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Abstract: Listeria monocytogenes can survive in yogurt stored at a refrigeration temperature. Entero-
hemorrhagic Escherichia coli (EHEC) has a strong acid resistance that can survive in the yogurt with
a low pH. We estimated the risk of L. monocytogenes and EHEC due to yogurt consumption with
@Risk. Predictive survival models for L. monocytogenes and EHEC in drinking and regular yogurt
were developed at 4, 10, 17, 25, and 36 ◦C, and the survival of both pathogens in yogurt was predicted
during distribution and storage at home. The average initial contamination level in drinking and
regular yogurt was calculated to be −3.941 log CFU/g and −3.608 log CFU/g, respectively, and the
contamination level of both LM and EHEC decreased in yogurt from the market to home. Mean
values of the possibility of illness caused by EHEC were higher (drinking: 1.44 × 10−8; regular:
5.09 × 10−9) than L. monocytogenes (drinking: 1.91 × 10−15; regular: 2.87 × 10−16) in the susceptible
population. Both pathogens had a positive correlation with the initial contamination level and
consumption. These results show that the foodborne illness risk from L. monocytogenes and EHEC
due to yogurt consumption is very low. However, controlling the initial contamination level of EHEC
during yogurt manufacture should be emphasized.

Keywords: Listeria monocytogenes; enterohemorrhagic Escherichia coli; yogurt; quantitative microbial
risk assessment

1. Introduction

Yogurt is a dairy product fermented by Streptococcus thermophilus and Lactobacillus
bulgaricus [1]. Yogurt provides probiotics known to be beneficial bacteria that can promote
health. Worldwide, the consumption of probiotics and yogurt is increasing every year [2–4].

Pathogenic Escherichia coli (E. coli) are a group of facultative anaerobes that can cause
diseases in healthy individuals with a combination of certain virulence factors, including
adhesins, invasins, toxins, and capsules. Pathogenic E. coli are classified into six pathotypes
based on clinical, epidemiological, and virulence traits: enteropathogenic E. coli (EPEC),
enteroaggregative E. coli (EAEC), diffusely adherent E. coli (DAEC), enterotoxigenic E. coli
(ETEC), enteroinvasive E. coli (EIEC) and enterohemorrhagic E. coli (EHEC) [5]. EPEC
(60.5%) is the primary cause of pathogenic E. coli outbreaks in Korea, followed by ETEC
(31.2%), EHEC (6.8%), and EIEC (1.5%) [6]. Among them, EHEC can cause diarrhea
with a mechanism of attaching-effacing (A/E) lesions with only a low infectious dose
(1–100 CFU) [7]. EHEC has strong acid resistance that can make it viable in food with a
low pH [8]. Morgan et al. [9] reported 16 cases of E. coli O157:H7 Phage Type 49 due to the
consumption of a locally produced yogurt occurring in the northwest of England in 1991.
In a study by Cutrim et al. [10], E. coli O157:H7 was shown to survive for 10 days in both
traditional inoculated yogurt and pre-hydrolyzed inoculated yogurt, whereas its survival
increased to 22 days in lactose-free yogurt. The populations of E. coli O157:H7 decreased by
only about 1.4 log CFU/g after 28 days in Greek-style yogurt [11].

Listeria monocytogenes (LM) are facultatively anaerobic opportunistic pathogens that
can grow between 0 and 45 ◦C; optimal growth occurs at 30~37 ◦C [12]. It can grow at
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pH 4–9.6 [13]. Listeriosis is caused by LM, which can cross the intestinal barrier and spread
to lymph and blood to reach target organs such as the liver and spleen. Moreover, LM
can be fatal to immunocompromised individuals, newborns, older adults, and pregnant
women since LM can penetrate the blood–brain barrier or the fetoplacental barrier [14,15].
The approximate infective dose of LM is estimated to be 10 to 100 million CFU in healthy
hosts and only 0.1 to 10 million CFU in individuals at high risk of infection [16]. In the US,
a significant number of LM outbreaks are caused by raw milk, unpasteurized milk, cheeses,
and ice cream [17]. Improper management of pasteurization temperature or technical
imperfections can lead to the contamination of dairy products [18].

