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Abstract

Integrin molecules are transmembrane αβ heterodimers involved in cell adhesion, trafficking, and 

signaling. Upon activation, integrins undergo dynamic conformational changes that regulate their 

affinity to ligands. The physiological functions and activation mechanisms of integrins have been 

heavily discussed in previous studies and reviews, but the fluorescence imaging techniques -which 

are powerful tools for biological studies- have not. Here we review the fluorescence labeling 

methods, imaging techniques, as well as Förster resonance energy transfer assays used to study 

integrin expression, localization, activation, and functions.
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Introduction

Integrins are a family of adhesion receptors that are abundantly expressed in all cell types of 

metazoans except for erythrocytes. Their integral roles in mediating cell-cell and cell-

extracellular matrix (ECM) interactions make integrins indispensable for the existence of 

multicellular organisms. Interactions between integrins and their ligands trigger profound 

changes of the cytoskeleton and signaling apparatus during biological processes, such as 

adhesion (Evans et al., 2019; Fan et al., 2019; Fan et al., 2016; Stubb et al., 2019; Sun et al., 
2020a; Valencia-Gallardo et al., 2019), migration (Bernadskaya et al., 2019; Martens et al., 
2020; Sun et al., 2014), proliferation (Clark et al., 2020; Erusappan et al., 2019), 

differentiation (Martins Cavaco et al., 2018; Schumacher et al., 2020; Xie et al., 2019), 

This work is licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited.
*Address correspondence to: Zhichao Fan, zfan@uchc.edu.
Author Contribution: Review conception and design: Z.F; Manuscript draft: C.C.; Manuscript revision and editing: Z. F., H.S., L.H.; 
Figure and table preparation: Z.F., C.C.; All authors reviewed the results and approved the final version of the manuscript.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the present study.

HHS Public Access
Author manuscript
Biocell. Author manuscript; available in PMC 2021 July 01.

Published in final edited form as:
Biocell. 2021 ; 45(2): 229–257. doi:10.32604/biocell.2021.014338.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



inflammation (Arnaout, 2016; Sun et al., 2020b), tumor invasion (Bui et al., 2019; Haeger et 
al., 2020), and metastasis (Fuentes et al., 2020; Howe et al., 2020; Osmani et al., 2019). 

Fine-tuned integrin signaling is crucial for cellular homeostasis, and abnormal integrin 

activities give rise to many pathological conditions, including autoimmune diseases, 

cardiovascular diseases, and cancer. Extensive efforts have been made to discover and 

develop molecules targeting integrins as potential means of therapy (Ley et al., 2016). 

Several integrin-targeting antibodies and synthetic compounds are approved for treating 

inflammatory diseases or are under investigation in clinical trials. Fluorescent imaging 

techniques provide a powerful tool for better understanding integrin structures and 

conformational changes (by Förster resonance energy transfer, conformational reporting 

antibody, and super-resolution imaging), and integrin-ligand interactions to develop more 

effective therapies for a vast array of diseases.

Structure of integrins

Integrins are heterodimers consisting of noncovalently associated α (120–180 kDa) and β 
(90–110 kDa) subunits (Hynes, 1992). In the vertebrates, 18 α subunits and 8 β subunits 

form 24 αβ pairs (Barczyk et al., 2010; Hynes, 2002) (Fig. 1). Integrin families are 

separated into four major categories: those with specificity for intercellular adhesion 

molecules and inflammatory ligands (leukocyte integrins, α4, αE, αL, αM, αX, and αD), 

Arg-Gly-Asp (RGD) motifs (αIIb, αV, α5, and α8), collagens (α1, α2, α10, and α11), and 

laminins (α3, α6, and α7) (Campbell and Humphries, 2011; Humphries et al., 2006; 

Tolomelli et al., 2017). Both α and β subunits are type I transmembrane glycoproteins 

containing a relatively large extracellular domain (ectodomain), a single transmembrane 

domain, and a short cytoplasmic tail (Arnaout, 2016; Campbell and Humphries, 2011; Fan 

and Ley, 2015; Luo et al., 2007).

The ectodomain is an asymmetric structure with a “head” carrying two “legs” (~16 nm 

long). The head consists of a predicted seven-bladed β-propeller domain (~60 amino acids 

each) of an α subunit (Xiao et al., 2004; Xiong et al., 2001) (nine of eighteen α subunits also 

contain an additional ~200 amino acids αA/αI domain) (Larson et al., 1989) and a ~250 

amino acid βA/βI-like domain inserted in a hybrid domain of β subunit. The αA/αI domain 

and βA/βI-like domain are homologous to small ligand-binding von Willebrand Factor type 

A (vWFA) domain (Arnaout, 2002; Arnaout et al., 2007). The βA/βI-like domain contains 

two additional segments: one forms the interface with the β-propeller, and the other is a 

specificity-determining loop (SDL) mediating the ligand-binding (Luo et al., 2007). As 

structures of αVβ3 and αIIbβ3 showed, the α subunit leg domain is composed of an 

immunoglobulin-like “thigh” domain, a genu loop, and two similar β-sandwich domains 

named calf-1 and calf-2. The β subunit leg is formed by a plexin-semaphorin-integrin (PSI) 

domain, a hybrid domain (Bork et al., 1999), four tandem epidermal growth factor (EGF)-

like domains, and a β-tail domain (βTD) (Bode et al., 1988; Janowski et al., 2001). The knee 

of the α subunit (α genu) lies at the junction between the thigh and calf-1 domains, and the 

knee of the β-subunit (β genu) is within the PSI and EGF1–2 region (Takagi and Springer, 

2002). In integrins containing an αA/αI domain, ligand binding is mediated by this domain. 

As for integrins lacking the αA/αI domain, binding sites of ligands localize in the interface 

between β subunit β-I domain and α subunit β-propeller domain. Transmembrane domains 
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of both α and β subunits are single α-helixes. NMR studies of αIIbβ3 show that the 

transmembrane domain of β3 is longer than αIIb and tilted with a ~25° angle to ensure the 

formation of inner and outer membrane clasp (IMC and OMC), which are important for 

proper integrin activity (Ginsberg, 2014; Kim et al., 2011; Lau et al., 2009; Sun et al., 2018).

Conformations of integrins

Many techniques have been applied to distinguish two major models of conformational 

changes influencing integrin affinity, namely “switchblade” (Luo et al., 2007) and 

“deadbolt” (Arnaout et al., 2005). Although height change is a conspicuous readout, no 

consistent conclusions have been drawn owing to the plasticity of integrin structure. Most 

studies of ectodomains favor the switchblade model: extension (E+) of the integrin is the 

prerequisite for rearrangement of the ligand-binding site, leading to high affinity (H+). Three 

major conformations with different ligand binding affinities provide evidence for this model: 

inactive bent ectodomain with low-affinity headpiece (E−H−), primed extended ectodomain 

with low-affinity headpiece (E+H−) with low affinity, and fully activated extended 

ectodomain with high-affinity headpiece (E+H+) (Chen et al., 2010; Springer and Dustin, 

2012; Takagi et al., 2002). However, crystallography results showed that the conformations 

of bent ectodomain with open headpiece (E−H+) found in αvβ3 and αXβ2 (Sen et al., 2013) 

had the capacity to bind its ligand. In primary human neutrophils, the “switchblade” 

transition (E−H− to E+H− to E+H+) was observed. And an alternative transition from E−H− to 

E−H+ to E+H+ was also observed (Fan et al., 2016). E−H+ β2 integrins bind intercellular 

adhesion molecules (ICAMs) in cis (Fan et al., 2016) and form a face-to-face orientation 

(Fan et al., 2019), inhibiting leukocyte adhesion and aggregation (Fan et al., 2016). E−H+ 

αMβ2 integrins were shown binding FcγRIIA in cis to limit antibody-mediated neutrophil 

recruitment (Saggu et al., 2018). These findings suggest an alternative allosteric pathway 

other than the “switchblade” model.

