the two cases of zero and non-
zero activity.

Running example. Figure 4 shows the development of the ac-
tive subnet over time for the min-growth and enhanced-growth
versions. Note that in the min-growth model, the active subnets
initially increase in extent but then decrease, whereas in the
enhanced-growth model, the active subnets increase over time
until they cover the entire network, possibly suggesting that
more than the minimal medium is required to maintain meta-
bolic activity according to this model.

Scalability. The library comprises 53 properties for metabol-
ites and 80 properties for reactions, 133 properties in total. The
MC2 model checker [18] requires 7.5 s to process the reaction li-
brary, 1.6 s for the metabolites library for the running example
(92 metabolites, 194 reactions) and 8 s (both metabolites and re-
actions) on a standard desktop computer. For the E. coli K-12
GEM (2133 metabolites, 4162 reactions), the time required is 2 m
3 s for reactions, 24 s for metabolites and 2 min 34 s for both
libraries. Checking a model over all properties in both libraries
is achieved using a script.
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In the following sections, we introduce methods to explore
the evolution of dead subnets, including the use of observers,
i.e. derived variables defined over the model variables, for ex-
ample the total number of dead reactions.

Whole system data analytics

Data analytics is a well-established field of research; it can be
applied to large data sets to identify trends, which may be
buried under the huge amount of data. These techniques

provide complementary insights, which are otherwise not obvi-
ous from the visual inspection or model checking over time ser-
ies; this is because of the size and complexity of the models in
terms of the number of reactions and metabolites.

Data analytics comprises a large number and huge variety
of techniques. In the following, we discuss our general approach
and a selection of techniques, which we found most applic-
able in our scenario, which are then applied to our running
example.

Figure 4. Dynamic simulation of the min-growth model (left column), and enhanced-growth model (right column); shown are snapshots at three time points—the be-

ginning, middle and end of the simulation, with the active reactions highlighted in blue. Snoopy was used to both automatically generate layouts, and reactions col-

oured using activity over reaction traces identified in each time window. These results clearly show that the model predicts under enhanced-growth conditions that

metabolic reaction activity increases over the time of simulation, while under min-growth conditions, the reaction activity decreases after an initial peak. This tem-

poral aspect of the transient behaviour can only be observed using dynamic simulation.
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(1) Clustering is a learning technique, often unsupervised,
for partitioning a set of entities, so that the entities in the same
partition (cluster) are more similar to each other than to those
in other partitions. This technique can be used to hierarchically
cluster the reaction rate traces as well as metabolite traces,
using, for example, Euclidean distance; see [31] for a survey of
clustering techniques for time series data. Distances can be cal-
culated over the raw data, or over derived values, e.g. deriva-
tives, which obviously might yield different clustering results.
We choose to illustrate clustering over raw stochastic data in
this article; otherwise, smoothing would be required to compute
meaningful derivatives.

(2) Time division blocks over traces and evolution of proper-
ties. To better investigate the evolution of properties over time,
we can introduce a level of abstraction by dividing the simula-
tion time into (equal) blocks. Each block can be seen as a mini
time series, and treated accordingly, e.g. by model checking or
clustering. Alternatively, values for the reaction and metabolite
activity can be summed or averaged within each block. Analysis
of these variables within the blocks can be achieved using a var-
iety of visualization methods, e.g. scatter plots, density plots
and bar charts. These are supported by the statistical package R
[19]; the ggplot2 [32] package can be used to generate plots.

Running example. For the purpose of the following quantitive
analyses, we have combined forward and reverse directions of

reversible reactions because we wish to focus on the total meta-
bolic flow carried out through the reactions in the network. For
this, we have computed the absolute value of the difference be-
tween the individual rates of the two directions.

(1) Clustering. We used this technique to hierarchically clus-
ter the reaction rate traces; see Figure 5 for the result for the
min-growth model, and applied the average silhouette width
measure [33] in the clValid R package [19] to identify the optimal
partition of the data set.

This yielded two clusters: (i) one cluster of 40 reactions com-
prising all boundary reactions plus some exchange and trans-
port reactions peaking at a maximum of 0.7 before reaching a
steady state at 0.5. which maintain their activity throughout the
simulation because they do not rely on the flow of metabolites
through the network, and (ii) a larger cluster of 94 reactions,
with a few members showing early high activity peaks, and
then all showing low activity after 400 time units because of the
minimal growth environment. Note that these clusters would
not be obtained easily using model checking because the sto-
chastic nature of the traces makes the detection of peaks and
general tendencies (e.g. ‘generally increasing’) difficult. For rea-
sons of space, we omit the same analysis for the enhanced-
growth model but do treat both versions below.