Risk assessment can estimate the probability of occurrence and severity of adverse ef-
fects in humans exposed to foodborne hazards [19]. Quantitative microbial risk assessment
(QMRA) provides numerical estimates of risk exposure to identify which factors affect the
exposure [20]. QMRA consists of hazard identification, hazard characterization, exposure
assessment, and risk characterization [19]. Hazard identification is the step that identifies
the presence of microorganisms or microbial toxins in a particular food based on the sci-
entific literature. In the hazard characterization step, it is possible to perform qualitative
and quantitative assessments of the adverse effects of consuming food contaminated by
microorganisms [21]. Exposure assessment is the process that characterizes the level of
hazard exposed to the population [22]. The final step of QMRA is risk characterization
that provides the possibility of illness/person/day of pathogens when consuming contami-
nated food [21]. A risk assessment study of Staphylococcus aureus in milk and homemade
yogurt was reported in Ethiopia [23]. Results showed the importance of traditional food
preparation methods, such as fermentation, in risk mitigation; yogurt, traditional milk
fermentation, reduced the risk by 93.7%. QMRA of LM and enterohemorrhagic E. coli in
yogurt has not been reported yet. Therefore, the objective of this study was to conduct a
microbial risk assessment for L. monocytogenes and enterohemorrhagic E. coli to compare
their risks in drinking and regular yogurt.

2. Materials and Methods
2.1. Prevalence and Initial Contamination Level in an Offline Market

To derive prevalence (PR) data of LM and EHEC in yogurt by season and location,
results of yogurt monitoring (195 drinking yogurts and 90 regular yogurts) were used [24].
LM and EHEC were identified with methods as described in the Korean Food Code [25].
The distribution of PR was fitted using Beta distribution (α, β), with α meaning “number of
positive samples+1” and β meaning “number of total samples-number of positive samples
+1” [26]. Initial contamination levels of LM and EHEC were estimated using the equation
[Log (-ln(1-PR)/weight)] of Sanaa et al. [27].

2.2. Physicochemical and Microbiological Analyses of Yogurt

Ten products of two types of yogurt (drinking and regular) were purchased from an
offline market. The pH, water activity (Aw), total aerobic bacteria, coliform, and E. coli were
measured. Briefly, 10 g of sample was aseptically placed in a stomacher bag with 90 mL of
distilled water and homogenized with a stomacher (Interscience, Paris, France). The pH
was measured with a pH meter (OrionTM Star A211, ThermoFisher Scientific Co., Waltham,
MA, USA). The Aw of each sample (15 g) was measured in triplicate using a water activity
meter (Rotronic HP23-AW-A, Rotronic AG, Bassersdorf, Switzerland). To measure total
aerobic bacteria (AC), coliform, and E. coli (EC), 25 g of sample was homogenized with
225 mL of 0.1% sterile peptone water (BD, Sparks, MD, USA) and serially diluted 10-fold
with 0.1% peptone water. After inoculating 1 mL aliquot of each dilution onto two or more
sheets of 3M Petrifilm E. coli/Coliform Count Plate (3M corporation, St. Paul, MN, USA),
AC and EC plates were incubated at 36 ± 1 ◦C for 48 h and 24 h, respectively.
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2.3. Strain Preparation

An LM strain isolated from the gloves of a slaughterhouse worker [28] was stored
in tryptic soy broth (TSB, MB cell, Seoul, Korea) containing 0.6% yeast extract with 20%
glycerol (Duksan, South Korea) at −80 ◦C. After thawing at ambient temperature, 10 µL of
LM inoculum was added into 10 mL of TSB containing 0.6% yeast extract and then cultured
at 36 ± 1 ◦C for 24 h in a 140 rpm rotary shaker (VS-8480, Vision Scientific, Daejeon, Korea).

E. coli (EHEC) strains (NCCP 13720, 13721) including E. coli O157:H7 (NCTC 12079)
were obtained from the Ministry of Food and Drug Safety (MFDS) in Korea. After thawing
frozen strains that were stored at −80 ◦C, they were cultured in the same way as described
above. All strains were centrifuged at 4000 rpm for 10 min (VS-550, Vision Scientific,
Daejeon, Korea) and the supernatant was removed. Pellets were harvested by centrifugation
(4000 rpm for 10 min), washed with 10 mL of 0.1% peptone water, and resuspended with
0.1% peptone water to a final concentration of approximately 9.0 log CFU/mL.