Integrin labeling in fluorescence imaging

Monoclonal antibodies—Immunofluorescent staining is the most commonly used 

method for integrin labeling, and antibody selection is extremely important for studying 

integrins. Monoclonal antibodies targeting different epitopes of specific integrin α and β 
subunits have been developed (Tab. 1). Some of these have been discussed in a previous 

review (Byron et al., 2009). Briefly, most of these clones target human integrins and can be 

classified into three categories: blocking/inhibitory, non-blocking/non-functional, and 

stimulatory/activation specific. Blocking antibodies can be used in integrin loss-of-function 

assays, such as adhesion and phagocytosis, or testing integrin expression when there is no 

ligand binding, such as flow cytometry. Non-blocking antibodies do not interfere with the 

biological functions of integrins. Thus, they are useful in live-cell fluorescence imaging to 

monitor the expression, localization, and clustering of integrins when interacting with 

ligands (Ezratty et al., 2009; Garmy-Susini et al., 2013; Huang et al., 2009; Jamerson et al., 
2012; Shao et al., 2019; Tchaicha et al., 2011; Xiao et al., 2019). Among integrin antibodies, 

a unique kind of integrin antibody recognizes epitopes only expressed when integrins are 

activated or inactivated. Some of them further stabilize certain conformation(s) by steric 

effect resulting in enhancement or attenuation of ligand binding. Immunofluorescent 
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imaging using antibodies with different effects on integrin activation can help illuminate 

novel biological functions.

Integrin antibodies that recognize activated epitopes have been applied to understanding β2 

integrins-leukocyte-specific integrins that are critical for leukocyte recruitment and 

functions. Monoclonal antibody KIM127 (Robinson et al., 1992) recognizes the cysteine-

rich repeat residues in the stalk region of integrin β2 subunits (Lu et al., 2001a). Monoclonal 

antibody mAb24 (Dransfield and Hogg, 1989) recognizes Glu173 and Glu175 within the 

CPNKEKEC sequence (residues 169–176) of the β2 I domain (Kamata et al., 2002; Lu et 
al., 2001b). These epitopes are shielded by the stalk region, and the αA/αI domain or the β-

propeller of integrin α subunit are exposed and recognized by KIM127 and mAb24 upon 

integrin activation. KIM127 binding indicates integrin extension (E+), and mAb24 binding 

indicates rearrangement in the ligand-binding site leading to high-affinity (H+) (Kuwano et 
al., 2010; Lefort et al., 2012; Sorio et al., 2016). Owing to noninterference with each other 

(Fan et al., 2016), KIM127 and mAb24 were used to label different conformational states of 

β2 integrin on live human neutrophils (Fan et al., 2019; Fan et al., 2016; Sun et al., 2020a; 

Wen et al., 2020b), which enables to distinguish E+H−, E−H+, and E+H+ β2 integrins in live 

cells and. These studies demonstrated that other than the canonical switchblade model (E−H
− to E+H− to E+H+), an alternative integrin activation pathway (E−H− to E−H+ to E+H+) 

exists on primary human neutrophils. Monoclonal antibody 327C has been mapped to the 

upstream C-terminal region between amino acids 23 and 411 of the β2 integrin and also 

reports β2 integrin H+ (Zhang et al., 2008). 327C has been used to monitor β2 integrin 

activation during neutrophil migration (Green et al., 2006) and T cell spreading (Feigelson et 
al., 2010) using epifluorescence imaging, and neutrophil-platelet interaction using confocal 

microscopy (Evangelista et al., 2007).

Antibodies for activated integrins have also been used to study β1 integrins, which are 

expressed on various cells, such as leukocytes (Rullo et al., 2012; Werr et al., 1998), 

endothelial cells (Xanthis et al., 2019), epithelial cells (Spiess et al., 2018), and fibroblasts 

(Samarelli et al., 2020), and they are critical for several cell functions, such as adhesion and 

migration. Monoclonal antibody 9EG7 binds to the upper portion of the lower β-leg, which 

is approximately within the I-EGF2 domain, and reports β1 integrin extension (Lenter et al., 
1993; Su et al., 2016) similar to KIM127 binding in β2 integrin. Antibody 12G10 binds to 

the βI domain of high-affinity β1 integrin (Su et al., 2016), which is similar to mAb24 

binding in β2 integrin. Using 9EG7, 12G10, and a pan-β1 integrin antibody AIIB2, distinct 

nanoclusters of active and inactive β1 integrins have been identified in focal adhesions (FAs) 

(Spiess et al., 2018). Antibody TS2/16 binds an epitope similar to what 12G10 binds, where 

it activates and appears to stabilize an H+ βI domain conformation without requiring 

extension or hybrid domain swing-out (Van De Wiel-Van Kemenade et al., 1992). 

Antibodies HUTS-4, HUTS-7, and HUTS-21 recognize overlapping epitopes located in the 

hybrid domains of the β1 subunit. Their expressions parallel the ligand-binding activity of 

β1 integrins induced by various extracellular and intracellular stimuli (Luque et al., 1996; Su 

et al., 2016).

Antibodies recognizing and binding to the inactive conformation or that inhibit function are 

also used for integrin labeling. mAb13 recognizes an epitope within the βI domain of β1 
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integrin and is dramatically attenuated in the ligand-occupied form of α5β1. The binding of 

mAb13 to ligand-occupied α5β1 induces a conformational change in the integrin, resulting 

in the displacement of the ligand (Mould et al., 1996). Antibody SG/19 has been reported to 

inhibit the function of the β1 integrin on the cell surface. SG/19 recognizes the wild-type β1 

subunit that exists in a conformational equilibrium between the high and low-affinity states 

but binds poorly to a mutant β1 integrin that is locked in a high-affinity state. SG/19 binds 

Thr82 located at the outer face of the boundary between the I-like and hybrid domains of the 

β1 subunit. SG/19 attenuates the ligand-binding function by restricting the conformational 

shift to the high-affinity state involving the swing-out of the hybrid domain without directly 

interfering with ligand docking (Luo et al., 2004). Monoclonal antibody SNAKA51 binds to 

the calf-1/calf-2 domains of the α5 subunit when the α5β1 integrin is active (Su et al., 
2016). Alexa Fluor 488-conjugated SNAKA51 facilitates the detection of a conformation 

that promotes fibrillar adhesion formation. Gated stimulated emission depletion (g-STED) 

confocal microscopy analyses of PPFIA1 (protein tyrosine phosphatase receptor type F 

polypeptide interacting protein α1) and SNAKA51 activating α5β1 integrin in endothelial 

cells indicates that PPFIA1 localizes close to both focal and fibrillar adhesions (Mana et al., 
2016).

β3 integrins are also widely expressed, and antibodies have been developed to study their 

functions. Vitronectin receptor integrin αVβ3 is expressed on leukocytes (Antonov et al., 
2011), endothelial cells (Liao et al., 2017), and platelets (Bagi et al., 2019), etc. Active and 

inactive conformations of αVβ3 integrins can be detected by antibodies anti-αVβ3 clone 

LM609 and clone CBL544, respectively (Drake et al., 1995). WOW-1 is a ligand-mimic Fab 

fragment that reports αVβ3 integrin activation (Pampori et al., 1999). It has been used in 

detecting αVβ3 integrin activation on endothelial cells during shear sensing (Tzima et al., 
2001) and migration (Lu et al., 2006) using fluorescence imaging. αIIbβ3 integrins are also 

known as glycoprotein IIb/IIIa and expressed on platelets (Adair et al., 2020; Chen et al., 
2019; Ting et al., 2019). Antibody MBC370.2 binds to the calf-1 domain of the αIIb chain 

and reports the E+ of αIIbβ3 integrins (Zhang et al., 2013). PAC-1 is a ligand-mimic 

antibody and binds to both the β-propeller and βA/βI-like domains of H+ αIIbβ3 integrins 

(Kashiwagi et al., 1997). AP5 recognizes an epitope in the β3 PSI domain and reports hybrid 

domain swing-out (Cheng et al., 2013). By using these three antibodies, it has been 

demonstrated that biomechanical platelet aggregation is mediated by E+ but not H+ of 

αIIbβ3 integrins (Chen et al., 2019).

Integrin α4β7 is a lymphocyte homing receptor that mediates both rolling and firm adhesion 

of lymphocytes on vascular endothelium, two of the critical steps in lymphocyte migration 

and tissue-specific homing (Berlin et al., 1993; Iwata et al., 2004). Integrin α4β7 is the 

target of the most successful integrin drug vedolizumab, which is a human-derived blocking 

antibody and has recently proven useful in the treatment of inflammatory bowel diseases 

(Fedyk et al., 2012; Ley et al., 2016; Sands et al., 2019; Zingone et al., 2020). An activation-

specific antibody J19 for integrin α4β7 has been developed (Qi et al., 2012). This antibody 

does not block the mucosal vascular addressin cell adhesion molecule 1 (MAdCAM-1) 

binding site. Its binding site has been mapped to Ser-331, Ala-332, and Ala-333 of the β7 

A/I-like domain and a seven-residue segment from 184 to 190 of the α4 β-propeller domain.
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Fluorescent proteins—Since the molecular cloning of green fluorescent protein (GFP) 

from the jellyfish Aequorea victoria (Chalfie et al., 1994; Prasher et al., 1992; Ward et al., 
1980), a wide spectrum of fluorescent proteins have provided excellent opportunities to 

monitor integrin localization and dynamics in living cells and tissues.

