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Abstract

Background: The floral transition plays a vital role in the life of ornamental plants. Despite progress in model
plants, the molecular mechanisms of flowering regulation remain unknown in perennial plants. Rosa chinensis ‘Old
Blush' is a unique plant that can flower continuously year-round. In this study, gene expression profiles associated
with the flowering transition were comprehensively analyzed during floral transition in the rose.

Results: According to the transcriptomic profiles, 85,663 unigenes and 1,637 differentially expressed genes (DEGs)
were identified, among which 32 unigenes were involved in the circadian clock, sugar metabolism, hormone, and
autonomous pathways. A hypothetical model for the regulation of floral transition was proposed in which the
candidate genes function synergistically the floral transition process. Hormone contents and biosynthesis and
metabolism genes fluctuated during the rose floral transition process. Gibberellins (GAs) inhibited rose floral
transition, the content of GAs gradually decreased and GA2ox and SCL13 were upregulated from vegetative (VM)
meristem to floral meristem (FM). Auxin plays an affirmative part in mediating floral transition, auxin content and
auxin-related gene expression levels were gradually upregulated during the floral transition of the rose. However,
ABA content and ABA signal genes were gradually downregulated, suggesting that ABA passively regulates the rose
floral transition by participating in sugar signaling. Furthermore, sugar content and sugar metabolism genes
increased during floral transition in the rose, which may be a further florigenic signal that activates floral transition.
Additionally, FRI, FY, DRM1, ELIP, COPI1, CO, and COL16 are involved in the circadian clock and autonomous pathway,
respectively, and they play a positively activating role in regulating floral transition. Overall, physiological changes
associated with genes involved in the circadian clock or autonomous pathway collectively regulated the rose floral
transition.

Conclusions: Our results summarize a valuable collective of gene expression profiles characterizing the rose floral
transition. The DEGs are candidates for functional analyses of genes affecting the floral transition in the rose, which
is a precious resource that reveals the molecular mechanism of mediating floral transition in other perennial plants.

Keywords: Floral transition, Circadian clock, Sugar signaling, Hormone signaling, Recurrent flowering, Differentially

expressed genes

Background

Roses have been used as garden ornamental plants and
cut flowers for centuries, which are characterized by re-
current flowering; however, little is known about the
genetic and molecular basis of the floral transition in the
species. The timing of the floral transition is mediated

* Correspondence: zaxbjfu@126.com

Beijing Key Laboratory of Ornamental Plants Germplasm Innovation &
Molecular Breeding, National Engineering Research Center for Floriculture,
Beijing Laboratory of Urban and Rural Ecological Environment, Key
Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants
of Ministry of Education, School of Landscape Architecture, Beijing Forestry
University, Beijing 100083, China

( BioMed Central

by complex regulatory networks that constantly monitor
environmental and endogenous cues.

Enormous progress has been made in research on the
genetic, epigenetic and environmental factors that trig-
ger the transition from vegetative growth to flowering in
the model plant Arabidopsis thaliana. Environmental
factors, photoperiod, and vernalization pathways mediate
the transition to flowering in cooperation with diverse
exogenous cues, including autonomous, gibberellin
(GA), trehalose-6-phosphate (T6P), and age-dependent
pathways [1, 2]. In combination, all these pathways con-
verge to mediate a set of “floral integrator genes,”
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including FLOWERING LOCUS T (FT), SUPPRESSOR
OF OVEREXPRESSION OF CONSTANSI (SOC1), CON-
STANS (CO), FLOWERING LOCUS C (FLC), and the
meristem identity genes LEAFY (LFY), APETALAI
(AP1), and FRUITFULL (FUL), which irreversibly confer
the transition from the vegetative to the reproductive
meristem [2, 3]. However, perennial plants do not die
after flowering; instead, they appropriately accomplish
the conversion from vegetative to reproductive develop-
ment once or multiple times per year. Studies of annual
plants cannot completely uncover the mechanisms of
floral transition that underlie perennial plants, such as
the rose recurrent flowering.

A few flowering genes have recently been identified in
the rose. EST sequencing using cDNA libraries has been
used to identify candidate genes, e.g., RoCOL, RoRGA,
RoGI, and RoSOCI, involved in rose floral transition [4].
Plant hormone signal transduction is involved in the
floral transition process in A. thaliana [5, 6], and auxin,
ethylene, and gibberellin signaling genes are also in-
volved in rose floral transition [5, 7]. In contrast, the role
of GA in flowering in perennial plants is inconsistent
with its role in Arabidopsis [8, 9]. GA is an inhibitor of
floral transition in nonrecurrent roses, GA metabolism
genes, RoGA200x, encoding an enzyme of active GA
synthesis, was down-regulated in floral transition,
whereas RoGA2o0x, encoding a GA inactivation enzyme,
was upregulated [9]. The TFL1I homology RoKSN, was
reported to regulate continuous flowering in the rose,
and the function of RoKSN caused continuous flowering
[10]. The application of GA3 promoted the accumulation
of RoKSN in nonrecurrent roses during spring, while it
inhibited floral transition. However, it had no function
during summer, while other factors control RoKSN in
nonrecurrent rose. In the recurrent rose, due to the in-
sertion of a copia retrotransposon, the expression level
of RoKSN was kept low year-round, and exogenous GAj3
did not affect the floral transition in recurrent rose at
any time [7]. Randoux, et al. [11] validated that ectopic
expression of RoKSN impeded the floral induction in R.
hybrid RI. However, the KSN“?* allele has not been
found in R rugosa ‘Hamanasu, which can also flower
continuously. This suggests that RoKSN is not the only
factor that controls the trait of recurrent flowering [12];
it is likely that other factors can affect the character.
Rosa chinensis ‘Old Blush’ is a common ancestor of
modern roses, and exhibits recurrent flowering, and may
thus provide the best material to study the molecular
mechanism of floral transition in the rose.