2.4. Sample Preparation and Inoculation

For model development, the popularity of yogurt samples and results of physicochem-
ical (high pH value) and microbiological analyses of yogurt were considered. Drinking
and regular yogurt were purchased from an offline market (Seoul, Korea) and aseptically
divided into 30 mL and 10 g, respectively, into 50 mL conical tubes (SPL Life Science Co.,
Daejeon, Seoul). LM and the cocktail of E. coli strains were independently inoculated into
drinking (4~5 log CFU/g) and regular yogurts (5~6 log CFU/g). Each sample was then
stored at 4, 10, 17, 25, and 36 ◦C until no colonies were detected for up to 21 days. At a
specific time, each yogurt sample was homogenized with sterilized 0.1% peptone water for
120 s using a stomacher. Then 1 mL of the aliquot of the homogenate was serially diluted
ten-fold with 0.1% peptone water and spread onto PALCAM agar (Oxoid, Basingstoke,
Hampshire, UK) for LM and EMB agar (Oxoid, Basingstoke, Hampshire, UK) for EHEC,
which were incubated at 36 ± 1 ◦C for 24 h to analyze the change in pathogen populations.

2.5. Development of Primary and Secondary Model

The Weibull model [29] (Equation (1)) and GinaFit V1.7 program [30] were used to
develop the primary survival model of yogurt as a function of temperature. Delta value
(time for the first decimal reduction) and p-value (shape of graph) were then calculated.

Weibull equation : Log(N) = Log(N0)−
(

t
delta

)p
(1)

N0: log initial number of cells
t: time
delta: time for the first decimal reduction
p: shape (p > 1: concave downward curve, p < 1: concave upward curve, p = 1: log-linear)
From results obtained through the primary predictive model, the secondary model

was developed by applying the third-order polynomial model (Equation (2)) to delta values
of both LM and EHEC as a function of temperature.

Third− order polynomial model : Y = b0 + b1 × T + b2 × T2 + b3 × T3 (2)

Y: delta (d)
b0, b1, b2, b3: constant
T: temperature

2.6. Validation

To verify the applicability of the predictive model of LM, the delta value was obtained
with temperatures not used for model development in this study, which was 7 ◦C for
drinking yogurt and 13 ◦C for regular yogurt (interpolation). The predictive model of EHEC
was verified with enteropathogenic (EPEC) strain (extrapolation), which was detected in
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a dairy farm [24]. The root mean square error (RMSE; Equation (3)) [31] was used as a
measure of applicability:

RMSE =

√
1
n
×∑(observed value− predicted value)2 (3)

n: the total number of experimental values (values obtained from independent vari-
ables) or predicted values (values obtained from the developed survival model).

2.7. Development of Scenario from Market to Home

The exposure assessment scenario for the risk assessment of yogurt was divided into
three stages: “market storage”, “transportation to home”, and “home storage”.

The storage temperature of yogurt in the market was investigated for an offline market,
which was used as an input variable into an Excel (Microsoft@ Excel 2019, Microsoft Corp.,
USA) spreadsheet. PERT distribution was confirmed as the most suitable probability
distribution model using @RISK 7.5 (Palisade Corp., Ithaca, NY, USA). The minimum,
mode, and maximum values of storage temperature were 2.1, 7, and 9.7 ◦C, respectively.
Storage time was also input based on the shelf-life of yogurt. The PERT distribution was
confirmed as the most suitable model using @RISK 7.5 (Palisade Corp., Ithaca, NY. USA).
The minimum, mode, and maximum values of storage time were 0, 240, and 312 h for
drinking yogurt and 0, 240, and 480 h for regular yogurt, respectively.

At the stage of transporting from market to home, the pert distribution was applied
to transportation time and temperature according to Jung [32]. Values of minimum (0.325 h,
10 ◦C), mode (0.984 h, 18 ◦C), and maximum (1.643 h, 25 ◦C) time and temperature were applied.

According to data from the MFDS [33], 69.2% of respondents answered that the
most frequent storage period for milk was 2–3 days at the refrigeration temperature and
the maximum storage period was 30 days or more. As a result, RiskPert (0, 60, 720 h)
distribution was input in the scenario and a RiskLogLogistic (−10.407, 13.616, 8.611)
distribution was used as the storage temperature [34].

2.8. Estimation of Consumption Data of Yogurt

The appropriate probability distribution model for consumption amount and intake
rate of yogurt was confirmed using data from “Estimation of amount and frequency
of consumption of 50 domestic livestock and processed livestock products” from the
MFDS [35].