To study the separation of integrin α and β “legs” during activation, the monomeric cyan 

fluorescent protein (mCFP) and monomeric yellow fluorescent protein (mYFP) were fused 

to the C-termini of the α and β cytoplasmic domains of αVβ3, respectively (Kim et al., 
2003). The “leg” separation was demonstrated by the decrease of Förster resonance energy 

transfer (FRET) from mCFP to mYFP. A similar strategy has been applied to study αMβ2 

integrin activation as well (Lefort et al., 2009). To extend this idea in studying integrin 

activation in mouse disease models, knock-in (KI) mice with αM-mYFP (Lim et al., 2015), 

αL-mYFP (Capece et al., 2017), or β2-mCFP (Hyun et al., 2012) were generated, in which 

the fluorescent proteins were inserted into the C terminus of each integrin. Intravital imaging 

was then performed to visualize αM-mYFP+ leukocytes (Lim et al., 2015) or β2-mCFP 

leukocytes (Hyun et al., 2012) within inflamed or infected tissues. The αL-mYFP KI mice 

helped reveal an intracellular pool of integrin αLβ2 involved in CD8+ T cell activation and 

differentiation (Capece et al., 2017). In combined KI mice, activation of αLβ2 and αMβ2 

was observed during neutrophil transendothelial migration by intravital microscopy (IVM) 

(Hyun et al., 2019).

In another study, GFP was inserted into the β3-β4 loop of blade 4 of the αL integrin β-

propeller domain with no appreciable influence on integrin function and conformational 

regulation (Nordenfelt et al., 2017). The orientation of GFP can be measured by emission 

anisotropy microscopy (Ghosh et al., 2012; Nordenfelt et al., 2017; Ojha et al., 2020). Thus, 

they found that the direction of actin flow dictates integrin αLβ2 orientation during 

leukocyte migration (Nordenfelt et al., 2017). The role of α5 integrins in cell adhesion and 

migration was investigated by introducing the eukaryotic expression vectors pEGFP-N3, 

pECFP-N1, and pEYFP-N1 inserted with the integrin α5 cDNA and a 10–13 amino acid 

linker into CHO K1 and CHO B2 (α5-deficient) cells (Laukaitis et al., 2001). They found 

that α5 integrins stabilized cell adhesion and formed visible complexes after the arrival of α-

actinin and paxillin. Integrin β4-YFP fusion proteins were introduced into HaCat cells as a 

marker of hemidesmosome protein complexes (HPCs). Meanwhile, CFP-tagged α-actinin 

was used as a marker of focal contacts (FCs). Tight co-regulation of HPCs and FCs was 

detected in keratinocytes undergoing migration during wound healing (Ozawa et al., 2010). 

Wild type or mutated mouse integrin β3-EGFP fusion protein was used to investigate the 

mechanisms and dynamics of the clustering and incorporation of activated αVβ3 integrins 

into FAs in living cells. Formation of the ternary complex consisting of activated integrins, 

immobilized ligands, talin, and PI(4,5)P2 was found to contribute to integrin clustering 

(Cluzel et al., 2005). Fluoppi is a technology providing an easy way to visualize protein-

protein interactions (PPIs) with a high signal-to-background ratio (Koyano et al., 2014; 

Yamano et al., 2015). It employs an oligomeric assembly helper tag (Ash-tag) and a 

tetrameric fluorescent protein tag (FP-tag) to create detectable fluorescent foci when there 

are interactions between two proteins fused to the tags. This technique has been used to 
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prove the interaction of integrin β1 and Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase 

2 (PLOD2) in cell migration (Ueki et al., 2020).

In another study, an extracellular site of integrin β1 was reported suitable for inserting 

different tags, including GFP and PH-sensitive pHluorin (Huet-Calderwood et al., 2017). 

pHluorin is a GFP variant that displays a bimodal excitation spectrum with peaks at 395 and 

475 nm and an emission maximum at 509 nm. Upon acidification, pHluorin excitation at 

395 nm decreases with a corresponding increase in the excitation at 475 nm (Mahon, 2011). 

In this study, pHluorin tagged integrin β1 was used to monitor the exocytosis of β1 integrins 

in live cells. Since similar extracellular fluorescence protein insertion was performed in β2 

integrins (Bonasio et al., 2007; Moore et al., 2018; Nordenfelt et al., 2017), it is feasible to 

use pHluorin in study β2 integrin functions, such as degranulation and phagocytosis.

Other methods for fluorescently tagging integrins—HaloTag is a 34 kDa 

engineered, catalytically inactive derivative of a bacterial hydrolase. It can be fused to a 

protein of interest and covalently bound by synthetic HaloTag ligands with high specificity. 

A covalent bond can form rapidly under physiological conditions and is essentially 

irreversible. HaloTag allows adaptation of the targeted protein to different experimental 

requirements without altering the genetic construct (Los et al., 2008; Los and Wood, 2007). 

For example, Atto655 was used to generate the HaloTag655 ligand, which is suitable for 

labeling live cells by expressing a β1-integrin-HaloTag fusion protein. The resulting living 

cells are suitable for STED microscopy, and intracellular distribution of the β1-integrin such 

as filopodia and endocytic vesicles were studied in unprecedented detail (Schroder et al., 
2009). Halo and SNAP tags were also inserted into the β1 integrin extracellular domain in 

the study mentioned above (Huet-Calderwood et al., 2017). Similar to HaloTag, SNAP 

(Keppler et al., 2003) is also a self-labeling protein tag that can covalently bind to synthetic 

fluorescence dyes. Sequential fluorescence dye labeling of Halo-tagged integrin β1 can 

distinguish surface and internal β1 integrins in cells (Huet-Calderwood et al., 2017).

Many integrins bind to ECM molecules through an RGD motif. RGD peptide was found to 

bind to resting integrins and induce integrin activation. Compared to linear peptides, suitable 

optimized cyclic RGD (cRGD) peptides interact with integrins in a more selective manner 

and with higher affinity (Weide et al., 2007). Changing a three-dimensional structure or 

modifying the amino acid sequences flanking the RGD motif can enhance its ligand 

selectivity (Schaffner and Dard, 2003). Within this area, integrin αVβ3 was studied most 

extensively for its role in tumor growth, progression, and angiogenesis. It was considered an 

interesting biological target for therapeutic cancer drugs and a diagnostic molecular imaging 

probe (Ye and Chen, 2011). Fluorescein isothiocyanate (FITC)-conjugated dimeric cRGD 

peptides (FITC-RGD2, FITC-3P-RGD2, and FITC-GalactoRGD2) were used as fluorescent 

probes for in vitro assays of integrin αvβ3/αvβ5 expression in tumor tissues (Zheng et al., 
2014). Quantum dots (QDs) are fluorescent nanocrystals that absorb a wide-range spectrum 

(400–650 nm) of light and emit a narrow symmetric spectrum of bright fluorescence. These 

allow the QD signal to be clearly distinguished from the cellular autofluorescence 

background (Alivisatos et al., 2005; Gao et al., 2005; Michalet et al., 2005; Pinaud et al., 
2006). cRGD peptides and a biotin-streptavidin linkage are used to specifically couple 

individual QDs to αVβ3 integrins on living osteoblast cells. The positions of individual QDs 
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were tracked with nanometer precision, and localized diffusive behavior was observed 

(Lieleg et al., 2007). Near-infrared (650–900 nm) fluorescence imaging has provided an 

effective solution for improving the imaging depth along with sensitivity and specificity by 

minimizing the autofluorescence of some endogenous absorbers (Shah and Weissleder, 

2005; Tung, 2004). Cyanine analogs, such as Cy5, Cy5.5, were used to label cyclic RGD 

analogs for in vivo optical imaging of integrin αVβ3 positive tumors with high contrast in 

mice (Jin et al., 2006; Wang et al., 2004).

The C-terminal region of the fibrinogen γ subunit contains γC peptide uniquely binding to 

activated or primed αIIbβ3 integrin at the interface between α and β subunits (Hantgan et 
al., 2006; Springer et al., 2008; Zhao et al., 2016). Therefore, it may serve as the prototype 

for the design of a probe targeting activated αIIbβ3 integrin. Gold nanoclusters are a newly 

developed class of fluorescent particles. The gold nanocluster Au18 conjugated with γC 

peptide peptides were used to detect αIIbβ3 in HEL with an excitation wavelength of 514 

nm and an emission wavelength of 650 nm (Zhao et al., 2016). Due to the specific binding 

between the Leu-Asp-Val (LDV) peptide and integrin α4β1, fluorophore-conjugated LDV is 

commonly used to monitor changes of α4β1 integrin conformation or affinity in live cells 

(Chigaev et al., 2001; Chigaev et al., 2011b). LDV-FITC can be used as a FRET donor to 

reveal conformational changes of α4β1 under different biological conditions (Chigaev et al., 
2003b; Chigaev et al., 2004; Njus et al., 2009).