The roles of several key regulatory genes involved in
the rose floral transition have been examined; however,
the composition and mechanisms of the underlying glo-
bal regulatory networks at the transcriptome level are
still poorly understood. We used a high-throughput
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next-generation sequencing platform to sequence cDNA
libraries at three stages of the rose flower transition
process. We mined global differentially expressed genes
(DEGS) or novel transcripts and isoforms involved in the
rose floral transition. Our results demonstrated that the
DEGs between the VM and TM stages play a key role in
regulating floral transition. These results provide a com-
prehensive understanding of the molecular mechanisms
that mediate the floral transition in rose.

Results

Morphological description of the rose flowering transition
Based on the morphological changes in the shoot apical
meristem (SAM), we divided the continuous differentiation
process from the vegetative to reproductive meristem into
three stages in R. chinensis ‘Old Blush’ as follows: vegetative
meristem (VM), pre-floral meristem (TM), and floral meri-
stem (FM) (Fig. 1 and Additional file 1). Initially, at the VM
stage, the shoot length was less than or equal to 0.5 cm,
and meristems were flat and narrow (Fig. 1a-1 and b). At
TM, meristems became broader and hunched into a dome
shape, with shoots of 1.0-1.1 cm; the first 5-leaflet leaf was
visible, but did not unfold (Fig. 1a-2 and c). At conic apices,
the primordia were positioned higher than those at the VM
stage. This was designated the floral transition stage, at
which the shoot apex transformed from vegetative to repro-
ductive growth. At the FM stage, the first 5-leaflet leaf pre-
pared to unfold and the shoots were longer than 1.5 cm
(Fig. 1a-3). Importantly, the sepal primordia were visible
(Fig. 1d), the meristem initiated flower development, and
differentiated sepals, petals, pistils, and so on were observed
(Additional file 1).

Sugar and hormone contents during the flower transition
process

The total sugar and starch levels were analyzed in the
shoots at three stages during the flowering transition
process. In shoots, the total sugar content increased by
11.2% from VM to TM, but decreased by 25.7% between
TM and FM (Fig. 2a). In addition, the starch content de-
creased by 29.1% between VM and TM, and then de-
creased sharply by 41.9% from TM to EM (Fig. 2b).

The levels of hormones were also measured in shoots at
three points during the flowering transition process
(Fig. 3). The Auxin (Aux) content increased by 25.2% be-
tween VM and TM, and increased by an additional 59.3%
from TM to FM (Fig. 3a). The ABA content decreased by
31.7% between TM and FM, and increased by 23.6% from
TM to FM (Fig. 3b). GA; and GAj3 contents exhibited a
similar trend, decreasing sharply by 44.5% and 50.8%, re-
spectively, from VM to TM, and decreasing by 41.9 and
33.6%, respectively, between TM and FM (Fig. 3c and d).
GA, decreased by 44.6% from VM and TM, but increased
by 26.8% between VM and TM (Fig. 3e).
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Fig. 1 Morphology change of floral transition in rose. a Shown are axillary buds from Rosa chinensis ‘Old Blush" at different stages. The floral
transition process was analyzed at a histological level: vegetative meristem, VM (b); pre-floral meristem, TM (c); floral meristem, FM (d)

Sequencing, assembly, and annotation of the rose
transcriptome

A total of 568,805,892 raw reads were obtained. After low-
quality reads were filtered out, 550,108,308 clean reads
were selected for further analysis (Table 1). Finally, 85,663
unigenes with a mean size of 814 bp were assembled,
which lengths ranging from 201 to 17,109 bp (Additional
file 2). In total, 57.98% of the unigenes were annotated
using at least one database with an E-value threshold of
<0.5 (Additional file 3A and B); the database annotation
results are summarized in Fig. 4. Among 85,663 unigenes,
38,884 (45.39%) and 30,992 (36.17%) were annotated using
the NCBI Nr database and the Swiss-Prot protein
database, respectively. Based on a GO analysis, 28,794

(33.61%) unigenes were successfully annotated using gene
ontology (GO) assignments and classified into three GO
categories: cellular component, biological process, and
molecular function (Additional file 4). In addition, 15,309
(17.87%) unigenes were assigned to 279 pathways using
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database (Additional file 5).