2.9. Hazard Characterization

For hazard characterization, the exponential model was used for the dose–response
model of LM [36] (Equation (4)) and the Beta-Poisson model [37] was used for the dose–
response model of EHEC (Equation (5)):

p = 1− exp(r × N) (4)

P: the probability of foodborne illness for the intake of LM
r: the probability that one cell can cause disease (susceptible population: 1.06 ×10−12,

general population: 2.37×10−14)
N: the number of cells exposed to the consumption of LM

P = 1−
(

1 +
N
β

)−α

(5)

P: the probability of foodborne illness for the intake of EHEC
N: the consumption dose of EHEC
α: constant (0.49)
β: constant (1.81 × 105)
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2.10. Risk Characterization

To estimate the probability of foodborne illness per person per day for the intake
of drinking and regular yogurt contaminated by LM or EHEC, formulas and inputs of
exposure scenarios were written in an Excel spreadsheet. The risk was then calculated
through a Monte Carlo simulation of @RISK. Median Latin hypercube sampling was
used for sampling type, and a random method was used for generator seed. Finally, the
correlation coefficient was calculated based on sensitivity analysis results to analyze factors
affecting the probability of occurrence of foodborne illness.

2.11. Statistical Analysis

All experiments were repeated at least three times. All statistical analyses were
performed using SAS version 9.4 (SAS Institute Inc., Cary, NC, USA). To describe significant
variations of delta values between LM and EHEC at the same temperature, a t-test was
used. Differences were considered significant at p < 0.05.

3. Results and Discussion
3.1. Prevalence and Intial Contamination Level in an On- an Offline Market

As a first step in the exposure assessment, initial contamination levels for LM and
EHEC were analyzed for drinking yogurt (n = 195) and regular yogurt (n = 90) pur-
chased from on and offline markets in Korea. LM and EHEC were not detected in any
samples [24]. The average contamination level was calculated using the equation [Log
(−ln(1−PR)/weight)] by Sanaa et al. [27]. The average initial contamination level of both
LM and EHEC was −3.941 log CFU/g in the drinking yogurt and −3.608 log CFU/g in the
regular yogurt (Figure 1).
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3.2. Development of Primary and Secondary Predictive Model

The primary models of LM and EHEC in yogurt are shown in Figure 2. Secondary
predictive models of delta values for LM and EHEC and equations are shown in Figure 3.
Delta values of LM at 4, 10, 17, 25, and 36 ◦C were 20.31, 7.16, 2.15, 1.81, and 0.62 days
in drinking yogurt and 9.04, 4.76, 1.89, 0.66, and 0.14 days in regular yogurt, respectively.
Delta values of EHEC at 4, 10, 17, 25, and 36 ◦C were 67.61, 38.31, 13.42, 5.51, and 1.42 days
in drinking yogurt and 14.93, 10.41, 8.21, 2.23, and 0.42 days in regular yogurt, respectively
(Table 1). The delta value corresponds to the time for the first decimal reduction of the
surviving populations of LM and EHEC. Overall, the higher the temperature, the lower
the delta value, indicating that survival of LM and EHEC is better in yogurt stored at
refrigeration temperature. Lactic acid bacteria (LAB) activity in yogurt increases as the
temperature increases. Thus, the viability of LM and EHEC can be decreased. LAB can
produce large amounts of organic acids and lower the pH value [38]. Some LAB can
also produce bacteriocins and bacteriocin-like compounds to inhibit pathogens [39]. The
temperature can affect the growth of LAB, and LAB isolated from Calabrian cheeses can
inhibit the growth of LM in soft cheese [40]. LAB has the highest specific growth rate at
42–44 ◦C, the optimum growth temperature for LAB [41]. LAB starters can reduce the
survival ability of EHEC in kimchi [42]. Bachrouri et al. [43] have reported that the viability
of E. coli O157:H7 decreased as the temperature increased and E. coli O157:H7 is more
resistant to death than nonpathogenic E. coli at 4 and 8 ◦C. The survival ability of LM is
drastically decreased at 15 ◦C, but not significantly changed at 3~12 ◦C [44].