(2) Time division blocks over traces and evolution of proper-
ties. For illustration, we take four blocks (i.e. quarters). Our

Figure 5. Hierarchical clustering using Euclidean distance as dissimilarity measure of the min-growth model based on reaction activity traces; the dendrogram shows

two distinctive clusters of behaviour identified using the average silhouette width measure [33] in the clValid R package [19], which are illustrated in the consecutive

figures. (Left) A cluster of 40 reactions comprising all boundary reactions plus some exchange and transport reactions, which maintain their activity throughout the

simulation because they do not rely on the flow of metabolites through the network. (Right) A cluster of 94 reactions, which all reach a steady-state value of<0.02 oc-

currences per time unit early in the simulation because of the minimal growth environment.
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analysis shows that in the min-growth model, the number of
dead reactions increases over the time blocks, with by far the
greatest increase between quarter 1 and quarter 2. In the
enhanced-growth model, there is much less variation in activity
in the quarters, with a slight overall higher activity in quarter 2.
See the ordered average reaction activity of all reactions in the
scatter plot in Figure 6. We also found that there was a peak at
activity value 0.5 for all quarters for both model versions. These
are primarily the boundary transitions, responsible for the
inflow and outflow of the network; see the density plot in
Figure 7 showing how often the values of average reaction activ-
ity occur in the four time intervals. The density of low activity
reactions in the min-growth model is virtually identical in all
four quarters; only the first two quarters exhibit any dead reac-
tions in the enhanced-growth model as metabolism starts up,
although in general there is a progressive shift towards both
lower activity accompanied by mid-range activity as the system
stabilizes. The bar charts in Figure 8 show how the number of
reactions in each reaction category of zero, rare and non-rare
varies between the time blocks.

Scalability. None of the algorithms involved causes any scal-
ability issues.

Subsystem data analytics

Our general approach here comprises the following steps:
(1) Identifying subsystems using SBML annotations.
(2) Abstracting over reactions by representing subsystem be-

haviour by the averaged reaction activity of constituent reac-
tions to give a set of derived variables.

(3) Clustering the subsystems by their average behaviour
hierarchically using Euclidean distance and discrete wavelet
transform. We have found that dynamic time warping [34] is
too inefficient to be used in practice, not completing after 48 h
on a standard workstation.

(4) Clustering the subsystems according to the degree of
their structural inter-connectivity. For this, we defined a simi-
larity metric for hierarchical clustering over two subsystems
P and Q by

Xi¼n

i¼1

minðjXij; jYijÞ
jXi [ Yij

 !
=n;

where n is the number of connected subgraphs in the network
P � Q induced by the union of their reactions, and for each such
connected subgraph, X is the set of reactions in P and Y the set
of reactions in Q, respectively. The basis of the measure is that
two subsystems, which by their definition never overlap, can be

connected by shared metabolites to form a connected subgraph
induced by the union over their reactions. Note that in the case
of two disconnected subsystems, the similarity metric yields
zero because either jXij or jYij is zero in each subgraph.
Similarly, the highest possible value for similarity is 0.5 when
two equal size subsystems are being considered.

(5) Pairwise comparing the clusterings by behaviour and
structural inter-connectivity using two well-established meas-
ures: (i) the Fowlkes–Mallows (FM) index [35] over the dendro-
grams produced by hierarchical clustering, implemented in the
dendextend package in R [36], (ii) the Mantel test [37] over the
dissimilarity matrices, implemented in the ade4 package in R
[38], producing a correlation and corresponding P-value indicat-
ing the significance of the results.

Running example. To obtain a functional view of model be-
haviour for our running example, we investigated the effect on
subsystem behaviour of exposing the organism to enhanced-
growth conditions. As before, in the simulation traces that we
consider below, we have combined the rates of the forward and
reverse directions of reversible reactions.

(1) Subsystems identified from the SBML model with number
of reactions (ignoring reversibility) in brackets: citric acid cycle
(8), glutamate metabolism (4), glycolysis/gluconeogenesis (12),
oxidative phosphorylation (9), pentose phosphate pathway (8),
pyruvate metabolism (6), anaplerotic reactions (6), inorganic ion
transport and metabolism (2), exchange (20), and extracellular
transport (19).

(2) Abstracting over reactions. The way in which the growth
environment differentially affects subsystem behaviour is
shown in Figures 1 and 2 in Supplementary Data E which plot
the time series average activity of all reactions in a subsystem,
for all subsystems under minimal and enhanced-growth condi-
tions. In the case of all but one of the subsystems, the metabolic
activity is greatly suppressed under min-growth compared with
enhanced-growth conditions. The traces for inorganic ion trans-
port and metabolism exhibit no effective difference between
the two growth conditions, indicating that the two reactions
involved (ammonia reversible transport and phosphate revers-
ible transport via proton symport) make no contribution to the
metabolic activity of the system according to the current model.