Soluble ligands ICAM-1 (Lefort et al., 2012; Margraf et al., 2020), vascular cell adhesion 

protein 1 (VCAM-1) (Sun et al., 2014), and MadCAM-1 (Sun et al., 2018; Sun et al., 2014) 

were used to detect the activation of β2, β1, and β7 integrins. In the classic article imaging 

the immunological synapse (Grakoui et al., 1999), Cy5-labeled ICAM-1 were anchored to 

the bilayer in a manner that allows their free diffusion in the supported bilayer to monitor the 

dynamic changes of integrin αLβ2 activation and distribution during the formation of the 

immunological synapse. A similar approach became a canonical method to study integrins in 

immunological synapses (Kaizuka et al., 2007; Kondo et al., 2017; Somersalo et al., 2004) 

and was also used to track active integrin αLβ2 in leukocyte migration (Smith et al., 2005).

Fluorophore-conjugated integrin allosteric antagonists and agonists are also widely used to 

label certain integrins. BIRT 377 and XVA-143 are integrin αLβ2-specific allosteric 

antagonists that belong to two distinct classes. The BIRT 377 binding site is located within 

the I domain of the αL integrin subunit. The XVA-143 site is located between the αL β-

propeller and the β2 subunit I-like domain (Shimaoka and Springer, 2003). BIRT- and XVA-

FITC were used to study conformational changes of integrin αLβ2 (Chigaev et al., 2015). A 

ligand-mimic small molecular probe has been developed to measure integrin αLβ2 

activation (Chigaev et al., 2011a).

Imaging techniques

Live-cell imaging of integrins—Live-cell imaging has been abundantly used in 

biological studies, including some for integrins. This method has given rise to tremendous 

progress in documenting dynamic cellular processes, such as cell adhesion (Fan et al., 2016; 

Morikis et al., 2017; Morikis et al., 2020; Shao et al., 2020; Sun et al., 2020a; Sun et al., 
2018; Wen et al., 2020b; Yago et al., 2015; Yago et al., 2018), migration (Kostelnik et al., 
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2019; Moore et al., 2018; Nordenfelt et al., 2017; Panicker et al., 2020; Ramadass et al., 
2019; Tweedy et al., 2020; Zhou et al., 2020), cell-cell interactions (Hanna et al., 2019; 

Kretschmer et al., 2019; Lin et al., 2015a; Lin et al., 2015b; Omsland et al., 2018; Zucchetti 

et al., 2019), endocytosis/phagocytosis (Chu et al., 2020; Freeman et al., 2020; Levin-

Konigsberg et al., 2019; Ostrowski et al., 2019; Walpole et al., 2020), exocytosis/

degranulation (Cohen et al., 2015; Thiam et al., 2020), and cytoskeleton rearrangement 

(Balint et al., 2013; Ostrowski et al., 2019; Walpole et al., 2020), in real-time and down to 

the single molecular level (Balint et al., 2013; Katz et al., 2017; Katz et al., 2019; Moore et 
al., 2018; Mylvaganam et al., 2020). Fluorescent probes and proteins have been ubiquitously 

utilized in live-cell imaging, allowing observation of dynamics and function of cellular 

structures and macromolecules, such as integrins, over time and in-depth.

In epifluorescence microscopy, which is the most commonly used wide-field microscopy, all 

the emission light around the focal plane captured by the objective, which depends on its 

numerical aperture, is sent to the detector leading to high light-collecting efficiency. The use 

of the pinhole in confocal laser scanning microscopy (CLSM) decreases the background 

signal from out-of-focus light and increases the signal-to-background ratio. However, CLSM 

is limited by phototoxicity/photobleaching. This is mainly due to that most confocal 

microscopes have detectors with low quantum efficiency, such as photomultiplier tubes 

(PMT), in comparison to epifluorescence microscopes, such as charge-coupled device 

(CCD) or complementary metal-oxide-semiconductor (CMOS) cameras. Thus, to acquire 

images of similar brightness, CLSM needs higher power of the excitation light than 

epifluorescence microscopy. On the other hand, most CLSM setting has a limited imaging 

speed due to its scanner. For example, most CLSM has a laser dwell time of ≥1 μs per pixel 

(Straub et al., 2020), which means that it will take more than 0.25 seconds to acquire a 512 × 

512 image (≤4 frames per second). In comparison, most cameras in epifluorescence 

microscopes allow an imaging speed of ≥20 frames per second (1280 × 1024 pixels). The 

low speed of CLSM can be overcome by using a high-cost resonant scanner, which allows a 

speed of 30 fps for 512 × 512 images. Thus, if the specimen is a monolayer, epifluorescence 

microscopy might be a good choice (Stephens and Allan, 2003; Waters, 2007).

Epifluorescence microscopy has been used to monitor β2 integrin activation during 

leukocyte rolling on selectins (Kuwano et al., 2010). In the study developing the integrin 

αL-mYFP mice, an intracellular pool of αL integrins was discovered in CD8+ T cells using 

epifluorescence microscopy (Capece et al., 2017). In the study of the integrin αM-mYFP 

mice, epifluorescence images showed that αM integrins enriched in the lamellipodia during 

neutrophil migration (Lim et al., 2015). Epifluorescence-based live-cell fluorescence 

lifetime imaging microscopy (FLIM)-FRET has been used to demonstrate the cis interaction 

between sialylated FcγRIIA and the αI-domain of integrin αMβ2 (Saggu et al., 2018). In 

another study, epifluorescence imaging of platelet integrin αIIbβ3 showed that 

biomechanical platelet aggregation in disturbed flow is mediated by E+H− αIIbβ3 integrins 

(Chen et al., 2019).

For thicker (e.g., 20–100 μm) live-cell specimens, CLSM was used for imaging integrins 

(Fan et al., 2019; Lin et al., 2015a; Lock et al., 2018; Sahgal et al., 2019; Schymeinsky et al., 
2009). For example, the distribution of integrin αLβ2 during immunological synapse 
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formation was visualized using CLSM (Lin et al., 2015a). Imaging by CLSM, Integrin 

αVβ5 was found to forms novel talin- and vinculin-negative reticular adhesion structures, 

which may be required for mediating attachment during mitosis (Lock et al., 2018). CLSM 

was also used to investigate the recycling of active β1 integrins regulated by GGA2 and 

RAB13 (Sahgal et al., 2019). CLSM imaging of β2 integrins illustrated the role of mAbp1 in 

regulating β2 integrin-mediated phagocytosis and adhesion (Schymeinsky et al., 2009). 

CLSM helped to show the distribution of active β2 integrins during lymphocyte migration, 

and roles of talin, ZAP-70, rap2, and SHARPIN during lymphocyte migration (Evans et al., 
2011; Pouwels et al., 2013; Smith et al., 2005; Stanley et al., 2008; Stanley et al., 2012)

However, the slower imaging speed and higher phototoxicity limit its usage for live-cell 

imaging. There are some implementations that significantly increase imaging speed and 

reduce phototoxicity under the condition of CLSM. Such implementations include slit 

scanning and pinhole multiplexing methods, including spinning disk confocal microscopy 

(SDCM) (Graf et al., 2005; Maddox et al., 2003). In addition to the fundamental disk 

containing thousands of pinholes in a spiral, there is a second collector disk with a matching 

pattern of microlenses focusing excitation light with up to 70% efficiency onto the imaging 

pinholes. In combination with an electron-multiplying charge-coupled device (CCD) 

detector, SDCM turns to be an ideal solution for fast live-cell confocal imaging of thicker 

specimens (Wang et al., 2005). Using SDCM, it was found that ADP-ribosylation factor 6 

directs the traffic of α9 and β1 integrins on dorsal root ganglion neurons (Eva et al., 2012). 

The dynamic changes of β5 integrins were visualized by SDCM during mitosis, which 

suggested that a selective role for integrin β5 in mitotic cell attachment (Lock et al., 2018). 

In another study, it was found that phosphatidylinositol 3,4,5-trisphosphate binder Rasa3 

was translocated to integrin αIIbβ3 and involved in the integrin outside-in signaling on 

platelets during α-thrombin stimulation (Battram et al., 2017).