This work also noticed that LM and EHEC died faster in regular yogurt than in
drinking yogurt due to the lower pH of regular yogurt (4.14 ± 0.02) than drinking yogurt
(4.60 ± 0.02). This result is consistent with the study of Millet et al. [45], showing that
low pH can decrease the growth of LM in raw-milk cheese. Guraya et al. [46] have also
suggested that the viability of EHEC is drastically decreased in yogurt with pH below
4.1. Additionally, drinking yogurt has higher water activity (0.961 ± 0.001) than regular
yogurt (0.943 ± 0.002) in this work. The Aw is the availability of the water in the product
for microbes, and the higher the Aw, the better microorganism can survive. At 10 ◦C, the
highest survival ability of EHEC was observed in drinking yogurt, followed by EHEC in
regular yogurt, LM in drinking yogurt, and LM in regular yogurt (Figure 2). Overall, EHEC
survived better than LM at especially low temperatures, regardless of the kind of yogurt in
this work (Figure 3).
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EHEC 5.51 ± 0.12 * 4.09 ± 0.21 2.23 ± 0.01 * 2.84 ± 0.03 

36 
LM 0.62 * 2.83 ± 0.03 0.14 * 1.17 ± 0.06 

EHEC 1.42 * 3.90 ± 0.05 0.42 ± 0.04 * 2.57 ± 0.33 
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Table 1. Survival kinetic parameters of Listeria monocytogenes (LM) and EHEC in yogurt 1.

Temperature
(◦C) Pathogens

Drinking Regular

Delta (Day) 2 p 3 Delta (Day) p

4 LM 4 20.31 ± 0.20 * 0.73 9.04 ± 0.13 * 1.07 ± 0.07
EHEC 5 67.61 ± 1.92 * 1.25 ± 0.01 14.93 ± 1.20 * 1.12 ± 0.06

10 LM 7.16 * 3.1 ± 0.08 4.76 ± 0.08 * 6.88 ± 0.44
EHEC 38.31 ± 0.37 * 1.45 ± 0.01 10.41 ± 0.71 * 1.45 ± 0.12

17 LM 2.15 ± 0.01 * 2.27 ± 0.03 1.89 ± 0.06 * 3.32 ± 0.08
EHEC 13.42 * 1.35 ± 0.08 8.21 ± 0.11 * 4.17 ± 0.16

25 LM 1.81 ± 0.03 * 4.43 ± 0.21 0.66 * 1.98 ± 0.02
EHEC 5.51 ± 0.12 * 4.09 ± 0.21 2.23 ± 0.01 * 2.84 ± 0.03

36 LM 0.62 * 2.83 ± 0.03 0.14 * 1.17 ± 0.06
EHEC 1.42 * 3.90 ± 0.05 0.42 ± 0.04 * 2.57 ± 0.33

1 Values are expressed as mean ± SD (n = 3). 2 Delta: Time for 1 log reduction. 3 p: Shape of graph. 4 LM: Listeria
monocytogenes. 5 EHEC: Enterohemorrhagic Escherichia coli. * Significant difference of delta values was observed
between LM and EHEC at the same temperature by t-test at p < 0.05.
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3.3. Validation

RMSE value is one of the parameters that can estimate the accuracy of the predictive
model, and it was used to calculate the suitability of the model. The predictive model can
be considered perfect if RMSE values are close to zero [47]. According to the study of model
development using the Weibull model in heat-stressed E. coli O157:H7 and L. monocytogenes
in kefir, RMSE values ranged from 0.13 to 0.52 in E. coli O157:H7 and 0.06 to 0.82 in
L. monocytogenes [48]. The RMSE value calculated from the estimated data of LM was 0.185
in drinking yogurt and 0.115 in regular yogurt for interpolation. The RMSE value of EPEC
was 1.079 in drinking yogurt and 1.001 in regular yogurt for extrapolation. As a result, the
developed models in this study were judged to be appropriate to predict the survival of
LM, EHEC, and EPEC in drinking and regular yogurt.

3.4. Change in Contamination Level of Listeria Monocytogenes and EHEC from Market to Home

The average contamination level of LM decreased −4.396 log CFU/g in drinking
yogurt and −7.965 log CFU/g in regular yogurt at the market. The average contamination
level of drinking yogurt during transportation from market to home was slightly decreased
to −4.396 log CFU/g, and there was no change in regular yogurt. It was further decreased
−5.00 log CFU/g for drinking yogurt and −10.25 log CFU/g for regular yogurt during
storage at home before consumption.

The initial contamination level of EHEC was the same as that of LM. The contamination
level of EHEC was −3.957 log CFU/g in drinking yogurt and −4.244 log CFU/g in regular
yogurt at the market, which was maintained when yogurt was transported from market
to home. The contamination level decreased −3.969 log CFU/g in drinking yogurt and
−4.71 log CFU/g in regular yogurt before consumption at home. The contamination level
of both LM and EHEC decreased in yogurt from the market to home because both pathogens
cannot grow in yogurt, regardless of the type of yogurt. In this work, a more rapid decrease
of contamination level of LM was observed than EHEC in regular yogurt.

