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Abstract

The widespread SCP/TAPS superfamily (SCP/Tpx-1/Ag5/PR-1/Sc7) has multiple biological functions, including roles in the
immune response of plants and animals, development of male reproductive tract in mammals, venom activity in insects and
reptiles and host invasion by parasitic worms. Plant Pathogenesis Related 1 (PR-1) proteins belong to this superfamily and
have been characterized as markers of induced defense against pathogens. This work presents the characterization of
eleven genes homologous to plant PR-1 genes, designated as MpPR-1, which were identified in the genome of
Moniliophthora perniciosa, a basidiomycete fungus responsible for causing the devastating witches’ broom disease in cacao.
We describe gene structure, protein alignment and modeling analyses of the MpPR-1 family. Additionally, the expression
profiles of MpPR-1 genes were assessed by qPCR in different stages throughout the fungal life cycle. A specific expression
pattern was verified for each member of the MpPR-1 family in the conditions analyzed. Interestingly, some of them were
highly and specifically expressed during the interaction of the fungus with cacao, suggesting a role for the MpPR-1 proteins
in the infective process of this pathogen. Hypothetical functions assigned to members of the MpPR-1 family include
neutralization of plant defenses, antimicrobial activity to avoid competitors and fruiting body physiology. This study
provides strong evidence on the importance of PR-1-like genes for fungal virulence on plants.
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Introduction

The basidiomycete fungus Moniliophthora perniciosa is the causa-

tive agent of witches’ broom disease (WBD) in cacao. This

devastating disease is responsible for large losses in cacao

plantations in the Americas and is a potential threat to other

cacao-growing areas throughout the world [1,2]. M. perniciosa

displays a hemibiotrophic lifestyle, with sequential biotrophic

(infective) and necrotrophic stages in the plant. These two mycelial

stages are morphologically distinct: whereas the biotrophic

mycelium is monokaryotic, the necrotrophic stage is dikaryotic

and presents clamp connections for nuclei transfer.

The disease cycle initiates when fungal basidiospores infect

meristematic tissues of cacao – such as shoots, fruits and floral

cushions – where they germinate and develop as biotrophic

monokaryotic hyphae. M. perniciosa does not use any specialized

infection structure to enter the plant (i.e. apressorium), as observed

for the majority of biotrophic and hemibiotrophic fungi [3]. This

fungus enters the host tissues through stomata or wounds and

colonizes the plant apoplast as thick monokaryotic hyphae. In this

stage of the disease, the parasitic fungus causes drastic morpho-

physiological alterations in the host, resulting in the formation of

hyperplastic and hypertrophic stems, known as green brooms.

During the disease progression, the pathogen switches to its

necrotrophic dikaryotic stage, which parallels the death of the

infected plant tissue. In this phase of WBD, known as dry broom,

M. perniciosa colonizes the dead plant and can be found in the

intracellular spaces of cacao. After alternating wet and dry periods,

the fungus produces basidiomata that release basidiospores,

reinitiating the disease cycle [1,2].

During recent years, efforts have been directed to develop a

solution to control this disease. In 2000, the WBD genome

initiative (www.lge.ibi.unicamp.br/vassoura) was launched and,

since then, it has supported several molecular and biochemical

studies involving both the pathogen and the plant [4–9]. With the

recent technological advances in the area of DNA sequencing,

transcriptomes representing a variety of growth and developmen-

tal conditions of M. perniciosa – including transcriptomes of the

fungus developing in planta – were sequenced using the RNA-seq

technology. As a result, a comprehensive database named WBD
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Transcriptome Atlas has been constructed, and has contributed

important information on the molecular basis of the M. perniciosa-

cacao interaction (Teixeira et al., manuscript in preparation).

The establishment of a disease process depends on the ability of

the pathogen to overcome or neutralize plant defenses and then

initiate a parasitic relationship with its host. However, to halt

pathogenic colonization, plants have developed an arsenal of

defense responses, which include induction of pathogenesis-related

(PR) genes [10], production of secondary metabolites as well as

reinforcement of cell walls. Also, usually triggered by the

recognition of a pathogen attack, plants produce highly toxic

radicals, such as nitric oxide and reactive oxygen species, which

can lead to the establishment of a local cell death (the

hypersensitive response, HR). Among the induced pathogenesis-

related genes, PR-1s have been frequently identified and used as

markers of plant defense responses [10]. Notably, they were shown

to have microbicide activity against oomycetes and fungi [11–14].