(3) Clustering by subsystem average behaviour. Both
Euclidean distance and discrete wavelet transform [39] yielded
the same clusters, suggesting a robustness in the analysis for
these data; we present the Euclidean distance version in
Figure 9 for the enhanced-growth model and in Supplementary
Data E and Figure 3A for the min-growth model. Ignoring inor-
ganic ion transport and metabolism because of the finding in
the previous step, the result clearly shows that exchange and
oxidative phosphorylation are outliers in both conditions. This

Figure 6. Scatter plots of progression of average reaction activity over time blocks (quarters). (Left) Min-growth model, (Right) enhanced-growth model; in the min-

growth model, the number of dead reactions increases over the time blocks, whereas in the enhanced-growth model, there is less variation in activity in the quarters.

This is in accordance with the observations in Figure 4.
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can be explained by the fact that oxidative phosphorylation
generates ATP and thus powers, amongst other things, import/
export systems. Also, the major pathways are grouped within
one major cluster, together with extracellular transport.

(4) Clustering according to subsystem structural inter-con-
nectivity. As there was no difference between the min-growth
and enhanced-growth model in terms of reactions comprising

the subsystems, we have only computed one structural diagram
for subsystem structural inter-connectivity (Supplementary
Data E, Figure 3C). The clusters clearly show that the core meta-
bolic subsystems are closely interconnected in terms of metab-
olites, for example glutamate metabolism and the pentose
phosphate pathway are a closely related pair. Additionally, the
externally oriented reactions are clustered apart from the core
metabolic subsystems, with exchange and extracellular trans-
port more closely related than with inorganic ion transport and
metabolism, which itself is in between the externally oriented
reactions and the metabolic core.

(5) Pairwise comparison of the clusterings by behaviour
(both min-growth and enhanced-growth model) and structural
inter-connectivity. All three dendrograms are shown in
Supplementary Data E, Figure 3. The FM values, Mantel correl-
ation and Mantel P-value are shown in Table 2.

Comparison of the min-growth and enhanced-growth den-
drograms resulted in the highest FM index value of 1, which in-
dicates that there is significant evidence that the two trees are
similar. This conclusion is supported by the results of the
Mantel test because the observed correlation of 0.86 and P-value
of 0.01 with an associated cut-off alpha of 0.05 suggest that the
matrix entries have a strong positive linear association.

The low FM index values of 0.61 computed for behaviour
against structure comparisons (min-growth – structure and
enhanced-growth – structure) provide only weak evidence
against the null hypothesis that the two trees are dissimilar.
This is also supported by the results of the Mantel test, which

Figure 7. Variation in density of average reaction activity over time blocks (quarters). (Left) Min-growth model, (Right) enhanced-growth model. In both versions, as the

block time progresses, the activity of reactions gradually decreases. Zero values are not displayed because of log plotting. The results for the min-growth model show

that the density of low activity reactions is virtually identical in all four quarters. In contrast, under the enhanced-growth conditions, there is a progressive shift to-

wards lower activity over the four quarters. However, because of the log scale on the X-axis, these low activity reactions do not dominate the overall activity. In both

cases, the peaks at 0.5 correspond to the exchange and transport reactions; see Figure 5 (Left).

Figure 8. Comparison of variation in membership of reaction categories over time blocks (quarters). (Left) Min-growth model, (Right) enhanced-growth model.

Reactions have been categorized into zero, rare and non-rare based on their average reaction activity (activity¼0; 0<activity�0.01; activity>0.01). The number of

dead reactions in the min-growth model increases over the time blocks indicating the progression of deadness in the network, whereas the network remains alive in

the enhanced-growth model.

Figure 9. Hierarchical clustering of the subsystems in the enhanced-growth

model based on averaged activity traces per subsystem using Euclidean dis-

tance. For more details, see Figure 3 in the Supplementary Data.
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has a low correlation of 0.02 and 0.03 for the two conditions, re-
spectively, and corresponding higher P-values of >0.3 for both
comparisons.

In summary, both the FM index and Mantel test results sug-
gest that for these subsystems, min-growth and enhanced-
growth behaviours are related, while for both conditions, the
behaviour is not significantly related to structure using the
similarity metric defined above.

Scalability. None of the algorithms involved causes any scal-
ability issues.