Hu et al. [49] observed that organic acid produced from Lactobacillus plantarum iso-
lated from traditional dairy products (kumis, milk thistle, yogurt) exhibits antimicrobial
activity against pathogenic bacteria. They found that different proportions of organic acid
(primarily lactic and acetic acid) show different antimicrobial activity against pathogenic
bacteria. The difference in the proportion of organic acid between drinking and regular
yogurt may affect the behavior of pathogens in yogurt.

3.5. Consumption Data of Yogurt

The consumption amount and intake rate of yogurt are shown in Figure 4. As a result
of fitting the distribution with @Risk, the RiskLaplace model was found to be the most
suitable. Daily average consumption amounts of drinking yogurt and regular yogurt were
140 g and 97.046 g, respectively. Intake rates for drinking yogurt and regular yogurt were
calculated to be 0.184 and 0.146, respectively. It could be concluded that the consumption
of drinking yogurt was higher than that of regular yogurt.
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3.6. Hazard Characterization and Risk Characterization

Final risks of LM and EHEC in yogurt were analyzed by separating susceptible
population and general population using contamination level, consumption data, and dose–
response model derived according to the scenario of the market to home (Tables 2 and 3).
As a result, no risk was estimated for the general group due to LM. However, the probability
risk of foodborne illness due to LM was 1.91× 10−15 in drinking yogurt and 2.87× 10−16 in
regular yogurt for susceptible populations per day. It is concluded that the risk of listeriosis
is very low with yogurt consumption. The risk assessment result on LM in milk [36]
demonstrates that the risk of milk consumption is also low (5.0 × 10−9 cases per serving).

Table 2. Simulation model and formulas in the Excel spreadsheet used to calculate the risk of Listeria
monocytogenes (LM) in drinking and regular yogurt with @RISK.

Symbol Unit Definition Formula Reference

Product

PR
Prevalence of LM in drinking

yogurt =RiskBeta(1, 196)
MFDS [24]

Prevalence of LM in regular
yogurt =RiskBeta(1, 91)

CL CFU/g Contamination level of LM =−LN(1 − PR)/25
Sanna et al. [27]IC log CFU/g Initial contamination level =Log(CL)
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Table 2. Cont.

Symbol Unit Definition Formula Reference

Market

MTime h Storage time in market of
drinking yogurt =RiskPert(0, 240, 312)

MFDS [24]Storage time in market of
regular yogurt =RiskPert(0, 240, 480)

MTemp
◦C Storage temperature in

market =RiskPert(2.1, 7, 9.7)

Death

Delta h
Drinking yogurt

=823.8 + (−100.8) ×MTemp +
4.177 ×MTemp

2 + (−0.0556) ×
MTemp

3

This research

Regular yogurt
=315.1 + (−27.57) ×MTemp +

0.8396 ×MTemp
2 + (−0.0087) ×

MTemp
3

p Drinking yogurt =2.67 (Fixed)
Regular yogurt =2.882 (Fixed)

LM survival
model log CFU/g C1 =IC − (MTime/delta)p

Transportation to home

TTime h Storage time during
transportation =RiskPert(0.325, 0.984, 1.643) Jung [32]

TTemp
◦C Storage temperature during

transportation =RiskPert(10, 18, 25)

Death

Delta h
Drinking yogurt

=823.8 + (−100.8) × TTemp +
4.177 × TTemp

2 + (−0.0556) ×
TTemp

3

This research

Regular yogurt
=315.1 + (−27.57) × TTemp +

0.8396 × TTemp
2 + (−0.0087) ×

TTemp
3

p Drinking yogurt =2.67 (Fixed)
Regular yogurt =2.882 (Fixed)

LM survival
model log CFU/g C2 =C1-(TTime/delta)p

Home

HTime h Storage time until
consumption =RiskPert(0, 60, 720) MFDS [33]

HTemp
◦C Storage temperature until

consumption
=RiskLogLogistic(−10.407,

13.616, 8.611) Bahk [34]

Death

Delta h
Drinking yogurt

=823.8 + (−100.8) × HTemp +
4.177 × HTemp

2 + (−0.0556) ×
HTemp

3

This research

Regular yogurt
=315.1 + (−27.57) × HTemp +

0.8396 × HTemp
2 + (−0.0087) ×

HTemp
3

p Drinking yogurt =2.67 (Fixed)
Regular yogurt =2.882 (Fixed)

LM survival
model log CFU/g C3 =C2 − (HTime/delta)p
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Table 2. Cont.

