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Ticks are obligate hematophagous arthropods that are distributed worldwide and are one
of the most important vectors of pathogens affecting humans and animals. Despite the
growing burden of tick-borne diseases, research on ticks has lagged behind other
arthropod vectors, such as mosquitoes. This is largely because of challenges in
applying functional genomics and genetic tools to the idiosyncrasies unique to tick
biology, particularly techniques for stable genetic transformations. CRISPR-Cas9 is
transforming non-model organism research; however, successful germline editing has
yet to be accomplished in ticks. Here, we review the ancillary methods needed for
transgenic tick development and the use of CRISPR/Cas9, the most promising gene-
editing approach, for tick genetic transformation.
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INTRODUCTION

Ticks and tick-borne diseases affect animal and human health worldwide and are the cause of
significant economic losses. For instance, Lyme disease alone costs approximately $1.3 billion each
year in direct medical costs in the United States (Tick-borne Disease Working Group). The tick life
cycle begins with an egg containing the developing embryo that hatches into a larva. As the tick
proceeds through larval and nymphal stages, a single blood meal is required at each stage, and a final
large blood meal by the adult female is needed to develop an egg mass to complete the cycle. This life
cycle differs vastly from hematophagous insects, where usually only the adults—and often only
females—feed on vertebrate blood, and therefore only adults can vector diseases from infected
animals. In contrast, ticks are obligate blood-feeders at all stages of their life cycle, making them
viable to transmit pathogens at various life stages. Ticks can transmit many pathogens: bacteria,
viruses, protozoans, and fungi (Jongejan and Uilenberg, 2004; Rochlin and Toledo, 2020). Borrelia
spirochetes, the causative agents of Lyme disease, are among the most important pathogens
transmitted by Ixodes ticks. However, several other tick-transmitted pathogens are of importance
to human and animal health (Eisen and Eisen, 2018). Furthermore, as the tick feeds for extended
periods (3-10 days), it interacts with its vertebrate host and can suppress the host’s immune system.
In addition to being a vector for pathogens, ticks can cause significant harm to their host due to
feeding for a prolonged time: exsanguination when tick infestation is high, secondary infection at the
bite site (Eisen and Eisen, 2018), tick paralysis when feeding occurs near the spinal cord (Pienaar et al.,
2018), and reactions to tick bites such as alpha-gal syndrome (Commins and Platts-Mills, 2013;
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Steinke et al., 2015) which induces an allergy to red meat.
Understanding tick biology, therefore, is an important
research focus.

The process for acaricide discovery and drug/vaccine
development against ticks or tick-borne pathogens heavily
relies on correlating tick genotype to phenotype. To study the
connection of genotype to phenotype, it is important to disrupt
gene function and analyze phenotypic effect. Researchers can
experimentally regulate gene expression and investigate gene
function either at the translational level or at the genetic level
using two main biological tools: RNA interference (RNAi) and
gene knockouts using editing methods, respectively. CRISPR/
Cas9 has emerged as the most straightforward gene editing
technology, in comparison to other techniques such as
TALENs and ZFNs etc. because of the lower cost and ease of
use. Current functional genomics research in ticks primarily
depends on RNAi for gene knockdown studies (Karim et al.,
2008). However, RNAi has limitations such as incomplete
silencing that can vary by target gene, developmental stage, or
tissue. In addition, temporary (transient) transcript knockdown
limits many studies to a narrow assay window and currently puts
transstadial pathogen transmission studies out of reach.
Furthermore, RNAi is not suitable for overexpression and
transcript rescue experiments required to study functions of
the genes that are downregulated, for instance due to pathogen
infection. Moreover, RNAi is mostly applicable to adult and
sometimes nymphal stages, making gene function studies in
embryos and larvae challenging. Still, the reversible nature of
knockdowns by RNAi makes it possible to verify the phenotypic
effect by restoring protein expression to normal in the same cells.
In addition, it may permit knockdown of genes in later life stages
that otherwise would result in irreversible developmental
abnormalities if knocked down in earlier life stages.