Discussion and conclusions

The analysis of the dynamic behaviour of bacterial GEMs cur-
rently presents considerable challenges because of the difficul-
ties of simulating such large and complex networks. Moreover,
such models cannot be checked without sophisticated tool
support.

In this article, we have described a workflow comprising a
set of methods and associated tools to analyse the dynamic be-
haviour of whole-genome bacterial metabolic models, illustrat-
ing these on a reduced version for ease of reproducibility and
clarity. The workflow is applicable to full-scale GEMs, as illus-
trated by the discussion of scalability in the ‘Methods’ section.
The focus of the running example is the analysis of two config-
urations of the reduced model, to compare the effects of growth
conditions, with a special emphasis on reactions and functional
subsystems. We introduced abstract views, which provide com-
plementary insights, which are specifically useful for the differ-
ential behaviour analysis of sets of related models. In our
example, this enables us to correlate the effect of environmen-
tal conditions with pathway activity.

The ability to partition a whole-genome metabolic model
into its constituent subsystems facilitates the exploration of the
behaviour of a subsystem in isolation as well as in combination
with other subsystems. We generally expect to obtain different
behaviour and more meaningful insights when analysing path-
ways in context rather than in isolation; high connectivity can
compound this effect.

The models are currently not dynamically adaptive to envir-
onmental conditions in terms of changes in the expression of
genes coding for enzymes, and hence changes in the concentra-
tion of the corresponding enzymes. However, the models do en-
code the reactions catalysed by the enzymes, i.e. products of
gene regulation, for parts of the network that are activated be-
cause of environmental inputs, and hence in this sense do en-
code the relationship between environment, gene regulation
and metabolic activity. The concentration of the enzymes is
thus represented by the rate constants of the corresponding re-
actions. To incorporate dynamically changing availability of en-
zymes, the model would need to include dynamically changing
rate constants, or even better explicitly model the enzymes,
which is not done at present. The development of a model of
such a complex system connecting gene expression to enzyme

availability is an interesting topic, which has been explored by
e.g. [40]; however, that work used constraint-based methods for
the metabolic part, and Petri nets for gene regulation.

Our techniques to explore GEMs through transient behaviour
and structural characteristics gave us insights into the func-
tional behaviour of the GEM. The metabolic functional path-
ways become inactive early on in the min-growth model,
whereas all of them exhibited activity throughout the behaviour
of the enhanced-growth model. Structural analysis showed that
the core metabolic subsystems are closely interconnected in
terms of metabolites, while the externally oriented reactions
are remote from the core metabolic subsystems.

Our techniques can be applied to large whole-genome-scale
models, exploiting the scalability of our abstraction and ap-
proximation techniques. These are general approaches, and not
bound to Petri net representations; note that some of what is
done here with Snoopy or Marcie could be achieved with Copasi
[41], as long as we use standard simulation algorithms.
Moreover, the data analytics methods can be applied to any
kind of simulation traces, not just approximative ones. The ap-
proach can be used to compare the behaviour of sets of related
models, for example during model development, automatic re-
pair, manual curation or target-based optimization.

Our overall longer-term goal is to build on our workflow to
support the design process in synthetic biology and the sound
implementation of valuable engineered organisms. Our tools
are ready to be used for metabolic engineering as soon as we
have more precise kinetic information available. The deter-
mination of these is a challenge, which we are currently ad-
dressing. In the course of this, we intend to incorporate
constraint-based methods, for example to obtain steady-state
fluxes for the derivation of kinetic rate constants, along the
lines of [2, 42].

Model modification and configuration, and the behavioural
analysis induced by these models, will play a crucial role in pre-
dicting the results of genetic engineering or forced evolution in
the context of specific nutritional environments. Moreover, the
dynamic approach will play a crucial role in the characteriza-
tion and analysis of genome-scale signal transduction or gene
regulatory networks as reliable models increasingly become
available in the future.

Key Points

• Simulation of dynamic behaviour of large genome-scale
models.

• Analysis of dynamic behaviour of large genome-scale
models using model checking and data analytics.

• Analysis of the behaviour of functional subsystems.
• Workflow building on public domain tools, and support-

ing methodology.
• Illustrated on non-trivial public domain running

example.

Table 2. Three pairwise comparisons of clusterings, using the FM index [35] and the Mantel test [37]

Clustering 1 k Clustering 2 k FM Correlation P-value Relatedness

Min 3 Enhanced 3 1.00 0.86 0.01 Related
Min 2 Structure 2 0.61 0.02 0.32 Not related
Enhanced 2 Structure 2 0.61 0.03 0.33 Not related

Note: k, cut value; Correlation and P-value, Mantel test.
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Supplementary data are available at BIB online.
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