PR-1 proteins are members of a superfamily named SCP/TAPS

(Sperm-Coating Protein/Tpx-1/Ag5/PR-1/Sc7) or CAP (Cyste-

ine-rich secretory proteins, Antigen 5, and Pathogenesis-related 1).

This superfamily has members throughout the eukaryotic king-

dom, suggesting an important role for these proteins in the biology

of eukaryotes [15,16]. Thus far, only a single report has shown the

existence of enzymatic activity for a SCP/TAPS protein [17]. The

protein Tex31 of the predatory marine mollusk Conus textile showed

serine-proteolytic activity against a specific pro-peptide precursor

of a venom toxin [17]. In addition, structural analyses indicated

that four highly conserved amino acids (two histidines and two

glutamates) form the putative catalytic site of SCP/TAPS proteins

[16–22]. Although the existence of biochemical activity has not

been shown for any other SCP/TAPS proteins, they are associated

with various biological processes, such as male reproductive tract

development [23,24], immune responses in plants and animals

[25], venom activity of reptiles and insects [26–29] and host

invasion by parasites [30–32].

In fungal species, SCP/TAPS proteins have been studied in

Saccharomyces cerevisiae, in which they are highly expressed under

nutrient starvation conditions [33]. In the basidiomycete Schizo-

phyllum commune, SCP/TAPS proteins have been associated with

fruiting body formation [34]. Interestingly, in the ascomycetes

Candida albicans and Fusarium oxysporum, deletion of a SCP/TAPS

gene impaired virulence on animals, indicating a role for this class

of genes in fungal pathogenicity [35,36]. Considering that PR-1

proteins are widespread markers of the induced defense response

in plants, what would be the function of their homologs in a plant

pathogenic fungus, such as M. perniciosa?

This article describes the identification of a SCP/TAPS family

in the M. perniciosa genome, the analysis of structural features of

these genes, and their expression profile throughout M. perniciosa

development. M. perniciosa SCP/TAPS proteins were modeled,

and some structural differences were revealed among them. Based

on these results, we present a hypothetical model in which SCP/

TAPS proteins play a role in M. perniciosa pathogenicity by

interfering with the defense system of cacao plants.

Results

Characterization of the PR-1 gene family in M. perniciosa
Annotation of a genome draft of M. perniciosa [7], and inspection

of fungal EST libraries [6,8] identified four PR-1-like genes in this

pathogen (MpPR-1a to MpPR-1d). Later, improvements in the

genome assembly obtained with next generation sequencing data

(unpublished data) allowed the identification of seven additional

members of the MpPR-1 family (MpPR-1e to MpPR-1k), totaling

eleven PR-1-like genes in M. perniciosa. These members are very

heterogeneous in size and gene structure, with coding sequences

(CDS) ranging from 447 to 1,152 nucleotides and intron

composition varying between two to five introns. Three of these

genes (MpPR-1c, MpPR-1d and MpPR-1j) are organized in tandem.

Sequence details of these eleven genes are shown in Table 1, and

their respective structures (exon-intron positions) are depicted in

figure S1.

Hydrophobic signal peptide sequences predicted with the

TargetP program [37] were identified in all eleven MpPR-1

sequences (NN score .0.80), strongly suggesting that these

proteins are secreted. Additionally, all MpPR-1 proteins showed

a single SCP/TAPS domain (InterPro ID IPR014044), as

predicted by the InterProScan server [38]. These domains were

approximately 130 amino acids in length and ranged between

34% and 82% of the total amino acid sequence of an individual

MpPR-1 protein (Fig. 1A). In addition to the SCP/TAPS domain,

MpPR-1b and MpPR-1g present N-terminal and C-terminal

extensions, respectively. No other InterProScan predicted domain

was identified in these extensions or in any of the MpPR-1 proteins

described. Interestingly, a careful manual inspection revealed that

the C-terminal extension of MpPR-1g is rich in residues of lysine

(K) and glutamic acid (E) that are mostly organized in alternating

positions, resulting in the formation of a ‘‘KEKE’’ motif [39]

(Fig. 2). The MpPR-1b N-terminal extension is also a low

complexity region, being rich in serine, threonine and proline

residues. However, no described motif could be recognized.