Identification of differentially expressed genes using
digital gene expression tags

The repeatability of the differential gene expression
(DGE) libraries was evaluated using a PCA analysis. The
TM_YYF1 and FM_YYF2 libraries did not form a cluster
with two other replicates (Additional file 6A). To
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Fig. 3 Hormone content of shoots during the floral transition process in rose. a Auxin (Aux); b Abscisic acid (ABA); ¢ Gibberellin acid 1 (GA;); d
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improve the repeatability between replicates at the three
stages, the TM_YYF1 and FM_YYF?2 libraries were elimi-
nated and the PCA analysis was repeated. This improved
the repeatability between replicates and discrepancy be-
tween groups (Additional file 6B).

To confirm DGE at the three floral transition stages
(VM, TM, and FM), seven cDNA libraries were con-
structed (VM, TM, and FM stages with three, two, and
two biological replicates, respectively). Based on these
analyses, we identified 531 upregulated and 259 down-
regulated DEGs between VM and TM. Similarly, 277 up-
regulated and 298 downregulated DEGs and 602

Table 1 Throughput and quality of RNA-seq of DGE libraries

Library Raw reads Clean reads Q20 (%) Q30 (%) GC content (%)
VM_YYF1 65602696 63238540 95.95 90.46 46.68
VM_YYF2 57636726 55841616 95.72 89.93 46.74
VM_YYF3 63510658 61791438 95.71 89.87 46.94
TM_YYF1 55705676 53913152 95.69 89.74 46.72
TM_YYF2 74110108 71678314 9547 89.28 46.64
TM_YYF3 62125606 60033978 95.77 89.84 46.82
FM_YYF1 69117430 65960198 95.61 89.61 46.58
FM_YYF2 56955366 55430114 94.67 87.65 46.65
FM_YYF3 64041626 62220958 95.38 89.08 46.87

upregulated and 282 downregulated DEGs, respectively,
were obtained from TM to FM and VM to FM. (Fig. 5a
and Additional file 7). The most DEGs were identified
from VM to FM. A number of DEGs were not only spe-
cifically expressed between VM and TM, but between
TM and FM or between VM and FM, while a large
number of DEGs were phase-specific. There were 372,
238, and 423 DEGs for VM versus TM, TM versus FM,
and VM versus FM, respectively (Fig. 5b).

Functional enrichment of DEGs

All DEGs of the three groups were assigned to Map-
Man functional categories. The DEGs between VM
and TM were mainly enriched for RNA, hormone me-
tabolism, signaling, cell, and secondary metabolism
functions (Fig. 6a and b). DEGs that distinguished TM
and FM as well as VM and FM were, respectively,
mainly enriched for RNA, transport, and hormone
metabolism and RNA, secondary metabolism, hor-
mone metabolism, and transport. Regarding hormone
metabolism categories, the DEGs from VM to TM
were mainly associated with abscisic acid synthesis
degradation, auxin signal transduction, ethylene signal
transduction, gibberellin signal transduction, and gib-
berellin induced-regulated-responsive-activated (Fig. 6¢
and Additional file 8). In addition, in the comparison
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Fig. 4 Veen diagram of number of unigenes annotated by BLAXTx against protein databases

Swissprot

between VM and TM, the main differentially expressed
transcription factors were AP2/EREBP, GRAS, MYB do-
main, TUB, bZIP, and PHOR1 (Fig. 6d).

DEGs specifically expressed at the floral induction stage

The DEGs between VM and TM may play a key role in
floral induction. A total of 639 DEGs were specifically de-
tected between VM and TM, while 424 DEGs were specif-
ically detected between TM and FM, and 151 DEGs were
shared between the two comparisons (Fig. 7a). The phase-
specific DEGs were assigned to MapMan functional cat-
egories. The CHO metabolism, cell wall, hormone metabol-
ism, signaling, and development categories were enriched

in the analysis of specific DEGs between VM and TM
(Fig. 7b). The major CHO metabolism category included
genes encoding sucrose synthase (SUS2, ¢23831_gl; SUS6,
€19920_g1), a pfkB-like carbohydrate kinase family protein
(c19975_gl), and AGPase (c29462_gl). These genes were
predominantly involved in the sucrose and starch metabol-
ism pathways. In the development category and biosyn-
thesis subcategory, genes encoding ALF (aberrant leaf and
flower protein, c28547_g1), which is a transcriptional regu-
lator, and the protein, which is a floral meristem identity
gene involved in the transition from vegetative SAM to
inflorescence meristems, were detected [13]. E3 ubiquitin-
protein ligase COPI-like (c30945_g4) is involved in the
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photoperiod  pathway. SCLI3  (scarecrow-like 13,
€20369_gl) is a member of the GRAS gene family and is in-
volved in the gibberellin signal transduction pathway. In
the RNA regulation of transcription subcategory, the zinc
finger protein CONSTANS-LIKE 16-like (c30323_gl) func-
tions as the central regulator of the photoperiod pathway.
The B3 domain-containing transcription factor VRNI
(c32035_gl) is an APETALAI1/FRUITFULL homolog, and
activates flowering in a rhythmic manner. These genes were
specifically differentially expressed between VM and TM
and regulated floral induction. In the RNA category, the
DEGs were associated with dozens of transcription factor
families. The TFs enriched in the VM versus TM compari-
son were AP2/EREBP, C2C2 (Zn) YABBY, C2H2, GRAS,
NAC domain, bZIP, AUX/IAA, and PHOR1 (Fig. 7c).