Another high-resolution live-cell imaging technique is total internal reflection fluorescence 

(TIRF) microscopy. In TIRF microscopy, a laser incident beam illuminating the boundary 

between two media of different refractive indices (usually the coverslip and the specimen) 

experiences total internal reflection. The totally internally reflected laser beam generates the 

evanescent wave, which excites fluorophores that are in the vicinity of the coverslip-

specimen interface (~100–200 nm), resulting in a very high signal-to-background image 

with a ~100 nm optical section compared to ~700 nm of confocal or wide-field (Axelrod, 

1981, 2001; Hocde et al., 2009). The high signal-to-background is at the cost of penetration. 

TIRF can only reveal structures close to the coverslip surface, such as membrane proteins 

and FAs. As a family of membrane proteins, integrin molecules are highly suitable for 

analysis with TIRF microscopy. Almost all integrin molecules have been monitored by TIRF 

microscopy. By using TIRF, it has been shown that FA disassembly during cell migration 

requires endocytosis of β1 integrins, which is regulated by clathrin (Chao and Kunz, 2009). 

TIRF imaging also showed that mechanical stimuli disassemble β1 integrin clusters and 

enhance endocytosis of integrins expressed on human umbilical vein endothelial cells 

(HUVECs) (Kiyoshima et al., 2011). H+ β2 integrins reported by monoclonal antibody 327C 

have been imaged by TIRF microscopy during neutrophil arrest and demonstrated that H+ 

β2 integrin-ICAM-1 binding initiates calcium influx (Dixit et al., 2011), and kindlin-3 is 

responsible for β2 integrin H+ (Dixit et al., 2012). H+ β2 integrins can also be reported by 
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mAb24 (Dransfield and Hogg, 1989; Kamata et al., 2002; Lu et al., 2001b), as mentioned 

before. By using TIRF microscopy, the H+ β2 integrins were found polarized to the lead-

edge during T cell migration (Hornung et al., 2020). It has also been demonstrated that β2 

integrins form podosomes of dendritic cells imaged by TIRF microscopy (Gawden-Bone et 
al., 2014). In another study, a Rap1-GTP-interacting adapter molecule (RIAM)/lamellipodin-

talin-integrin (β3) complex that guides cell migration was discovered by using TIRF 

microscopy (Lagarrigue et al., 2015). The transport of β3 to FA has been imaged by TIRF 

microscopy and was found to be regulated by an AAK1L- and EHD3-dependent rapid-

recycling pathway (Waxmonsky and Conner, 2013). The PDK1-mediated endocytosis of β3 

integrin during FA disassembly has also been monitored by TIRF microscopy (Di Blasio et 
al., 2015).

As an update to TIRF microscopy, quantitative dynamic footprinting (qDF) microscopy was 

developed in 2010 (Sundd et al., 2010), based on the calculation of the evanescent wave 

intensity and the fluorescence signals of the cell membrane. In the development of qDF 

microscopy, a two-step calibration procedure involved: (1) The distance of the closest 

approach of a stationary neutrophil with the coverslip was measured using variable angle 

TIRF microscopy and was designated Δ0 (Suppl. Fig. 3 in Sundd et al. (2010)); and (2) The 

z-distance (Δ) of any region in the neutrophil footprint is calculated by fluorescence 

intensity using the following equation, Δ = Δ0 + λ/4π × (n1
2 × sin2 θ − n2

2)−1/2 × ln 

(IFmax(θ)/IF(θ)). Fig. 2 described the Δ0 and Δ (Two examples Δ1 and Δ2 are shown). In this 

equation, λ is the wavelength of the emission light, and n1 and n2 are the refractive indexes 

of the two medium types, such as glass coverslip and cell, respectively. qDF microscopy was 

used to reveal neutrophil rolling under high shear stress (Sundd et al., 2010; Sundd and Ley, 

2013) and was used in monitoring the dynamics of β2 integrin activation during human 

neutrophil arrest (Fan et al., 2019; Fan et al., 2016). By combining qDF with conformational 

reporting antibodies KIM127 (Lu et al., 2001a; Robinson et al., 1992) and mAb24 

(Dransfield and Hogg, 1989; Kamata et al., 2002; Lu et al., 2001b), the canonical 

switchblade model of β2 integrin activation (Luo et al., 2007) was confirmed (Fan et al., 
2016). Meanwhile, an unexpected E−H+ conformation of β2 integrins was observed, which 

suggested an alternative pathway of β2 integrin activation that E−H− integrins can acquire 

high-affinity first (E−H+) and then extended (E+H+). The E−H+ β2 integrins can bind ICAM 

ligands expressed on the same neutrophil in cis and inhibit integrin activation and neutrophil 

adhesion (Fan et al., 2016).

Super-resolution imaging of integrins—The spatial resolution of microscopic 

techniques is limited by Abbe’s law, according to which the highest achievable lateral and 

axial resolution (dx,y and dz), or diffraction limits, can be:

dx,y = λ
2NA

dz = 2λ
NA2
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in which λ is the wavelength of the excitation beam, and NA is the numerical aperture of the 

microscope objective. NA = n sinα, with n being the refractive index of the medium and α 
being the half-cone angle of the focused light produced by the objective (Abbe, 1881; Hon, 

1882). For example, in a conventional microscope, when a specimen is excited by blue-

green light whose wavelength is about 488–550 nm, and an oil immersion objective with NA 

= 1.40 is used, lateral and axial resolution can be ~200 nm and ~500 nm, respectively 

(Thompson et al., 2002). Abbe’s law holds only true for wide-field microscopes.

Several super-resolution techniques circumvent the limits of diffraction and increase both 

lateral and axial resolution. One approach beyond the limit of diffraction is to sharpen the 

point-spread function of the microscope by spatially patterned excitation, including STED 

(Hell and Wichmann, 1994; Klar et al., 2000), reversible saturable optically linear 

fluorescence transitions (RESOLFT) (Hell, 2003, 2007, 2009; Hofmann et al., 2005), 

structured-illumination microscopy (SIM) (Gustafsson, 2000), and saturated structured-

illumination microscopy (SSIM) (Gustafsson, 2005). Another is a pointillist approach that 

requires localization of individual fluorescent molecules (single-molecule localization 

microscopy, SMLM), such as stochastic optical reconstruction microscopy (STORM) (Rust 

et al., 2006), photoactivated localization microscopy (PALM) (Betzig et al., 2006), 

fluorescence photoactivation localization microscopy (fPALM) (Hess et al., 2006), points 

accumulation for imaging in nanoscale topography (PAINT) (Sharonov and Hochstrasser, 

2006), ground-state depletion (GSD) microscopy (Folling et al., 2008). Expansion 

microscopy (ExM) expands the sample using a polymer system. Positions of labeled 

molecules were measured by using conventional microscopes. Based on the factor of 

expansion, the localization of these molecules in the unexpanded cells can be calculated 

back to achieve nanoscale resolution (Chen et al., 2015). Several super-resolution 

microscopy techniques have been summarized before (Galbraith and Galbraith, 2011; Pujals 

et al., 2019; Wen et al., 2020a), but some will be described here in more detail (Tab. 2).

Super-resolution imaging techniques have been used to study integrin molecules in recent 

years. Interferometric photoactivation and localization microscopy (iPALM) was used to 

visualize the three-dimensional structure of FAs, which includes the integrin αV and 

paxillin-enriched integrin signaling layer, the talin and vinculin-enriched force transduction 

layer, and zyxin and vasodilator-stimulated phosphoprotein-enriched actin regulatory layer 

(Kanchanawong et al., 2010). SIM was used to illustrate the linear β1 integrin distribution in 

FAs (Hu et al., 2015). Using a new super-resolution imaging technique with a similar 

principle to PALM, signal molecular tracking of β1 and β3 integrin molecules was 

performed, and they were found entering and exiting from FAs and repeatedly exhibiting 

temporary immobilizations (Tsunoyama et al., 2018). Using both STED and STORM 

microscopy, both active and inactive β1 integrins were visualized in FAs and were found 

segregating into distinct nanoclusters (Spiess et al., 2018). STED was also used in testing the 

colocalization of active α5β1 integrins and PPFIA1 to demonstrate the role of PPFIA1 in 

active α5β1 integrin recycling. In another study, both active β1 and β5 integrins were found 

separately located in FAs (Stubb et al., 2019) by Airyscan confocal microscopy, a super-

resolution technique with similar resolution compared to SIM (Huff, 2015). Airyscan 

confocal microscopy utilized a 32-channel gallium arsenide phosphide photomultiplier tube 