Alignment of the amino acid sequences encoded by all MpPR-1

genes revealed significant similarity only over the SCP/TAPS

domains (Fig. 1B). The amino acids proposed to form the putative

catalytic site of SCP/TAPS proteins (two histidines and two

glutamic acids, shown in red) were identified in six MpPR-1s

(MpPR-1b, MpPR-1c, MpPR-1d, MpPR-1e, MpPR-1h and

MpPR-1j). In contrast, MpPR-1a presented two, MpPR-1f had

only one and MpPR-1g, MpPR-1i and MpPR-1k had none of the

four conserved residues (Fig. 1B).

Protein structure modeling
To explore the tertiary structural characteristics within the

SCP/TAPS domains of the MpPR-1 family members, we created

homology models using the fold prediction metaserver I-TASSER

(Fig. 3). The derived models indicated that the MpPR-1 SCP/

TAPS domains adopt the a-b-a sandwich conformation, which is

common to all superfamily members across the species studied

[16,18] (Fig. 3A). Furthermore, all MpPR-1 proteins possess the

large cleft proposed to constitute the SCP/TAPS active site. As

mentioned above, six MpPR-1 proteins (MpPR-1b, MpPR-1c,

MpPR-1d, MpPR-1e, MpPR-1h and MpPR-1j) have the four

conserved residues of the putative catalytic site. These residues are

localized within this cleft (Fig. 3B) and are found in the same

direction of the orthologous amino acids identified in previous

SCP/TAPS crystal structures [18,21,22,25]. These residues are

lacking (MpPR-1g, MpPR-1i and MpPR-1k) or partially absent

(MpPR-1a and MpPR-1f) in other members of the MpPR-1 family

(Fig. 3C), indicating some diversification in their mode of action.

Remarkably, MpPR-1b and MpPR-1g contain two modules:

the SCP/TAPS domain and either N-terminal (MpPR-1b) or C-

terminal (MpPR-1g) extensions. Protein models indicate that such

extensions are structurally organized and have a-helix conforma-

tions (Fig. 3A). These additional regions possibly confer a different

activity or regulation to these proteins.

PR-1 Genes in Moniliophthora perniciosa
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Figure 1. Comparison of MpPR-1 and SCP/TAPS proteins of representative organisms. (A) Domain arrangement of SCP/TAPS proteins.
Hydrophobic signal peptides are shown in black and SCP/TAPS domains are represented in blue. The numbers on the right show the size of each
protein. Large N-terminal and C-terminal expansions are observed in MpPR-1b and MpPR-1g, respectively. (B) Alignment of the conserved domain of
SCP/TAPS proteins. In general, the SCP/TAPS superfamily members show similarities only over the SCP/TAPS domain. Conserved residues (100% of
identity) are shown in blue and semi-conserved residues (at least 60% of identity) in green. Putative active site residues are highlighted in red and
cysteines in yellow. Secondary structure elements are shown above the alignment (arrow: b-sheets; helix: a-helixes). P14, tomato PR-1 (GenBank
P04284); RBT4, repressed by TUP1 from Candida albicans (GenBank AAG09789); Tex31, SCP/TAPS from the mollusk Conus textile (GenBank CAD36507);
Na-ASP-2, Necator americanus secreted protein (GenBank AAP41952); GliPR-1, human glioma PR-1 protein (GenBank P48060); SC7, SCP/TAPS from the
basidiomycete Schizophyllum commune (GenBank P35794).
doi:10.1371/journal.pone.0045929.g001
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Expression profile of MpPR-1 genes throughout M.
perniciosa development