Symbol Unit Definition Formula Reference

Consumption

Consume (Daily consumption average
amount)

Drinking yogurt =RiskLaplace(150, 22.833)

Park et al. [35]
Regular yogurt =RiskLaplace(100, 10.027)

Intake rate(Distribution for
consumption frequency)

Drinking yogurt =0.184(Fixed)
Regular yogurt =0.146(Fixed)

Amount
Daily consumption average

amount considered
frequency

=Consume × Intake rate

Dose-Response model

Dose(D) LM amount =10C3 × Amount

1-EXP(-r × D) Parameter of r
=1.06 × 10−12 (Susceptible

population) FDA/WHO [36]
=2.37 × 10−14 (General

population)

Risk Characterization

Risk Probability of
illness/person/day =1 − exp(−r × D) FDA/WHO [36]

Table 3. Simulation model and formulas in the Excel spreadsheet used to calculate the risk of EHEC
in drinking and regular yogurt with @RISK.

Symbol Unit Definition Formula Reference

Product

PR
Prevalence of EHEC in

drinking yogurt =RiskBeta(1, 196)
MFDS [24]

Prevalence of EHEC in regular
yogurt =RiskBeta(1, 91)

CL CFU/g Contamination level of EHEC =−LN(1 − PR)/25
Sanna et al. [27]IC log CFU/g Initial contamination level =Log(CL)

Market

MTime h Storage time in market of
drinking yogurt =RiskPert(0, 240, 312)

MFDS [24]Storage time in market of
regular yogurt =RiskPert(0, 240, 480)

MTemp
◦C Storage temperature in market =RiskPert(2.1, 7, 9.7)

Death

Delta h
Drinking yogurt

=2347 + (−201.9) ×MTemp + 6.044
×MTemp

2 + (−0.0616) ×MTemp
3

This research
Regular yogurt

=391.7 + (−8.478) ×MTemp +
(−0.4534) ×MTemp

2 + (−0.0109) ×
MTemp

3

p Drinking yogurt =2.406 (Fixed)
Regular yogurt =2.429 (Fixed)

EHEC survival
model log CFU/g C1 =IC − (MTime/delta)p

Transportation to home

TTime h Storage time during
transportation =RiskPert(0.325, 0.984, 1.643) Jung [32]

TTemp
◦C Storage temperature during

transportation =RiskPert(10, 18, 25)
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Table 3. Cont.

Symbol Unit Definition Formula Reference

Death

Delta h
Drinking yogurt

=2347 + (−201.9) × TTemp + 6.044
× TTemp

2 + (−0.0616) × TTemp
3

This research
Regular yogurt

=391.7 + (−8.478) × TTemp +
(−0.4534) × TTemp

2 + (−0.0109) ×
TTemp

3

p Drinking yogurt =2.406 (Fixed)
Regular yogurt =2.429 (Fixed)

EHEC survival
model log CFU/g C2 =C1 − (TTime/delta)p

Home

HTime h Storage time until
consumption =RiskPert(0, 60, 720) MFDS [33]

HTemp
◦C Storage temperature until

consumption
=RiskLogLogistic(−10.407, 13.616,

8.611) Bahk [34]

Death

Delta h
Drinking yogurt

=2347 + (−201.9) × HTemp + 6.044
× HTemp

2 + (−0.0616) × HTemp
3

This research
Regular yogurt

=391.7 + (−8.478) × HTemp +
(−0.4534) × HTemp

2 + (−0.0109) ×
HTemp

3

p Drinking yogurt =2.406 (Fixed)
Regular yogurt =2.429 (Fixed)

EHEC survival
model log CFU/g C3 =C2 − (HTime/delta)p

Consumption

Consume (Daily consumption
average amount)

Drinking yogurt =RiskLaplace(150, 22.833)

Park et al. [35]
Regular yogurt =RiskLaplace(100, 10.027)

Intake rate(Distribution for
consumption frequency)

Drinking yogurt =0.184(Fixed)
Regular yogurt =0.146(Fixed)

Amount Daily consumption average
amount considered frequency =Consume × Intake rate