(GaAsP-PMT) area detector that collects a pinhole-plane image at every scan position. Each 

CAI et al. Page 12

Biocell. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



detector element functions as a single, very small pinhole. Knowledge about the beam path 

and the spatial distribution of each detector channel enables very light-efficient imaging with 

improved resolution and signal-to-noise ratio. αV and β5 integrins in FAs were also imaged 

by iPALM in this study. Airyscan confocal microscopy was also used to identify the 

colocalization of GGA2, RAB13, and active β1-integrins to demonstrate the role of GGA2 

and RAB13 in β1-integrin recycling (Sahgal et al., 2019), and image the localization of α11 

and β1 integrins on mammary gland stromal fibroblast spreading on collagen (Lerche et al., 
2020). GSD microscopy was used to visualize the LPS-induced colocalization of chloride 

intracellular channel protein 4 (CLIC4) and β1 integrins, demonstrating the role of CLIC4 in 

cell adhesion and β1 integrin trafficking (Argenzio et al., 2014). By using iPALM, the 

extension of αLβ2 integrins was monitored by the axial movement of the αLβ2 headpiece 

towards the coating substrate during Jurkat T cell migration (Moore et al., 2018). Using Fab 

fragments of mAb24 and KIM127, the distribution of E−H+, E+H−, and E+H+ β2 integrins 

on neutrophil footprint during arrest was visualized by STORM (Fan et al., 2019). 

Combined with molecular modeling, the SuperSTORM technique was developed (Fan et al., 
2020), and the orientation of E−H+, E+H−, and E+H+ β2 integrins were indicated. This work 

enabled visualizing integrin molecules at the single molecular level and was the first to show 

the orientation of different conformation integrins. An unexpected face-to-face orientation of 

E−H+ β2 integrins is held by cis interaction with ICAM dimers (Fan et al., 2019). Airyscan 

confocal microscopy was used in imaging β2 integrin activation on neutrophils interacting 

with HUVECs (Fan et al., 2019). Our work (Fan et al., 2019) and a previous one (Moore et 
al., 2018) mentioned above were both focusing on the conformational changes of β2 

integrins. Using iPALM, Moore et al. (2018) were able to show the E+ of β2 integrins by 

measuring the distance of β2 integrin headpiece to the substrate. In our work, we measured 

not only the E+ but also the H+ of β2 integrins. We can report all three active β2 integrin 

conformations (E−H+, E+H−, and E+H+). The pitfall of our work is that we assessed fixed 

samples, and iPALM can assess live cells. STED was used to show the colocalization of 

integrin αLβ2 and low-density lipoprotein receptor-related protein 1 (LRP1) on neutrophils 

during cytokine midkine-induced neutrophil recruitment. (Weckbach et al., 2019). PALM 

was used to identify integrin β3 nanoclusters within FAs (Deschout et al., 2016; Deschout et 
al., 2017) and discover the role of integrin β3 nanoclusters in bridging thin matrix fibers and 

forming cell-matrix adhesions (Changede et al., 2019).

Intravital imaging of integrins—Whereas cellular behavior is different between in vitro 
and in vivo settings, biological processes are the sum of individual cellular behaviors shaped 

by many environmental factors. Endless efforts have been made to image cells residing in 

live animals at microscopic resolution, giving rise to intravital microscopy (IVM), an ever-

developing field. In its infancy, blood flow within microvessels and circulating leukocytes 

targeting to inflamed tissue have been seen through bright field transillumination (Kunkel et 
al., 2000; Ley et al., 1993; Pittet and Weissleder, 2011; Ramadass et al., 2019). With the 

advent of fluorescence microscopy, genetically encoded fluorescent proteins (Cappenberg et 
al., 2019; Deppermann et al., 2020; Girbl et al., 2018; Honda et al., 2020; Hsu et al., 2019; 

Lammermann et al., 2013; Lefort et al., 2012; Marcovecchio et al., 2020; Matlung et al., 
2018; McArdle et al., 2019; Owen-Woods et al., 2020; Powell et al., 2018; Schleicher et al., 
2000; Uderhardt et al., 2019; Wen et al., 2020b; Wolf et al., 2018) and fluorescent dyes 
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staining cells ex vivo before adoptive transfer or injected directly into the animal to enable 

visualization of endogenous structures are now available (Arokiasamy et al., 2019; Bousso 

and Robey, 2004; Deppermann et al., 2020; Girbl et al., 2018; Honda et al., 2020; 

Marcovecchio et al., 2020; Marki et al., 2018; Owen-Woods et al., 2020; Rapp et al., 2019; 

Schoen et al., 2019; Uderhardt et al., 2019; Vats et al., 2020; Wen et al., 2020b; Wolf et al., 
2018). Detection of responses of individual cells within their natural environment over 

extended periods of time and space thus has become possible.

Epifluorescence microscopy can be used as IVM for studying integrins. One study showed 

that after 24 h of cecal ligation puncture, β1 integrins were found in the neutrophil 

extracellular traps in the liver and helped to sequester circulating tumor cells (Najmeh et al., 
2017). In another study, RGD-Quantum Dot was used to report integrin activation on tumor 

vessel endothelium (Smith et al., 2008). Confocal microscopes can also be used for IVM. 

Spinning disk confocal IVM was used to visualize β3 integrins expressed on vascular 

endothelial cells, which tethers and interacts with Borrelia burgdorferi in circulation during 

infection (Kumar et al., 2015). Integrin α2 has been used as a marker for platelet aggregates 

in the spinning disk confocal intravital imaging of hepatic ischemia-reperfusion injury (Van 

Golen et al., 2015). Multiphoton laser scanning microscopy is another popular method for 

IVM. Its conception is based on the principle that a fluorophore can not only be excited by 

one high-energy photon but also two simultaneous low-energy near-infrared photons with 

longer wavelengths of around 700 to 1,000 nm (Göppert-Mayer, 2009; Kawakami et al., 
1999). Two-photon excitation needs a very high local photon density, which is reached at the 

focal plane. Thus, only fluorophores in the focal plane can be excited in two-photon 

microscopy. Fluorophores outside the focal plane are highly unlikely to be excited, making a 

high signal-to-background ratio. In confocal microscopy, fluorophores outside the focal 

plane will also be exited. In comparison, two-photon microscopy will have less 

photobleaching of fluorophores outside the focal plane, resulting in the lowest phototoxicity 

possible (Squirrell et al., 1999; Svoboda and Block, 1994). Great improvement of 

penetration depths (200–300 μm or even 1000 μm) and longer recording periods can be 

achieved by this technology (Benninger and Piston, 2013; Hickman et al., 2009; Kobat et al., 
2011; Theer et al., 2003). Thus, multiphoton microscopy is a great choice of intravital 

imaging.

As mentioned before, integrin β2-mCFP mice were developed (Hyun et al., 2012), and these 

mice helped discover a β2 integrin-enriched uropod elongation during leukocyte 

extravasation using multiphoton IVM. Integrin αM-mYFP mice were developed (Lim et al., 
2015) as well. In this study, the migration of αM+ leukocytes in the cremaster or trachea 

during fMLP stimulation or influenza infection was imaged by multiphoton IVM, 

respectively. In the follow-up study using αM-mYFP/β2-mCFP and αL-mYFP/β2-mCFP 

mice (Hyun et al., 2019), the activation of integrin αMβ2 and αLβ2 were reported by FRET 

in vivo for the first time using multiphoton IVM. It was found that αLβ2 is more important 

than αMβ2 in neutrophil transendothelial migration.

Förster Resonance Energy Transfer (FRET) of integrins—Since there are large 

conformational changes during integrin activation, techniques sensitive to distance changes 

like FRET become useful tools in studying integrins. FRET used as a “molecular ruler” 
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ushered in the quantification of intermolecular interactions (Johnson, 2005; Stryer and 

Haugland, 1967). The concept of FRET was originally proposed by Teodor Förster in 1948. 