GO analysis of differentially expressed genes

Up- and downregulated DEGs between VM and TM
were subjected to an enrichment analysis for GO anno-
tation terms. In total, 791 DEGs were divided into three
categories, cellular component, biological process, and
molecular function. In the biological process category,
the upregulated and downregulated DEGs were enriched
for genes involved in metabolic processes, cellular pro-
cesses, and single-organism processes. In the molecular
function category, the upregulated and downregulated
DEGs were mainly enriched for catalytic activity and
binding. In the cellular component category, the upregu-
lated DEGs were mainly associated with the cell, cell
part, membrane, and macromolecular complex subcat-
egories, while the downregulated DEGs were enriched
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for the cell, cell part, and macromolecular complex sub-
categories (Fig. 8).

KEGG pathway enrichment analysis of DEGs

To characterize the expression profile of the 1,637 DEGs,
the expression data v (from VM to TM and TM to FM)
were normalized to 0, logs™"¥™, and logf™"™. In total,
1,160 DEGs clustered into eight profiles based on an ana-
lysis using Short Times-series Expression Miner (STEM)
(Additional file 9) [14]. The DEGs between VM and TM
were mainly associated with floral transition of the rose
and genes that belonged to profiles 3 and 4 showed no sig-
nificant difference from VM to TM stage. Therefore, pro-
files 0, 1, 2, 5, 6, and 7 were chosen for subsequent
analyses. Profiles 6 and 7 were upregulated and contained
307 and 134 DEGs, respectively; profiles 0 and 1 were
downregulated and contained 49 and 103 DEGs, while

profiles 2 and 5 contained 107 and 183 DEGs, respectively
(Additional file 9).

All DEGs that belonged to profiles 0, 1, 2, 5, 6, and 7
were subjected to a KEGG pathway enrichment analysis.
The DEGs were assigned to 85 KEGG pathways. The
top 10 pathways are shown in Additional file 10. Partial
KEGG pathways associated with plant floral transition
are listed in Table 2. Three out of 133 unigenes in profile
5 (2.26%), 2 out of 49 unigenes (4.08%) in profile 7, and
1 out of 19 unigenes (5.26%) in profile 2 belonged to the
circadian rhythm-plant pathway, while in profiles 0, 1,
and 6, no unigene belonged to this pathway. Five our of
49 unigenes (10.2%) in profile 7, and 1 unigene account-
ing for 2.7, 5.56, and 0.74% of genes, respectively, in pro-
files 0, 1, and 6 belonged to the plant hormone signal
transduction pathway, while no unigene in this pathway
was detected in profiles 2 and 5. In addition, 38 out of
133 unigenes (28.57%) in profile 5 belonged to the
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carbon metabolism pathway, and 15 out of 136 unigenes  were annotated as FRIGIDA (FRI), which is expressed at
(11.03%) in profile 6 belonged to the starch and sucrose low levels in the VM and FM stages, but is highly
metabolism pathway. expressed in the TM stage. In addition, DEGs belonging
to profile 7 and profile 5, respectively, were annotated as
MADS and AGL11, which are also involved in rose floral

DGEs associated significantly with rose floral transition transduction (Table 3).
Table 3 shows the number of DEGs that were likely In the photoperiod pathway, two DEGs were anno-
associated with rose floral transduction. A total of 32  tated as CONSTANS, which is centrally involved in the
unigenes were mainly involved in plant hormone signal  relationship between day length and flowering [16]. They
transduction, photoperiod (circadian rhythm), sugar were assigned to profile 6, and predominantly differed in
metabolism, temperature, autonomous pathway, and the comparison between VM and TM. Additionally, the
flowering activation and repression (Table 3 and Fig. 9). circadian clock-controlled gene FLAVIN-BINDING,
In the autonomous pathway, FY and DRMI control KELCH REPEAT, F-BOX 1 (FKFI) was clustered in pro-
the flowering time and activate flowering [15], and were file 2. Two DGEs annotated as chalcone synthase (CHS)
clustered in profile 0. Two DEGs belonging to profile 5 were assigned to profile 5 and profile 7, and were

Table 2 Partial KEGG pathways associated with rose floral transition

Pathway No. of DEGs with pathway annotation Pathway ID
ALL profiles  Profile 0 Profile 1 Profile 2 Profile 5 Profile 6 Profile 7
Carbon fixation in photosynthetic organisms — 93(14.81%) 0(0.00%) 0(0.00%) 0(0.00%) 30(22.56%) 18(13.24%) 7(14.29%) Ko00710