In contrast to RNAi, the advantages of genomic knockouts are
absolute silencing, completely blocking protein expression,
eliminating any confounding effects from remnant low levels
of protein expression post knockdown. Targeted gene knockout
and knock-in approaches are therefore highly desirable to
investigate tick gene functions that are unanswerable by RNAi
alone. The CRISPR/Cas genetic manipulation system is
revolutionizing the field of biology, including entomology, by
enabling the genetic transformation of diverse arthropods
(Bassett and Liu, 2014; Ma et al., 2014; Gilles et al., 2015;
Kohno et al., 2016; Li et al., 2017b; Sun et al., 2017) and offers
enormous promise for tick research. However, these
evolutionarily distinct hematophagous arthropods have quite
different embryonic development and life histories than insects
(Santos et al., 2013). Germline transformation methods that
work for insects may require optimization for ticks. Recently,
CRISPR-Cas was used to edit a mite, Tetranychus urticae,
genome, the first for a chelicerate species and providing proof-
of-concept that CRISPR-Cas9 can be used to create gene
knockouts in mites (Dermauw et al., 2020). Development of
such methods in ticks that allow gene knockout, knock-in, and
gene replacement, is urgently needed to facilitate an
understanding of tick genetics, biochemistry, development, and
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behavior. Additionally, the development of effective and reliable
ancillary methods such as identification of promoters,
transformation markers, embryology, and embryo injection,
are needed for effective germline transformation. Here, we are
reviewing the use of CRISPR/Cas, the most promising gene-
editing approach, for tick genetic transformation and the
ancillary methods needed for transgenic tick development.
CURRENT RESEARCH AND FUTURE
DEVELOPMENT TOWARDS TICK
GENETIC MANIPULATION

Ancillary Methods for Transgenesis
Transformation Markers
Screening for mutants is a challenge for non-model organism
transgenesis. In most arthropods there is an absence of mutant
strains and corresponding rescue transgenes, as in the white-eye
gene of Drosophila melanogaster (Rubin and Spradling, 1982).
Instead, fluorescent markers such as enhanced green fluorescent
protein (EGFP), are frequently used as reporters for gene
insertion and expression (Berghammer et al., 1999; Horn et al.,
2000; Horn et al., 2002; Thomas et al., 2002) and may be useful
tools for tick transformation.

3xP3–EGFP as a Universal Transformation Marker for
Arthropod Transgenesis
Evolutionarily conserved genetic circuitry governs all metazoan
animal eye development under the control of the transcriptional
activator Pax-6/Eyeless (Callaerts et al., 1997). Pax-6 homodimer
binding site (P3) multimerization was shown to mediate
photoreceptor-specific gene expression in D. melanogaster
(Sheng et al., 1997). These studies led to the development of an
artificial promoter, 3xP3. 3xP3 has been employed to drive
robust and eye-specific expression of EGFP (Berghammer
et al., 1999; Horn et al., 2000) and identify transgenic
individuals in several different insect orders. The artificial 3xP3
promoter construct mediates EGFP expression in the eyes of
insects and, like the constitutive promoters mentioned below,
can be used to identify transgenic organisms at all stages: larval,
pupal, and adult (Horn et al., 2000). The evolutionary conserved
function of Pax-6 in eye development of metazoans (Callaerts
et al., 1997) suggests that the 3xP3–EGFP marker should apply to
all eye-bearing animals. In mosquitoes, 3xP3, expresses in eyes
and ventral nerve cord (Volohonsky et al., 2017). An ortholog of
D. melanogaster Pax-6 was also identified in the I. scapularis
genome (ISCW003096/EEC03577) as well as other ticks such as
Rhipicephalus sanguines (XM_037656705.1/XP_037512638) and
Dermacentor silvarum (XM_037709500I/XP_037565428). It is
therefore predicted that the 3xP3-EGFP marker should work in
ticks that have well-developed eyes (such as Ambylomma,
Dermacentor, and Rhipicephalus) and may have expression
elsewhere in eyeless ticks of the genera Ixodes and
Haemaphysalis (such as in the synganglion). Thus, 3xP3 with a
tick-specific core promoter needs to be tested in ticks and new
promoter/reporter systems need to be identified and developed.
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Other Visible Markers
A transformation marker system that results in phenotypes
visible to the naked eye due to changes in the color of melanin
pigments is highly desirable for tick transgenesis. The final step
of enzymatically-regulated melanin biogenesis is the conversion
of dopachrome into dihydroxyindoles, a reaction catalyzed by a
class of enzymes called dopachrome tautomerases (DCT) and the
functionally redundant enzyme in insects, bacteria, and fungi,
dopachrome converting enzyme/yellow protein (DCE) (Rosani
et al., 2019). Yellow protein marker has been effectively utilized
in mosquito transgenics (Li et al., 2017a). We identified an
ortholog of DCT in the I. scapularis genome (ISCW009232)
that may have similar melanin biogenesis functions and needs to
be tested. Unfortunately, not all markers from other arthropods
may be suitable for ticks. For instance, overexpression or
knockout of Arylalkylamine-N-acetyl transferase and b-alanyl-
dopamine synthetase (Bm-ebony) lightens coloration in Bombyx
mori,Harmonia axyridis and D. melanogaster (Osanai-Futahashi
et al., 2012), but their orthologs in I. scapularis genome have not
been found. However, markers from more closely related
arthropods may offer more promise. Mutations in a gene
encoding a phytoene desaturase (tetur01g11270) were shown
to cause an albino phenotype in T. utricae (lack of red pigment in
the front legs and eyes) (Bryon et al., 2017). Knockout screening
was enabled in this mite by injecting sgRNA and Cas9 into
unfertilized females which produce only haploid male progeny
that were easily screened for the albino phenotype (Dermauw
et al., 2020). Although the orthologous sequences have not been
identified in any tick genome, a similar gene product will be a
promising target to develop for tick markers.