FRET is a phenomenon of quantum mechanics involving two matched fluorophores when 

the emission spectrum of the donor fluorophore overlaps with the excitation spectrum of the 

acceptor fluorophore. When the two fluorophores are in close physical juxtaposition (≤10 

nm), the excitation of the donor results in emitted photons, which are quenched by and 

transfer the energy to the acceptor, resulting in the emission of acceptor fluorescence 

(Huebsch and Mooney, 2007; Periasamy, 2001). The efficiency of energy transfer is 

inversely related to the 6th power of the inter-molecular distance:

E = 1
1 + r/R0

6

E is the efficiency, r is the intermolecular distance, and R0, known as Förster constant, is the 

value of r when this pair of donor and acceptor achieve 50% FRET efficiency. R0 depends 

on the overlap integral of the donor emission spectrum with the acceptor absorption 

spectrum and their mutual molecular orientation as expressed by the following equation:

R0 = 9 ln10
128π5NA

⋅
QDκ2

η4 ⋅ J

in which NA is Avogadro’s number; QD is the fluorescence quantum yield of the donor in 

the absence of acceptor; κ2. is the dipole orientation factor; η is the refractive index of the 

medium; and J.is the spectral overlap integral of the donor-acceptor pair (Wang and Chien, 

2007). Therefore, the range over which FRET can be observed is very narrow; only intra- 

and inter-molecular distances within ~2–10 nm can be detected (Huebsch and Mooney, 

2007; Periasamy, 2001). The FRET efficiency can be altered by any change of the 

orientation or distance between the two fluorophores (Tsien, 1998).

To obtain a FRET signal for studying the interaction of two proteins, they must be 

fluorescently labeled. One approach is to label the antibodies or antagonist/agonist binding 

to the two proteins with proper fluorophores. Fluorophore-conjugated antagonist/agonist can 

be synthesized, while labeling kits facilitating covalent binding (usually using amide bonds) 

of many different fluorescent molecules to antibodies are commercially available (Fan et al., 
2019; Fan et al., 2016; Masi et al., 2010; Wen et al., 2020b). Another approach is 

introducing genes of two fluorescent proteins (FPs) to the donor/acceptor pair of proteins, 

respectively. Owing to their excellent extinction coefficients, quantum yield, and 

photostability, cyan fluorescence protein (CFP) and yellow fluorescence protein (YFP) are 

the most commonly used pair for FRET (Giepmans et al., 2006; Tsien, 1998). Green 

fluorescence protein (GFP) and red fluorescence protein (RFP) can also be utilized as a pair 

of fluorophores for FRET (Bajar et al., 2016; Lam et al., 2012). Genetic manipulation is 

conducted to gain recombinant fused genes, and the 1:1 ratio of donor/adaptor protein to 

CFP/YFP greatly simplifies the calculations of FRET efficiency and the quantification of 

protein interactions. One drawback of fusion proteins is the possibility to exhibit altered 
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biological function or molecular structure. Thus, careful characterization before FRET is 

recommended (Masi et al., 2010; McArdle et al., 2016).

Measurements of (1) signal intensity and (2) fluorescence lifetimes are two major ways to 

determine FRET efficiency. Regarding the signal intensity method, the comparable changes 

between the intensification of the acceptor’s emission and synchronous decrease in donor’s 

emission facilitate the detection of FRET by splitting the emission from the two 

fluorophores. The split lights are then filtered through a specific filter set and collected 

separately. The downsides of this method are: (1) the excitation light of acceptor may excite 

the donor owing to the possible overlap of their excitation spectrum, (2) the leak of donor 

emission to the detecting channel of the acceptor, and (3) the faster photobleaching of the 

donor compared with that of the acceptor (Masi et al., 2010). The fluorescence lifetime is an 

intrinsic property of fluorophores. It is the characteristic time that a fluorophore stays in the 

excited state before the emission of the fluorescence photon. Fluorescence lifetime imaging 

microscopy (FLIM) uses pulsed excitation lasers to acquire quantitative information through 

measurements of fluorescence lifetimes (Lakowicz et al., 1992; Le Marois and Suhling, 

2017). Based on the fact that fluorescence lifetime decreases proportionally with the 

efficiency of FRET, FLIM-FRET serves as a precise way to determine FRET efficiency 

(Suhling et al., 2015). Although spectral overlap must always be taken into consideration in 

both methods, FLIM can rule out the influence of local fluorophore concentration or 

fluorescence intensity leading to the defects in signal intensity measurement (Lakowicz and 

Masters, 2008). There are additional strategies to measure FRET efficiency. “Donor de-

quenching” (or “Acceptor photo-bleach”) method photo-bleaches the acceptor; thus, the 

increase of fluorescence in the “de-quenched” donor is proportional to FRET efficiency. 

FRET efficiency can be determined by measurement of donor fluorescence intensity before 

and after photobleaching of the acceptor. This method is an endpoint measurement making it 

incompatible with dynamic monitoring (Carman, 2012; Periasamy, 2001; Wang and Chien, 

2007).

With the help of the improvement in microscopic techniques and labeling with fluorophores, 

great advantages have been made regarding integrin conformation and signaling. FRET can 

be used to identify the spatial movement of integrin cytoplasmic tails (Fig. 3A). In a 

classical study, leukocytes were stably transfected with FRET donor and acceptor pair 

mCFP and mYFP at the C-termini of the integrin αL and β2 subunits, respectively. In the 

resting state, high FRET efficiency was measured, indicating that the c-termini of the αL 

and β2 subunits were close to each other. Upon the triggering of the integrin inside-out 

signaling (chemokine SDF-1 and its receptor CXCR4) or outside-in signaling (ICAM-1 in 

the presence of Mn2+), the FRET efficiency was significantly reduced, indicating a spatial 

separation of αL and β2 cytoplasmic tails. Bidirectional integrin signaling is accomplished 

by coupling extracellular conformational changes to the separation of the cytoplasmic 

domains (Kim et al., 2003). A similar strategy has been applied to study αMβ2 integrin 

activation (αM-mCFP, β2-mYFP) as well (Fu et al., 2006; Lefort et al., 2009). The first 

dual-fluorescent protein KI mice - αLβ2 FRET (αL-YFP/ β2-CFP) mice and αMβ2 FRET 

(αL-YFP/ β2-CFP) mice - have been successfully constructed. By using two-photon 

intravital ratiometric analysis of (CFP/YFP) in neutrophils from these mice, determination of 
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differential regulation of integrin αLβ2 and αMβ2 during neutrophil extravasation became 

realized (Hyun et al., 2019).

FRET can also be used to identify conformational changes in the integrin ectodomain 

domains. One method is to label the integrin headpiece and cell membrane/integrin tailpiece 

with FRET donor and acceptor, respectively, to measure the extension/unbending of 

integrins (Fig. 3B). In some studies, the LDV-FITC probe binding to the α4-integrin 

headgroup and octadecyl rhodamine B incorporated into the plasma membrane were used as 

the donor/acceptor pair for FRET assays. Several publications have proved the feasibility of 

detecting the extension of integrin α4β1 (Chigaev et al., 2003a; Chigaev et al., 2008; 

Sambrano et al., 2018). Integrin αIIbβ3 at the surface of blood platelets plays a primary role 

in hemostasis. FRET using fluorescently labeled Fab fragments of monoclonal antibodies 

targeting the βA/I-like domain of β3 subunit (donor, Alexa Fluor 488 conjugated P97 Fab) 

and the calf-2 domain of αIIb subunit (acceptor, Cy3-M3 Fab or Cy3-M10 Fab) can 

determine the distance between these two domains at rest (about 6 nm) or activation (about 

17 nm) states. Researchers found that activated αIIbβ3 in living platelets exhibits a 

conformation less extended than proposed by the switchblade model (Coutinho et al., 2007). 

In another study, a FITC-conjugated monoclonal antibody against integrin αM headpiece 

and octadecyl rhodamine B incorporated into the plasma membrane were used as the donor/

acceptor pair for FRET assays to measure the extension of integrin αMβ2 (Lefort et al., 
2009). Two distinct allosteric antagonists (BIRT 377 and XVA-143) targeting the αLI 

domain and β2 subunit I-like domain were used as donors. FRET conducted on live cells 

using a real-time flow cytometry approach was used to measure the distance between these 

two donors and a novel lipid acceptor PKH 26. Researchers found that triggering of the 

pathway used for T-cell activation (phorbol ester and thapsigargin) induced rapid extension 

of the integrin αLβ2 (Chigaev et al., 2015).

Instead of attaching donor and acceptor respectively to α and β subunits, studying integrin 

micro-clustering requires attachment of both the donor and acceptor to either the α or β 
subunit within one heterodimeric integrin (Fig. 3C). In this case, integrin micro-clustering 

will lead to FRET. In a study focused on Drosophila αPS2CβPS integrin, mVenus and 

mCherry were fused to cytoplasmic and transmembrane domains of integrin β subunits. 