Photosynthesis 23(3.66%) 0(0.00%) 0(0.00%) 0(0.00%)  0(0.00%) 0(0.00%) 3(6.12%) Ko00195
Pentose phosphate pathway 44(7.01%) 0(0.00%) 0(0.00%) 0(0.00%) 15(11.28%) 15(11.03%) 7(14.29%) Ko00030
Spliceosome 52(8.28%) 12(3243%) 3(16.67%) 0(0.00%) 6(4.51%) 1(0.74%) 0(0.00%)  Ko03040
Fructose and mannose metabolism 43(6.85%) 0(0.00%) 0(0.00%) 0(0.00%)  7(5.26%) 18(13.24%) 7(14.29%) Ko00051
Photosynthesis — antenna proteins 9(1.43&) 0(0.00%) 0(0.00%) 0(0.00%)  1(0.75%) 0(0.00%) 1(2.04%) Ko00196
Zeatin biosynthesis 3(0.48%) 1(2.7%) 0(0.00%)  0(0.00%)  1(0.75%) 1(0.74%) 0(0.00%)  Ko00908
Carbon metabolism 120(19.119%)  0(0.00%) 0(0.00%) 0(0.00%) 38(2857%) 18(13.24%) 7(14.29%) Ko01200
Circadian rhythm - plant 7(1.11%) 0(0.00%) 0(0.00%) 1(5.26%)  3(2.26%) 0(0.00%) 2(4.08%) Ko04712
Plant hormone signal transduction 10(1.59%) 1(2.7%) 1(5.56%) 0(0.00%)  0(0.00%) 1(0.74%) 5(10.2%) Ko04075
Starch and sucrose metabolism 23(3.66%) 0(0.00%) 0(0.00%) 0(0.00%) 4(3.01%) 15(11.03%) 2(4.08%) Ko00500
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Table 3 Number of DEGs associated with rose floral transduction
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Components All profiles Profile 0 Profile 1 Profile 2 Profile 5 Profile 6 Profile 7
Flowering activators
FY 1 1 0 0 0 0 0
DRM1 1 0 1 0 0 0 0
LFY 1 0 1 0 0 0 0
MADS 1 0 0 0 0 0 1
AGLTT 1 0 0 0 1 0 0
FRI 2 0 0 0 2 0 0
TIL 1 0 0 0 0 1 0
Sugar metabolism
Sus2 2 0 0 0 0 2 0
NECT 1 0 0 0 0 1 0
AMY 1 0 0 0 1 0 0
Circadian clock pathway
co 1 0 0 0 0 0 0
COL16 1 0 0 0 0 1 0
FKF1 1 0 0 1 0 0 0
ELIP 1 0 0 0 1 0 0
CHS 2 0 0 0 1 0 1
Auxin
YuC 1 0 0 0 0 0 1
AUX/IAA 3 0 0 0 0 2 1
SAUR 1 0 0 0 0 1 0
ABP 3 0 0 0 0 0 3
ARF 1 0 0 1 0 0 0
Gibberellin
GA2ox 2 0 0 0 0 0 1
Abscisic acid
CYP707A 2 1 0 0 0 1 0
PYL 1 1 0 0 0 0 0

upregulated between VM and TM. In total, 5 out of the
6 DEGs that clustered into the photoperiod pathway
showed upregulation from VM to TM and induced rose
floral transition (Table 3 and Fig. 9).

In the auxin signal transduction pathway, three DEGs
were annotated as auxin-binding proteins (ABPs), clus-
tered to profile 7, and showed upregulated expression
patterns. Three DEGs encoded auxin-induced protein
(AUX/IAA), two of which belonged to profile 6 and one
to profile 7; the expression level was relatively lower in the
comparison between VM and TM (Fig. 9). In addition,
one DEG was annotated as indole-3-acetic acid-induced
protein (SAUR) and clustered in profile 6 (Table 3). Only
one DEG was annotated as auxin response factor (ARF),
which is dissociated by AUX/IAA. DEGs in the auxin sig-
nal transduction pathway positively regulated the rose
floral transduction.

In the gibberellin biosynthesis pathway, only one DEG
belonging to profile 7 was annotated as gibberellin 2-
beta-dioxygenase (GAZ20x), which catalyzes the 2-beta-
hydroxylation of gibberellin precursors, rendering them
unable to be converted to active GAs (Table 3). In con-
trast, PYL9, associated with the abscisic acid signal
transduction pathway, belonged to profile 1 and showed
a gradual decline during the floral transition process
(Fig. 9). In addition, two DEGs belonging to profile 0
and profile 6 were annotated as CYP707A, which affects
ABA levels.

In the sugar metabolism pathway, two DEGs belonging
to profile 6 were annotated as sucrose synthase (SUS),
and one DEG was annotated as bidirectional sugar
transporter (NEC), belonging to profile 6. In addition,
AMY, which is associated with starch metabolism, was
classified as belonging to profile 5 (Table 3). These four
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DEGs showed similar patterns of upregulation between
VM and TM, and positively regulated rose floral trans-
duction (Fig. 9).