Promoters
Constitutive promoters allow the detection of transformants at
all life stages. The polyubiquitin promoter was successfully
utilized to generate the transformation marker PUbnlsEGFP in
D. melanogaster (Handler and Harrell, 1999), and later to
identify transformants in the Caribbean fruit fly, Anastrepha
suspensa (Handler and Harrell, 2001), the Australian sheep
blowfly, Lucilia cuprina (Heinrich et al., 2002), and mosquitoes
(Anderson et al., 2010). Actin5C derived from D. melanogaster is
another commonly used constitutive promoter to drive EGFP.
The actin5C promoter works well at all developmental stages of
D. melanogaster and the mosquitoes Aedes aegypti, Anopheles
stephensi, and Culex quinquefasciatus (Catteruccia et al., 2000;
(Pinkerton et al., 2000; Allen et al., 2001) but mediates only low
and non-uniform EGFP expression levels in the stable fly,
Stomoxys calcitrans (O’Brochta et al., 2000), suggesting that it
is not broadly useful for all insects. Other promoters from D.
melanogaster genes such as HSP70 and HSP82 have also been
successfully used to drive marker genes in a variety of insects.
While these promoters are widely useful, they are not universal.
Transformation markers based on constitutive promoters have
only been applied to closely related species, mostly within
Diptera. Whether any such promoter can be functional across
a wide range of insect orders, let alone more distantly related
arthropods, remains to be tested.
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Mammalian promoters with a GFP reporter, e.g.
Cytomegalovirus immediate early promoter, human elongation
factor 1a promoter, Human Ubiquitin C promoter, and chicken b-
Actin promoter coupled with CMV early enhancer (CAGG), drive
gene expression in Drosophila cell lines (Qin et al., 2010) and may
bemore broadly useful. Encouragingly, CAGGmCherry promoter
was used to successfully transform an I. scapularis cell line, ISE6
(Oliver et al., 2015), yet it remains to be tested in tick embryos.

In order for work on tick transformation to proceed,
endogenous tick promoters that work in a variety of tick species
need to be identified. At the very least, a constitutive promoter that
allows immediate identification of mutants after hatching is needed.
Moving forward, tissue-specific or inducible promoters (such as the
mosquito vitellogenin promoter that is fat body-specific and is
activated after blood-feeding) would permit further refinement in
tick transgenics. The availability of tick cell lines (Kurtti et al., 2008)
provides an excellent tool for easily testing promoters in vitro before
more challenging in vivo validation by embryo injections.
Early Embryonic Development
For the generation of successful stable mutants by embryo
injection, early embryonic events such as the timing of
cellularization and gonadal cell formation are essential to
understand. This information is lacking in ticks and needs to
be determined for efficient transgenic protocol development
using CRISPR-Cas9 for knockout and knock-ins or classical
transgenics using transposable elements.