Mutations in α subunit cytoplastic domain (GFFNR to GFANA) or β subunit (V409D), 

which showed higher affinity for ligands, showed ~2–3-fold higher FRET values compared 

to that of wild type (Smith et al., 2007). In another study, K562 cells were transiently 

transfected with αL-mCFP, αL-mYFP, and wild-type β2, generating approximately equal 

amounts of αL-mCFP/2 and αL-mYFP/2 cells. The binding of ICAM-1 oligomers resulted 

in significant micro-clustering. In contrast, monomeric ICAM-1 did not induce integrin 

αLβ2 clustering (Kim et al., 2004). Using the same methodology, researchers found the 

disruption of the αLβ2 transmembrane domain by mutation of a key interface residue 

Thr-686 in the β2 transmembrane domain promoted binding of αLβ2 with ICAMs and 

facilitated αL microcluster formation (Vararattanavech et al., 2009).

FRET can also be used to assess interactions of the integrin headpiece with its ligands (Fig. 

3D) and integrin cytoplasmic domains with the cytoskeleton and various signaling molecules 

(Fig. 3E) during integrin inside-out and outside-in signaling. In our previous study, we used 
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FRET to detect the in-cis interaction of E−H+ β2 integrins and ICAM-1 (Fan et al., 2016). 

HA58-FITC, which binds ICAM-1 domain 1 and blocks its interaction with integrin αLβ2, 

but not integrin αMβ2, was used as the FRET donor. Antibody mAb24-DyLight 550 

binding β2 integrin H+ headpiece was used as the acceptor. When integrin αMβ2 bound 

ICAM-1 in cis, the two antibodies were close enough to have FRET. When this interaction 

was blocked by mAb R6.5, which binds to integrin αMβ2-binding domain 3 of ICAM-1, or 

replacing the acceptor by KIM127- DyLight 550 (binding to the knees of E+ β2 integrins), 

FRET did not occur. These results indicate that E−H+ integrin αMβ2 binds ICAM-1 in cis 

(Fan et al., 2016). In another study, antibodies against FcγRIIA (Alexa Fluor 488) and 

integrin αMβ2 (Alexa Fluor 568) were used as donor and acceptor, respectively, to 

demonstrate the cis interaction of integrin αMβ2 and FcγRIIA by FLIM-FRET (Saggu et 
al., 2018). High-throughput dynamic three-color single molecule-FRET tracking was 

conceived. Orthogonal labeling of RGD and PHSRN motifs within fibronectin serve as 

FRET donor (Alexa Fluor 555) and acceptor (Alexa Fluor 594) at residues 1381 and 1500, 

respectively. FRET signatures are distinctive for the folded and unfolded state. The 

extracellular domain of αvβ3 was labeled with Alexa Fluor 647. By monitoring the intensity 

of all three dyes, the impact of fibronectin conformation and dynamics on αvβ3 integrin-

binding can be determined. A more stable fibronectin-αvβ3 complex was observed when 

fibronectin exhibited a more folded conformation (Kastantin et al., 2017). Interaction of 

PKCα with β1 integrin was detected by FLIM-FRET performed in MCF7 cells, in which 

GFP-PKCα fusion protein was used as the donor, and integrin β1 antibody conjugated with 

Cy3.5 was used as the acceptor (Ng et al., 1999). Using FLIM-FRET, GFP-conjugated β1 

integrin of mouse embryonic fibroblasts was found to interact with mRFP conjugates of the 

talin rod domain and α-actinin but not the talin head domain or paxillin (Parsons et al., 
2008). Schwartz and colleagues have constructed a FRET-based tension sensor 

methodology, which consists of monomeric teal fluorescent protein (mTFP1) and 

monomeric Venus (mVenus) joined by a 40 amino-acid elastic linker (Faulon Marruecos et 
al., 2016). The elastic linker can elongate upon tensile force in the range of 0–6 pN. 

Incorporation of this reporter into the β2 subunit of integrin αLβ2 enabled researchers to 

find that actin polymerization and extracellular ligand-binding are in a positive feedback 

loop (Nordenfelt et al., 2016). FRET was used to assess the association of β1-integrin and 

ErbB2, which is an important integrator of transmembrane signaling by the EGFR family, on 

tumor cells. (Mocanu et al., 2005).

Conclusions

Overall, optical imaging of integrin molecules helps us understand the regulation of integrin 

expression, localization, clustering, conformational changes, and functions. Although there 

are various antibodies targeting integrin to visualize integrins with different conformations, 

most of these antibodies are specific for human integrin molecules. This limits the use of 

these antibodies for studying integrins in physiologically-relevant in vivo systems, such as 

mouse disease models, as well as in loss-of-function assays of integrin regulators because it 

is impossible to do genetic editing in humans. It has been reported that introducing human 

β2 integrins restores the infectious deficiency in β2 integrin knockout mice (Wilson et al., 
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1993). Thus, replacing the mouse integrin gene with human integrin cDNA might be a way 

to expand the use of existing integrin antibodies.

As we discussed, super-resolution microscopy is a powerful tool for studying integrins. 

However, their uses in integrin studies are mostly restricted to phenomenon reports and 

morphology studies. Thus, finding a way to dig into the molecular details of integrin 

regulation and function using super-resolution microscopy needs more attention. For 

example, super-resolution imaging can better assess the clustering of integrin molecules. 

Assessing the localization of important integrin modulators, such as talin, kindlin, RIAM, 

etc., by super-resolution microscopy will help understand their roles in regulating integrin 

activation.

FRET is a powerful tool to study dynamic changes in integrin conformation, but most FRET 

assays of integrins are restricted in cell lines. Only two integrin FRET mouse strains (αLβ2 

and αMβ2) were developed. Thus, the development of more integrin FRET mouse strains is 

needed to visualize integrin conformation changes in vivo. Those mice could also be used in 

studying molecular mechanisms of integrin regulation and functions or in different disease 

models.

Although many techniques were developed to visualize integrin molecules as we reviewed 

above, whether the fluorescence labeling affects integrin function needs to be demonstrated 

in the specific studies, especially for activating specific integrin antibodies and fluorescent 

protein tags. For example, KIM127 was reported to stimulate leukocyte aggregation 

(Robinson et al., 1992), and mAb24 may lock the H+ conformation of β2 integrins (Smith et 
al., 2005). Thus, when using them in imaging, whether they affect the specific function 

interested in your study becomes critical. When we use them in studying integrin activation 

during neutrophil rolling and arrest, we tested that they do not affect ligand binding of β2 

integrins and neutrophil arrest (Fan et al., 2016). This is the same case for fluorescent 

protein tags. In the iPALM study of β2 integrin (Moore et al., 2018), a mEos3.2 tag was 

inserted in the β-propeller domain of the αL-subunit of integrin αLβ2. They measure the 

axial movement of the mEos3.2 tag to report E+ of integrin αLβ2. They have tested that the 

fluorescence protein insertion in this site does not affect cell adhesion and ICAM-1 binding 

(Bonasio et al., 2007). In another study, a CFP-YFP tension sensor was inserted into the β2 

integrin cytoplasmic tail to measure the force bearing of β2 integrins during cell migration 

using FRET (Nordenfelt et al., 2016). They have demonstrated that the insertion they used 

does not affect cell migration compared to cells transfected with wild-type β2 integrins.
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FIGURE 1. Twenty-four αβ pairs of vertebrate integrins constituted by 18 α subunits and 8 β 
subunits have been classified into four separate groups.
Dark and light oranges represent α subunits with or without the αA/αI domain. Different β 
subunits were colored differently. RGD is the abbreviation of Arg-Gly-Asp peptides.
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FIGURE 2. Schematics of qDF (quantitative dynamic footprinting) microscopy.
The side-view neutrophil footprint (~100 nm) converted from the TIRF (total internal 

reflection fluorescence) membrane fluorescence image (inset image) was shown (grey 

surface). The distance of the closest approach of the neutrophil with the coverslip is Δ0. This 

is the position with the brightness cell-membrane fluorescence signal (shown in the inset 

image). The z-distance (Δ) of other positions was calculated by their cell-membrane 

fluorescence signal. Two examples (Δ1 and Δ2) were shown.
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FIGURE 3. Principles of FRET (Förster resonance energy transfer) in integrin studies.
(A) The cytoplasmic tails of α and β subunits were labeled with FRET donor and acceptor, 

respectively. The separation of cytoplasmic tails is assessed by the reduction of FRET. (B) 

The integrin headpiece and cell membrane/integrin tailpiece were labeled with FRET donor 

and acceptor, respectively. The extension/unbent of integrin ectodomain is assessed by the 

reduction of FRET. (C) The cytoplasmic tails of α or β subunits were labeled with both 

FRET donor and acceptor. The clustering of integrin molecules is assessed by the increase of 

FRET. (D–E) The interaction of integrins and their ligands (D, both in cis and in trans) or 

cytoplasmic regulators (E, interaction or force measurement) can be assessed by FRET.
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