Confirmation of unigene expression using real-time quan-
titative reverse transcription PCR

To verify the accuracy and reproducibility of the transcrip-
tome analysis, gene-specific primers were designed for 19
DEGs (Additional file 11). R chinensis ‘Old Blush’ can
flower year-round in favorable conditions (e.g., with respect
to temperature and photoperiod); accordingly, we obtained
RNA samples from the spring, summer, and autumn as
templates, and validated the selected genes at the VM, TM,
and FM stages. The expression profiles of the majority of
candidate unigenes in the spring, summer, and autumn,
based on RT-qPCR, were consistent with the RNA-seq
results (Fig. 10 and Additional file 12). Additionally, the
expression patterns for COLI6 (c30323_gl), ELIP
(C28089_gl1), CHS (c40691_gl), BAMI1 (c34599_gl), and
GBSSI1 (c33953_gl) based on RT-qPCR were consistent
with the sequencing results. However, the expression levels
revealed by RT-qPCR in the summer and autumn samples
were inconsistent with the results obtained for spring sam-
ples using RNA sequencing. In the autumn, COL16, ELIP,
and CHS were downregulated during the floral transition.
Similarly, GBSSI and BAMI were downregulated from VM
to FM in the summer and autumn. Overall, these candidate
DEGs synergistically regulate the floral transition in the
rose. Based on these results, a hypothetical model for the
regulatory networks involved in the rose floral transition in
response to exogenous and endogenous cues was proposed,
and is summarized in Fig. 11.

Discussion

Flowering is a crucial developmental stage in the plant life
cycle, especially for ornamental flowing plants. R. chinensis
‘Old Blush’ can flower continuously year-round, this trait
is important for modern commercial roses and improves
the yield and viewing time of modern roses. In this study,
we investigated the complex molecular mechanisms
underlying floral transition in R. chinensis ‘Old Blush’.
Characterizing the transcript profiles at these three devel-
opmental stages provides a basis for identifying candidate
genes regulating the floral transition in the rose, which
could improve our overall understanding of regulatory
networks involved in perennials.

Functional enrichment of DEGs

All DEGs were annotated using MapMan software, and
this analysis indicated that DEGs in the comparison be-
tween VM and TM were enriched for RNA, hormone
metabolism, signaling, and transport functions (Fig. 6c),
indicating that plant hormone (GAs, auxin, and ABA)
signal transduction has a profound influence on the rose
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floral transition. In addition, genes in the major CHO
metabolism category, including SUS2 and SUS6 affecting
the sucrose and starch metabolisms, were enriched in
the comparison between VM and TM (Fig. 6a), but not
in the other two comparisons. We observed greater
enrichment for genes in the secondary metabolism
category for the TM versus FM comparison than the
VM and FM comparison (Fig. 6a). DEGs in the flavonoid
subcategory were enriched between TM and FM,
suggesting that shoots in the FM stage have been in the
flower development period. There were less DEGs in the
comparison between TM and FM than in the other two
groups, indicating that the TM stage and the FM stage
may involve integral processes (Fig. 5b). Regarding the
plant hormone signal transduction pathway, previous
studies have verified that auxin, ABA, and GA signaling
genes are involved in the floral transition process in rose
[7, 9, 17]. In the present study, we furthermore found
that genes involved in biosynthesis and degradation of
these hormones expressed differentially during floral
transition (Fig. 6¢).

Sugar signaling regulates flowering transition in the rose
Previous studies have demonstrated that sugars not
only act as source of energy, but also as florigenic sig-
nals in plants [18, 19]. However, limited information is
available about the regulatory role of sugar in flower-
ing transition in the rose. The fluctuating sugar and
starch levels in SAM may eventually be adjusted by al-
terations in the sugar flux or transitory starch to sugar
[20]. In this study, gene expression patterns of sugar
biosynthesis and transport were consistent with the
content changes of sugars and starches during the
floral transition process (Figs. 2 and 9 and Additional
file 13), implying that sugar may act as a florigenic sig-
nal, triggering the transition from vegetative to repro-
ductive state; similar results were observed for other
plants [21]. Moreover, the increased levels of sugar
during the floral transition also functioned as an os-
motic pull for florigens, such as SOCI, API, and
FKF1. Previous studies have indicated that there is a
close relationship between flowering transition and
sugar transporters [22]. Indeed, our results also
showed that some flower integrators, i.e., CO, COL16,
SOC1, API1, and AGLI11, are highly expressed in the
flowering transition process, and similar patterns were
observed for the expression of sugar transport-related
genes and sugar contents. This suggests that sugar
played a key role in inducing flowering by regulating
the expression of flowering-related genes, such as
SOCI1 and AP1I (Additional file 13).