The expression pattern of MpPR-1 family members was assessed

by quantitative real time PCR (qPCR) throughout the different

developmental stages of M. perniciosa. As shown in Figure 4, each

MpPR-1 gene showed a specific expression profile: expression of

MpPR-1a, MpPR-1b, MpPR-1d and MpPR-1i genes was relatively

uniform, with nearly similar expression values for most conditions

analyzed. In contrast, MpPR-1e was up-regulated in the dikaryotic

hyphae, whereas MpPR-1j was exclusively expressed in mush-

rooms (basidiomata). Strikingly, five MpPR-1 genes (MpPR-1c,

MpPR-1f, MpPR-1g, MpPR-1h, and MpPR-1k) were highly

expressed during the biotrophic interaction of the fungus with

the cacao plant (green broom stage of WBD). These genes were

poorly expressed in the necrotrophic hyphae (dry broom stage of

Figure 2. Domains identified in the MpPR-1g protein. In addition to the SCP/TAPS domain, this protein has a KEKE motif in its C-terminal
extension. This motif is known to mediate the interaction with other proteins or ions.
doi:10.1371/journal.pone.0045929.g002

Figure 3. Homology modeling of MpPR-1 proteins. (A) Ribbon stick representation showing the folding of eleven MpPR-1 proteins and three
SCP/TAPS proteins used to obtain these models. The putative residues forming the catalytic site are highlighted in dark blue (histidines) and light
blue (glutamic acids). Note the presence of an additional protein module in MpPR-1b and MpPR-1g. These modules respectively correspond to the N-
terminal and C-terminal extensions observed in these proteins. (B) MpPR-1b, MpPR-1c, MpPR-1d, MpPR-1e, MpPR-1h and MpPR-1j have the four
putative active site residues of the SCP/TAPS domain. (C) These residues are partially or completely absent in MpPR-1a, MpPR-1f, MpPR-1g, MpPR-1i
and MpPR-1k.
doi:10.1371/journal.pone.0045929.g003

PR-1 Genes in Moniliophthora perniciosa
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WBD) and in the ex planta conditions, suggesting a specific role for

the encoded proteins in fungal pathogenicity.

Characterization of an MpPR-1 cluster
As mentioned above, genes MpPR-1c, MpPR-1d and MpPR-1j

are arranged in tandem over a region of approximately 5 kbp in the

M. perniciosa genome (Fig. 5). This gene cluster points to the

occurrence of gene duplication events during the evolution of the

MpPR-1 family. Indeed, the proteins encoded by these three genes

are more similar to each other than to other MpPR-1 members

(data not shown). In accordance, these three genes have very

similar structures, with a minor difference in MpPR-1d, which has

an additional intron and a mini-exon following exon 2 (Fig. S1).

Importantly, genes MpPR-1c and MpPR-1j are also highly similar

at the nucleotide level (84% identity), indicating a recent event of

gene duplication. Despite their similarity, these genes have distinct

expression profiles: whereas MpPR-1j is highly expressed in

basidiomata, MpPR-1c is mainly expressed during cacao infection

(green broom stage of WBD) (Figs. 4 and 5).

Discussion

In this study, we identified a family of genes encoding proteins

of the SCP/TAPS superfamily in the plant pathogen Moniliophthora

perniciosa. SCP/TAPS proteins are found in a vast number of

organisms, including plants, insects, mammals, fungi, mollusks and

worms. Plant Pathogenesis-related proteins (PR-1) belong to this

superfamily and are known to accumulate after pathogen invasion

[10]. Despite being broadly spread, evidence for the importance of

fungal SCP/TAPSs in plant-pathogen interactions has not yet

been described.

M. perniciosa has a larger number (11) of SCP/TAPS genes

encoding PR-1-like secreted proteins than other fungal species

analyzed to date (Table S1). Although these proteins have a single

Figure 4. Transcriptional profile of MpPR-1 family members throughout the M. perniciosa life cycle. Each MpPR-1 gene has a distinct
expression profile during fungal development. ‘‘Monokaryotic’’ and ‘‘Dikaryotic’’ hyphae represent the two mycelial stages (biotrophic and
necrotrophic) grown under in vitro conditions. ‘‘Green broom’’ and ‘‘dry broom’’ correspond to the biotrophic and necrotrophic stages of M.
perniciosa, respectively, during its interaction with cacao. Analyses were performed by qPCR and the M. perniciosa b-actin gene was used as
endogenous control to normalize data. Error bars represent standard deviations determined with two biological replicates. Representative drawings
of the conditions analyzed are shown on the top.
doi:10.1371/journal.pone.0045929.g004
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SCP/TAPS domain, they are very divergent in sequence (Fig. 1B).