Development of an embryo injection procedure requires
knowledge of early embryonic development, including information
about the timing of cellularization, anterior/posterior axis, and
gonadal cell formation (pole cells in insects), but is currently
lacking in ticks. For instance, only a handful of papers have
observed embryogenesis in Ixodid (hard) ticks (Santos et al., 2013;
Friesen et al., 2016), and none in the genus Ixodes. Even among these
studies, early mitotic divisions were not examined because the earliest
embryos used were ~24 h post egg laying in both Rhipicephalus
microplus (Santos et al., 2013) and Dermacentor andersoni (Friesen
et al., 2016). At 24 h post egg laying, the embryos were already near
the fifth mitotic division and the nuclei were located in the periphery
of the egg (Santos et al., 2013; Friesen et al., 2016). Based on these
early divisions, Friesen et al. (2016) suggested that if nuclear division
occurs at a constant rate, the post-oviposition mitotic division rate in
D. andersoni will be every 5 h. This nuclear division rate is much
slower than described inDrosophilamelanogaster, where earlymitotic
divisions occur as fast as every 8 min (Foe and Alberts, 1983; Gilbert,
2000). In D. melanogaster embryos, the first 13 nuclear divisions
occur without cytokinesis, resulting in the syncytial blastoderm.
Whether or not the early mitotic divisions in tick embryos are
holoblastic (with mitosis and cytokinesis) or syncytial remains to be
confirmed (Fagotto et al., 1988; Campos et al., 2006; Santos et al.,
2013; Friesen et al., 2016). Ixodes ticks have a longer embryogenesis
time (~40 days compared to ~11 days of R. microplus) suggesting that
the early embryonic events will be delayed in these ticks.
Understanding these embryonic development events in ticks would
facilitate efficient transgenesis by embryo injection.
May 2021 | Volume 11 | Article 678037
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Strategies for Tick Gene-Editing
Genetic Manipulation by Injecting CRISPR/Cas9
Components in Embryos

Microinjection into newly deposited arthropod eggs (embryos)
allows modification of the embryonic germline before it has
differentiated (prior to cellularization), ensuring a heritable
modification (Figure 1). Although approaches such as the gene
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gun (Thomas et al., 2001) and electroporation (Kamadar et al.,
1992) have been tested in arthropods, embryo microinjection
remains the most common approach for delivering gene-editing
tools to the nucleus for genomemodification. An embryo injection
protocol was first established for the genetic transformation of D.
melanogaster using transposable elements. This classical protocol
(Rubin and Spradling, 1982) has been adapted to allow the
injection of various types of nucleic acid constructs such as
FIGURE 1 | Schematic of gene-editing in ticks by injecting either embryos or gravid adults. CRISPR reagents are injected either into newly deposited embryos
(embryo injection) or into gravid females (adult injection). Adult injections require ReMOT components (ligand attached to Cas9 protein and endosomal escape
reagent) in addition to sgRNA for delivery to the egg. Both techniques utilize Cas9 to induce a dsDNA break at the sgRNA site.The cell’s repair machinery can
introduce mutations through non-homologous end joining (NHEJ) in either technique for gene knockouts, but only embryo injections can currently introduce plasmids
with homology arms necessary for homology directed repair (HDR) for gene knock-in. Image generated in Biorender.com.
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transformation vectors (P-elements, Piggybac, Hermes, etc.) and
their helper plasmids, RNA, single guide RNA (sgRNA), plasmids,
and Cas9 mRNA (or Cas9 protein).

The foundational work to develop injection methods has made
the generation of transgenicDrosophila and evenmosquitoes (Aedes
and Anopheles) a routine laboratory procedure. Details about the
physical operations involved in producing transformants such as
DNA preparation, eggs, needles, and injections have been
thoroughly described for these insects (Kiehart et al., 2007; Kistler
et al., 2015). The general procedure involves collecting freshly laid
eggs and dechorionating them using diluted bleach (Iwamatsu,
1983). The eggs are then attached to a glass coverslip with
double-sided tape and slightly desiccated to make room for the
injection volume. Preblastoderm stage eggs are then injected at their
posterior end (before pole cell formation) with the injection mix.
The resulting adults (G0) are backcrossed and subsequent progeny
are screened for the presence of the marker gene.

We recently developed an embryo injection protocol for I.
scapularis and provided proof-of-principle for gene-editing in ticks.
(Sharma et al., 2020, preprint). While early embryology in ticks is still
not completely understood, our preliminary work has opened the
door for further refinement of the injection protocol and resulting
gene-editingmethods. However, heritable germlinemutations in ticks
remain to be demonstrated. We expect that development of the
above-mentioned ancillary methods coupled with our embryo
injection protocol will make the generation of transgenic ticks a
routine laboratory procedure, similar to mosquitoes.