Dose-Response model

Dose(D) EHEC amount =10C3 × Amount

Model
Parameter of α =0.49

Park et al. [37]
Parameter of β =1.81 × 105

Risk characterization

Risk Probability of
illness/person/day =1 − (1 + D/β)−α Park et al. [37]

By contrast, this was calculated to be 1.44 × 10−8 in drinking yogurt and 5.09 × 10−9

in regular yogurt with EHEC (Table 4). The risk of foodborne illness from both pathogens
was higher from drinking yogurt due to its higher survival ability than regular yogurt.
Additionally, the highest risk was found for EHEC in drinking yogurt due to the highest
survival ability of EHEC in drinking yogurt (Figure 2), in which the highest delta value
was noticed. As a result, the risk of EHEC is higher than LM in yogurt. Yogurt has an
inhibition effect on pathogenic microorganisms due to organic acids such as lactic acid and
acetic acid, which were produced by LAB [50], low pH below 4.1 [46], and bacteriocin or
bacteriocin-like substances produced by LAB [51]. Yang et al. [51] isolated and identified
bacteriocinogenic LAB from various cheeses and yogurts. They found that 20% of isolates
(28 isolates) out of 138 LAB isolates had antimicrobial effects on all microorganisms tested,
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except for E. coli. In the present study, we found that EHEC shows better survival ability
than LM in both types of yogurts. A similar trend was reported by Gulmez and Guven [52],
who compared the inhibitory effects of LM, E. coli O157:H7, and Yersinia enterocolitica in
yogurt and kefir samples during 24 h fermentation time and 10 days of storage. They found
that E. coli O157:H7 showed the highest resistance during the yogurt’s fermentation and
storage time. The most recent study showed [53] that most of the bacteriocins produced
by LAB isolates are active against Gram-positive bacteria, such as LM and Staphylococcus
aureus, whereas Gram-negative bacteria, E. coli, and Salmonella Typhimurium, displayed
considerable resistance.

Table 4. Probability of illness per day per person by Listeria monocytogenes (LM) and EHEC with
consumption of yogurt with @Risk scenario.

Probability of Illness/Person/Day

Pathogens Sample Min 25% Mean 95% Max

LM

Drinking

Susceptible
population 0 0 1.91 × 10−15 8.44 × 10−15 3.65 × 10−14

General
population 0 0 0 0 0

Regular

Susceptible
population 0 0 2.87 × 10−16 2.11 × 10−15 3.63 × 10−14

General
population 0 0 0 0 0

EHEC
Drinking 0 4.01 × 10−9 1.44 × 10−8 4.33 × 10−8 1.75 × 10−7

Regular 0 4.39 × 10−10 5.09 × 10−9 2.12 × 10−8 9.45 × 10−8

3.7. Sensitivity Analysis

Sensitivity analysis was conducted to identify input variables with a major influence
on results. If the result has a negative value, it has a negative correlation. As the input value
increases, the output value decreases. If it is 0, there is no correlation. A positive value
indicates a positive correlation, meaning that the output value increases as the input value
increases [54]. Results of analysis of regression coefficients for the probability risk of food-
borne illness caused by LM and EHEC due to yogurt consumption are shown in Figure 5.
Both pathogens had a negative correlation with storage time at the market. The risk of
foodborne illness decreased with increased storage time at the market. Both pathogens had
the greatest positive correlation with the initial contamination level and consumption. As a
result, it is considered that initial hygiene management before manufacture can reduce the
risk of LM and EHEC. LM can survive longer in yogurt when LM is contaminated with
higher concentrations during yogurt manufacture [55]. Kasımoğlu and Akgün [56] found
that yogurt contaminated at 102 CFU/g level of E. coli O157:H7 has a lower elimination
time than that contaminated at 106 CFU/g level. They suggested that the decline time of
E. coli O157:H7 contaminated in the pre-fermentation stage could be affected by the initial
contamination level. Therefore, initial hygiene management is important to inhibit the
contamination and reduce the risk of pathogens in yogurt.
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4. Conclusions

Results showed that the risk of serious illness from LM and EHEC due to drinking
and regular yogurt consumption is very low. Yogurt does not permit the growth of LM
and EHEC during storage at 4, 10, 17, 25, and 36 ◦C. The contamination level of both LM
and EHEC decreased in yogurt from the market to home, and LM and EHEC died faster in
regular yogurt than in drinking yogurt. However, controlling the initial contamination level
of EHEC during yogurt manufacture should be emphasized because its survival ability in
yogurt is higher in both drinking and regular yogurt than LM.
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