Some of them show extensions in their N-terminal (MpPR-1b) or

C-terminal (MpPR-1g) regions (Fig. 1A and Fig. 3A). Also, six

MpPR1s (MpPR-1b, MpPR-1c, MpPR-1d, MpPR-1e, MpPR-1h

and MpPR-1j) have all four conserved amino acids (two histidines

and two glutamates) of the active site proposed for SCP/TAPS

proteins, whereas the other five proteins (MpPR-1a, MpPR-1f,

MpPR-1g, MpPR-1i and MpPR-1k) lack the catalytic tetrad

(Fig. 1B and Fig. 3). However, the basic signatures of SCP/TAPS

domains remain conserved.

The high number of genes and the variation in protein sequence

of MpPR-1 members may reflect a process of diversification of this

gene family in M. perniciosa. In accordance, the cluster including

three MpPR-1 members (Fig. 5) indicates the occurrence of recent

events of gene duplication, which are central for the generation of

genetic variability. In this regard, functional diversity may occur

within this family, and different MpPR-1s likely play a particular

role in M. perniciosa biology.

Although widely distributed among several species, the func-

tions of SCP/TAPS proteins are still uncertain. Their broad

distribution indicates that they play a role in a plethora of

biological processes. In the mushroom-forming basidiomycete

Schizophyllum commune, SCP/TAPS proteins were identified in the

basidiomata, being involved in the formation of pseudo-parench-

ymous tissue of this reproductive structure [34]. In a similar way,

MpPR-1j is exclusively expressed in the basidiomata of M.

perniciosa, suggesting a role for this isoform in the physiology/

metabolism of fruiting bodies. In contrast, we also identified SCP/

TAPS genes in the genomes of some basidiomycetes that do not

produce mushrooms (e.g., Ustilago maydis, Puccinia graminis,

Melampsora spp and Cryptococcus spp) (data not shown). Therefore,

it is likely that SCP/TAPS proteins have functions in basidiomy-

cetes other than fruiting body development/physiology.

In response to pathogen invasion, plants typically produce PR-1

proteins, which have antimicrobial activity and, consequently, are

able to inhibit the development of fungi and oomycetes [11–13].

Considering that, we hypothesize that some MpPR-1s could play a

role in limiting the growth of other microbial competitors (e.g.,

oomycetes from the genus Phytophthora, responsible for causing

black pod rot in cacao), thus favoring M. perniciosa colonization

during WBD progression. Functional experiments are needed to

confirm the existence of antimicrobial activity in any of the

MpPR-1 proteins identified.

Gene expression analyses revealed that five MpPR-1 genes

(MpPR-1c, MpPR-1f, MpPR-1g, MpPR-1h and MpPR-1k) are

strikingly up-regulated in the green broom stage of WBD, when

the fungus grows biotrophically within the plant tissues (Fig. 4).

Remarkably, inspection of the WBD RNA-seq Transcriptome

Atlas (Teixeira et al., manuscript in preparation) revealed that

MpPR-1g and MpPR-1h are among the most highly expressed

genes of M. perniciosa during its biotrophic interaction with cacao.

Moreover, in addition to the green broom stage, MpPR-1f and

MpPR-1h are notably expressed in germinating basidiospores

(Fig. S2), a critical stage for the establishment of infection. None of

these genes were significantly expressed in non-germinating spores

or in the dry broom stage of WBD (Fig. 4 and Fig. S2), strongly

indicating a major role for the encoded proteins in the infective

(biotrophic) stage of M. perniciosa. Similarly, SCP/TAPS genes

identified in some animal parasitic worms (Schistosoma mansoni,

Brugia malayi, Necator americanus and Ancylostoma caninum) are highly

expressed in the infective stage and are considered important

pathogenicity factors [30,31,40–42]. In these parasites, SCP/

TAPSs are supposed to contribute to their virulence by

modulating the host immune response [15,16].