Starch biosynthesis and metabolism participate in the
floral transition and promote flowering. Starch is the
most important form of carbon reserve in plants. In
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particular, linear amylose is synthesized exclusively by
GSBB1 [23]. Interestingly, the photoperiodic factor CO
regulates the expression of GBSSI and the composition
of the starch granule [24]. Our results showed that the
starch content decreased gradually from VM to FM
stage (Fig. 2b). However, starch biosynthesis genes, such
as SSI1-4, GSSS1, THI1, and SBPase, were upregulated
from VM to TM, and were slowly downregulated from
TM to FM (Fig. 9 and Additional file 13), suggesting a
higher transitory starch to sucrose ratio during the floral
transition. Admittedly, the two genes AMY and BAMI,
both participating in the starch degradation process, in-
creased from VM to TM (Fig. 9), indicating that abun-
dant soluble sugar was necessary for the flowering
transition. Similar results were obtained in Arabidopsis

[19]. However, the results of RT-qPCR for summer and
autumn revealed that the expression patterns of GBSSI
and BAM1 had no obvious changes during floral transi-
tion. This suggests a decrease of the speed of biosyn-
thesis and metabolism of starch.

T6P signaling pathway is also involved in flower induc-
tion by regulating vegetative growth and the transition
to flowering. T6P is viewed as a proxy for carbohydrate
status in plants [18]. Two genes, TPS and TPP involved
in T6P biosynthesis and degradation process, were up-
regulated and downregulated, respectively (Additional
file 13), indicating that T6P was involved in the floral
transition. Several studies have also reported that T6P
and AKIN10 (SnRKI) kinases play an opposite role in
regulating the flowering transition in response to
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Fig. 11 Hypothetical model for the regulatory networks of floral transition in the rose

carbohydrate levels [25]. AKINIO decreased gradually
from VM to FM (Additional file 13). Several SBP tran-
scription factors, such as SPL3, SPL4, SPL9, and SPL10,
which were floral activators, are inhibited by miRNA156.
However, T6P represses the expression of miRNAI156
and indirectly activate SPLs to promotes the transition
to flowering [26]. T6P also directly promotes FT, regu-
lating the flowering transition via the T6P pathway [1].
Sugar signaling participates in the floral transition via
multiple pathways. It will be interesting to study abnor-
mal internal sugar levels in the rose to clarify these
results.

Hormone signaling mediates flowering transition in the
rose
Plant hormones, as components of the flowering time syn-
drome, have been studied in model plants [27]. However,
the intricate hormone regulatory networks underlying the
floral transition in perennial plants remain unclear. In this
study, we analyzed the gene expression profiles associated
with hormone biosynthesis and signal regulatory pathways
during floral transition process (Additional file 14).

GAs are important hormones involved in seed germin-
ation, floral induction, and development. Previous stud-
ies have demonstrated that GA plays a positive role in
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mediating the floral transition in Arabidopsis [5]. In con-
trast, GA negatively regulates the floral transition in
woody plants, such as orange and apple [8, 28, 29].
However, a recent study showed that GA has dual, an-
tagonistic roles in regulating the switch from vegetative
to reproductive development. GA promotes the termin-
ation of vegetative development, but inhibits the floral
transition in Arabidopsis [30]. In this study, the levels of
GA;, GA3, and GA, decreased sharply from VM to TM
(Fig. 3c-e), and GA biosynthesis genes, such as CPS, KO,
GA200x1, and GA3o0x, were downregulated from VM to
TM (Fig. 9 and Additional file 14), while GA2ox, catalyz-
ing bioactive GAs to inactive forms, was upregulated
from VM to TM. These changes eventually contributed
to low levels of GA, thus indicating that GA played a
negative role in mediating the floral transition in the
rose. The DELLA protein is a central node in GA sig-
nals, which interacted with SPL3/4 to induce API and
indirectly induce LFY; jointly inducing the floral transi-
tion [30]. Our results showed that DELLA proteins
(GAL RGL, and SCL4), SPL4, AP1 were all upregulated
from VM to TM (Fig. 9 and Additional file 14), indicat-
ing that DELLA proteins play vital roles in inducing the
onset of flowering transition. GAMYB, a downstream
component of GA response, binds to the promoter of
LFY and enhances LFY expression; moreover, GAMYB
can also transactivate a barley a-amylase promoter [31].
In the current study, a-amylase was upregulated from
VM to TM (Fig. 9), suggesting that GA may interact dir-
ectly with the starch metaolism or indirectly regulated
the floral transition in the rose. It is worth mentioning,
that naturally occurring GA4 is the most active GA dur-
ing the floral induction process in A. thaliana [32].
However, the content of GA3 was much higher than
GA; and GA4 in the rose shoot apex, suggesting that the
roles of GAs in rose floral transition are different from
their roles in A. thaliana.