Genetic Manipulation by Injecting CRISPR/Cas9
Components in Gravid Females
Despite our recent success at gene-editing ticks, tick embryo
microinjection remains technically challenging. Two alternative
methods that bypass the requirement for embryonic microinjection
have been developed for insects: 1. Receptor‐Mediated Ovary
Transduction of Cargo (ReMOT) and 2) Branched Amphiphilic
Peptide Capsules (BAPC)- assisted CRISPR delivery (Chaverra-
Rodriguez et al., 2018; Hunter et al., 2018) (Figure 1). ReMOT is
based on delivery of the CRISPR/Cas9 ribonucleoprotein (RNP)
complex (Cas9 with an sgRNA) by using peptide ligands derived
from D. melanogaster yolk protein precursors (YPPs) fused to the
Cas9‐RNP complex. Chemical compounds such as chloroquine or
saponin are used as endosomal escape reagents (EER) that facilitate
the escape of the YPP‐RNP complex from endosomes into the oocyte
cytoplasm. The injection of the YPP‐RNP/EER complex into the
hemolymph of vitellogenic females of several insect species enabled
targeted gene editing in embryos (Chaverra-Rodriguez et al., 2018;
Heu et al., 2020; Macias et al., 2020; Shirai and Daimon, 2020). The
BAPC‐assisted CRISPR delivery involves the use of branched
amphiphilic peptide capsules BAPtofect™ (Phoreus™

Biotechnology, Inc. Olathe, Kansas, US) for delivery of CRISPR
RNP into the ovary (Sukthankar et al., 2014) and was recently used
to improve the delivery of CRISPR components into ovaries of the
adult Asian citrus psyllid, Diaphorina citri (Hunter et al., 2018) to
facilitate heritable gene editing.

Our recent work successfully utilized ReMOT technology for
gene editing in I. scapularis suggesting promise for this technique
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
as a straightforward method for gene knockout in ticks (Sharma
et al., 2020, preprint). The ReMOT reagents were stable in ticks
for a maximum of 48 h, necessitating multiple injections during
the relatively long egg maturation and deposition time in ticks.
BAPC-assisted CRISPR delivery has yet to be tested in ticks, but
this method relies on stable peptide capsules which may have
improved stability and avoid the need for multiple hemolymph
injections. However, a limitation of both of these alternate
strategies is that they cannot currently be used for gene knock-
in (overexpression or replacement) as there is no mechanism for
carrying template into the embryo for homology-directed repair,
making them suitable only for gene knockout studies.
DISCUSSION

The availability of tick genome sequences (Cramaro et al., 2015;
Gulia-Nuss et al., 2016; Cramaro et al., 2017; Nuss et al., 2018; Jia
et al., 2020) have already made application of molecular methods
possible in ticks. However, study of the molecular biology of ticks
is currently limited by the applicability of genetic tools. The need
to achieve efficient methods for germline transformation in ticks
remains a high priority for functional genomics research. For this
to happen, the groundwork needs to be built for ancillary
methods such as embryology, embryo injection, and
identification of tick promoters and markers. Embryo injection
methods are crucial for the development of transgenic lines and
necessary for other applications such as stable infection with
symbionts. Similarly, the development of gene-editing methods
that do not require embryo injection (such as ReMOT) can be
used for gene knockouts to help make genetically engineered
ticks a common lab practice. Additional refinement of this
method may permit gene knock-ins to be used for different
applications such as gene replacement and over-expression.

CRISPR/Cas technologies have made targeted genetic
engineering feasible in most organisms. Proof-of-principle
experiments in Ixodes demonstrate that this technique is
feasible in ticks as well (Sharma et al., 2020 preprint).
However, stable germline transformation in ticks has not yet
been confirmed. Therefore, a future focus should be on creating
stable lines for fundamental research. Beyond a fundamental
understanding of tick biology, a further application of tick
genetic transformation is population control by inserting gene
drives. Gene drives, which bias inheritance towards a natural or
synthetic genetic element or specific allele and lead to a
preferential increase of a specific phenotype throughout a
population (Alphey et al., 2020), are being developed for
mosquito control. Several different gene drives, autonomous/
non-autonomous, split, self-limiting drives, etc., have been
developed (Gantz et al., 2015; Hammond et al., 2016; Patil
et al., 2018; Adolfi et al., 2020; Carballar-Lejarazú et al., 2020;
Li et al., 2020). For instance, a male dominant allele to produce a
single sex to reduce tick populations, or a trait to increase
refractoriness to pathogens, could be effective strategies for
managing tick-borne diseases.
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Further research into the areas identified in this opinion piece
will provide the necessary steps to develop routine genetic
transformations in ticks. Once this is possible, it will provide a
badly needed set of tools to understand gene function in ticks.
This will open the door to understanding a group of truly unique
arthropods and how we might manage these major vectors of
human and animal disease.
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