Recently, a SCP/TAPS protein in the plant-parasitic nematode

Globodera rostochiensis (Gr-VAP1) was shown to function as an

effector by interacting with the tomato cysteine protease Rcr3,

which is also a target of the Avr2 effector from the fungus

Cladosporium fulvum [43]. In addition, SCP/TAPS proteins have

been identified in other plant infecting nematodes (e.g. Heterodera

glycines, Meloidogyne incognita and Bursaphelenchus xylophilus), and these

are thought to be required for the establishment of parasitism [44–

48]. Considering the expression pattern of some SCP/TAPS genes

in M. perniciosa and the functions ascribed for the encoded proteins

in other pathogenic organisms, it is plausible that some MpPR-1s

play a role in the M. perniciosa-cacao interaction and may be

candidate effectors of this fungal pathogen. Accordingly, a recent

study that aimed at the identification of putative effectors in

Melampsora larici-populina and Puccinia graminis reported the enrich-

ment of SCP/TAPSs in the predicted secretome of these rust fungi

Figure 5. Genomic organization and transcriptional profile of the MpPR-1 gene cluster found in M. perniciosa. The MpPR-1c, MpPR-1d
and MpPR-1j genes are arranged in tandem over a region of approximately 5 kbp. Analysis of the WBD RNA-seq Atlas shows the expression profile of
these MpPR-1 genes in different conditions (green broom – in planta development of the biotrophic monokaryotic hyphae; monokaryotic mycelium;
dikaryotic mycelium; basidiomata and basidiospores). Data were visualized using the Integrative Genomics Viewer [62]. The black coverage plot
shows cumulative RNA-seq read coverage along the transcripts in all different conditions. Note that these genes were named according to the order
they were identified in the fungal genome, and the nomenclature does not necessarily reflect their relative localization in the genome.
doi:10.1371/journal.pone.0045929.g005
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[49]. A fungal SCP/TAPS gene was also identified in EST libraries

produced from rye infected with the ascomycete pathogen Claviceps

purpurea [50], suggesting that these genes might also be important

in other plant-fungus interactions.

In recent years, a role for SCP/TAPSs as virulence factors has

emerged in many organisms. It is likely that these proteins

converged as pathogenicity mechanisms in distinct pathogens/

parasites from either plants or animals. Whereas the function of

fungal SCP/TAPSs as virulence factors in plant pathogens

remains to be confirmed, previous studies demonstrated that these

proteins are required for fungal virulence on animals (e.g. C.

albicans and F. oxysporum) [35,36]. The ascomycete F. oxysporum is a

multi-host pathogen that is able to infect both plants and animals.

Previous work by Prados-Rosales et al. verified that fpr1, one of the

six SCP/TAPS genes from this pathogen, is required for fungal

virulence on animals but not on plants [36]. Given that the F.

oxysporum genome contains five other SCP/TAPS genes, the

absence of a phenotype on plants can be explained by the

occurrence of functional redundancy in this gene family. Notably,

there is evidence that fpr1 is part of a gene family that has

expanded in F. oxysporum and in other plant pathogenic

Sordariomycetes [36].

Although the precise activity of SCP/TAPSs is currently

unknown, Prados-Rosales et al. presented the first genetic evidence

for a biological function of the proposed active site of SCP/TAPS

proteins [36]. The authors demonstrated that the integrity of the

active site is required for F. oxysporum virulence on animals. In M.

perniciosa, six MpPR-1s (MpPR-1b, MpPR-1c, MpPR-1d, MpPR-

1e, MpPR-1h and MpPR-1j) contain all four amino acids of the

proposed active site. In contrast, the other five proteins do not

have the complete catalytic tetrad (Fig. 1B). In this regard, it is

possible that M. perniciosa PR-1s have distinct mode of actions. For

instance, whereas those proteins with the complete catalytic tetrad

can function as enzymes, the other PR-1s may act as inhibitors.

Concomitantly to the up-regulation of some MpPR-1 genes in

planta, we identified a cacao PR-1 gene over-expressed in the green

broom stage of WBD (Fig. S3). Based on these findings, we suggest

that some MpPR-1s could act as competitive inhibitors of the plant

PR-1, modulating the cacao immune response. It has already been

shown that the SCP/TAPS protein Na-ASP-2 of the hookworm

Necator americanus has a high structural similarity to chemokines,

and this protein is proposed to be an antagonistic ligand of

receptors that activate the immune system of the vertebrate host

[51]. Furthermore, NIF (Neutrophil inhibitory factor), a SCP/

TAPS protein from Ancylostoma caninum, interferes with the host

immune system by interacting with neutrophil receptors [32].

Confirmation of this interesting mechanism in the M. perniciosa-

cacao interaction may be of primary relevance to the understand-

ing of many other plant diseases and will shed light on our

understanding of PR-1 functions.

Among the MpPR-1 genes that are highly expressed in planta,

MpPR-1g is the only one with a C-terminal extension in addition to

the SCP/TAPS domain (Fig. 1A and Fig. 3A). This additional

region is rich in lysine (K) and glutamic acid (E) residues, which

are mostly organized in alternating positions, resulting in the

formation of a "KEKE" motif [39] (Fig. 2). This motif is known to

mediate protein-protein associations [39,52] and is also able to

bind divalent ions, such as calcium and zinc [53]. Calcium is an

important regulator of many cellular processes, including plant

defense responses [54]. In this regard, this additional module may

be important in determining the mode of action of MpPR-1g.

Whether this protein interacts with other proteins, particularly

cacao proteins, and/or interferes with the plant calcium signaling

during infection should be the object of future studies.

Overall, this study presents important evidence on the role of

fungal SCP/TAPSs in the context of a plant-pathogen interaction.

Although the precise function of each MpPR-1 family member is

currently unknown, the information provided in our study suggests

they have potential roles in some important biological processes,

such as fruiting body metabolism, spore penetration and

modulation of the host defense response. As a consequence, our

results may inform the study of the role of PR-1-encoding genes in

other organisms, particularly phytopathogens. Further studies

concerning the M. perniciosa PR-1 gene family will focus on the

characterization of this interesting family in terms of fungal

development and roles in the M. perniciosa interaction with cacao.

Materials and Methods

Biological material
Isolate CP02 of Moniliophthora perniciosa (Stahel) Aime &

Philliphs-Mora [55], was used to perform the experiments. Under

in vitro conditions, the fungus can only be maintained as a

dikaryotic mycelium, and all other developmental stages (basidio-

mata, basidiospores and monokaryotic mycelium) are obtained

from the dikaryotic stage. The reproductive structures (basidio-

mata) were produced in laboratory according to the protocol

described by Pires et al. [8]. Fresh basidiomata were used to collect

basidiospores according to Frias et al. [56].

Basidiospores suspensions were utilized for the in vitro produc-

tion of the monokaryotic mycelia. For this purpose, approximately

3.756105 basidiospores were inoculated in 125 ml Erlenmeyer

flasks containing 50 ml liquid medium (LMCpL+), as described by

Meinhardt et al. [57]. Liquid cultures were maintained at 28uC
and incubated under agitation at 120 rpm. Dikaryotic mycelium

was inoculated in the same medium and maintained under the

same conditions. Both mycelia were collected 7 days post

inoculation to perform the experiments.

Theobroma cacao L. cv. ‘‘Comum’’ was used to perform the

infection experiments. Three-months-old plantlets were inoculated

with 30 mL of a basidiospore suspension (16105 spores mL21)

according to the procedure described by Frias et al. [56]. Plantlets

were kept in a greenhouse under controlled conditions of

temperature (26uC) and humidity (.80%). Green brooms

(biotrophic stage) and dry brooms (necrotrophic stage) were

collected 30 and 105 days post inoculation, respectively.

Sequence analysis
Inspection of the M. perniciosa genome led to the identification of

eleven genes encoding proteins similar to plant pathogenesis-

related proteins 1 (PR-1). These genes were named MpPR-1a to

MpPR-1k according to the order they were discovered. The

complete open reading frames (ORFs) of these genes were

predicted using the program Augustus [58] and confirmed by

cDNA sequencing. These sequences have been submitted to

GenBank with the accession numbers JN620340 to JN620350.

Blast searches were performed using the NCBI-NR and Swissprot

databases. Domain prediction of the encoded proteins was

performed using the InterProScan server [38] and the presence

of a signal peptide for secretion was predicted using the software

TargetP 1.1 [37].

Total RNA extraction and cDNA synthesis
With the exception of basidiospores, samples were ground to a

fine powder in liquid nitrogen using a pestle and mortar.

Basidiospores walls were broken by vortexing the sample in

RNA extraction buffer (Buffer RLT, RNeasy Plant Mini Kit) and

200 mg glass beads (0.4–0.6 mm, Sigma-Aldrich, St. Louis, MO,
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EUA). RNA isolation was performed using the RNeasy Plant Mini

Kit (Qiagen, Valencia, CA, USA) according to the manufacturer’s

instructions. RNA was treated with DNAse I AmpGrade

(Invitrogen, Carlsbad, CA, USA) and its concentration was

accessed using the ND-1000 spectrophotometer (NanoDrop,

Wilmington, DE, USA). cDNA was synthesized from 1 mg total

RNA using the SuperScript II Reverse Transcriptase (Invitrogen),

according to the manufacturer’s instructions.

Gene expression assays
Quantitative real time PCR (qPCR) was performed on a

StepOne Plus Real Time PCR System (Applied Biosystems, Foster

City, CA, USA) using Sybr Green I dye for the detection of PCR

products. Each reaction contained 8 ml SYBR Green PCR Master

Mix (Applied Biosystems), 250 nM each primer and 50 ng cDNA

template in a final volume of 16 ml. No-template reactions were

included as negative controls for each set of primers used. The

thermal cycling conditions were 94uC for 10 min, followed by 40

cycles of 94uC for 15 s, 53uC for 30 s and 60uC for 1 min, with

fluorescence detection at the end of each cycle. In addition, a

melting curve analysis was performed to verify the amplification of

a single product per reaction. All reactions were conducted in

technical triplicates using two independent biological replicates of

each sample. The M. perniciosa b-actin gene was used to normalize

data and expression levels are presented as 22DCt. Primers used in

this assay are shown in Table S2.

Protein structure modeling
The fold recognition-based method was implemented using the

I-TASSER server [59], which constructed structure models for

each MpPR-1 protein using folds of the most similar proteins

deposited in the PDB (Protein Data Bank) database (http://www.

rcsb.org/pdb). The main templates were based on the structure of

three proteins: i) Natrin (PDB – 1xta), a component of the venom

of the snake Naja atras; ii) GAPR-1 (PDB – 1smb), a SCP/TAPS

protein associated with the membrane of the human Golgi system;

and iii) Ves V5 (PDB – 1qnx), present in the venom of the wasp

Vespula vulgaris. The modeled structures were validated by

analyzing the Ramachandran plots generated by PROCHECK

[60], and the models were displayed using the software PyMOL

[61].

Supporting Information

Figure S1 Structure of the MpPR-1 genes. Exons are

represented by boxes, while introns are shown as lines. Exons are

colored to highlight the regions encoding important protein

features: predicted signal peptides (black), SCP/TAPS domain

(blue) and the remaining ORF (gray).

(TIF)

Figure S2 Expression levels of MpPR-1 genes in germi-
nating and non-germinating basidiospores. MpPR-1f and

MpPR-1h are highly expressed in germinating basidiospores,

supporting a role for the encoded proteins in the establishment

of witches’ broom disease. Data are part of the WBD

Transcriptome Atlas and were obtained by RNA-seq sequencing.

Gene expression values are given in Reads Per Kilobase of exon

model per Million mapped reads (RPKM).

(TIF)

Figure S3 Gene expression levels of a cacao PR-1 (ID
CGD0027635) in infected and healthy plants. Similar to

some MpPR-1 genes, a cacao PR-1 (TcPR-1) is up-regulated in the

green broom stage of WBD. The analysis was performed by qPCR

and the T. cacao a-tubulin gene (ID CGD0029727) was used as

endogenous control to normalize data. Gene IDs refer to the

Cacao Genome Database (http://www.cacaogenomedb.org). The

qPCR assay was conducted as described in the Material and

Methods section and primers used in the experiment were: TcPR-

1_F: 59 ACCTTATGGCGAGAACCTTG 39, TcPR-1_R: 59

GGAGTAATCATAGTCGGCCTTC 39, TcTub_F: 59 AC-

CAATCTTAACCGCCTTGTCT 39 and TcTub_R: 59

GTTAGTCTGGAACTCAGTCACAT 39.

(TIF)

Table S1 Number of SCP/TAPS genes in fungal species
with different lifestyles. Numbers correspond to the genes

coding proteins with the InterPro ID IPR014044.

(DOC)

Table S2 Primers used for quantitative real time PCR
analyses of M. perniciosa PR-1 genes.

(DOC)
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