The role of auxin during the floral transition has been
widely studied in the model plant, but less is known
about its function in woody plants. Strawberry and rose
belong to the same species, which can flower continu-
ously. It has been reported that the spatial distribution
of endogenous auxin and ABP protein gradually concen-
trated in the SAM during the floral transition process,
indicating that auxin played a pivotal role in mediating
the floral transition in the strawberry [33]. In the study,
auxin contents and DEGs, YUC, and ABP, were syn-
chronously upregulated from VM to TM (Figs. 3a and
9), while auxin-induced proteins, such as 5NG4 and
SAUR, decreased (Additional file 14), suggesting that
auxin-related genes involved in the floral transition in
the rose. Similar observations have been reported in the
seasonal rose R wichurana [17]. The previous study
demonstrated that auxin levels could be triggered by
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warm temperatures and elevated temperatures during
the circadian clock window could promote flowering
[34], indicating that an intricate regulatory relationship
exists among the circadian clock, temperature, and auxin
pathways. Further experiments are necessary to refine
these relationships.

In the present study, ABA contents in the SAM of the
rose were higher compared to other hormones, and de-
creased from VM to TM (Fig. 3b). The ABA synthesis gene
NCED and its receptors, PYL and PYR, decreased during
the floral transition process (Fig. 9 and Additional file 14),
suggesting that genes involved in ABA signals may play an
inhibitory role in the rose. However, Cui et al. [35] reported
that ABA could promote LcAPI and trigger the floral tran-
sition in Litchi chinensis. SnRK1 is involved in the sugar
metabolism and also a key component of the ABA signal-
ling pathway, which functions as a positive regulator in
ABA signals [36], indicating that sugar may interact with
ABA, consequently mediating floral transition. In addition,
FCA is an ABA-binding protein, and the application of
ABA affects the ratio between the long and short splice
forms of FCA, and represses flowering [37].

Flowering pathway in the rose during floral transition
The transition from vegetative to reproductive growth is
a major physiological change in response to environ-
mental (photoperiod, vernalization) and internal cues
(autonomous, GA, sugar metabolism, and age) in A
thaliana [1]. FKF1 is a circadian clock-controlled gene,
which activates CO and interacts with GI [30]. In this
study, FKF1 was downregulated from VM to TM, while
CO and COLI6 increased (Table 3, Additional file 15),
indicating that photoperiod (circadian rhythm) positively
mediated the rose floral transition.

Vernalization, i.e., the acceleration of flowering by ex-
tended exposure to cold conditions, epigenetically si-
lences FLC via Polycomb proteins, which deposit the
repressive histone mark H3K27me3 [38]. However, since
R. chinensis ‘Old Blush’ can flower continuously through-
out a year, we inferred that the flowering transition of
rose is not influenced by vernalization. In fact, FLC does
not express during floral transition in R chinensis ‘Old
Blush’ (not seen in data from RNA-seq and RT-qPCR).
Interestingly, the key regulator, FRI, which has been re-
ported to activate the expression of FLC in A. thaliana
[39], was upregulated from VM to TM (Fig. 9). This dif-
ference requires further experiments to explore their po-
tential functional diversification in regulating floral
transition. Additionally, several genes expression in am-
bient temperature conditions were also differentially
expressed, including HSP70 and HSE, which were upreg-
ulated from VM to TM (Additional file 15). A previous
study demonstrated that plants induced to flower by
temperature and photoperiod cues exhibit high HSP70
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expression and gradual increases in temperature [40]. In
the current study, HSP70 increased from VM to TM
(Additional file 15). The autonomous pathway is another
important regulatory route including FCA, FY, FPA,
FLD, LD, DRM!1 and so on, which function via a nonlin-
ear hierarchy and generally promote flowering by repres-
sing FLC, independently of vernalization [29]. During
floral transition, FY, FCA, FPA, and DRMI were all
downregulated from VM to TM, suggesting that autono-
mous pathway genes may promote flowering before the
pre-floral stage.

The regulatory mechanism of flowering in the rose is
complex, environmental and developmental factors con-
verge towards a few floral integrator genes, such as SOC1,
CO, LFY, and API, which irreversibly contributes to the
transition from VM to FM. TFLI is downregulated from
VM to FM and upregulated from TM to FM, which is
consistent with its inhibitory role in the floral transition at
the earliest stage, and its regulation of the inflorescence
meristem during floral development [11]. The circadian
rhythm involved connected feed-back loops, including
CCA1, LHY, GI, FKFI, activated photoperiodic central
gene, CO, which promoted flowering by activating SOC1.
Subsequently, SOCI induced the expression of meristem
identify regulators, i.e., LFY and API, to initiate flowering
transition. In this case, LFY exhibited highest expression
at the first stage, suggesting that LFY expression increased
quickly before flowering commences, as observed in Ara-
bidopsis [41]. A previous mapping study has already re-
ported that the rose ortholog of the A. thaliana flowering
time gene SPY is in close proximity to the RB locus [9]. In
the study, SPY were upregulated during the flowering
transition (Additional file 14), suggesting that SPY func-
tions as a positive regulator for mediating flowering in the
rose. Clearly, additional experiments are necessary to val-
idate these proposed roles. In addition, MiR156-SPL regu-
lates flowering in A. thaliana by interacting with age-
dependent or sugar budget pathways. Furthermore, SPL3/
9 promotes the floral transition by activating MADS-box
genes [26]. In the present study, several MADS-box family
(AGLs, MADS-box protein, and SVP) and SPL family
genes were jointly upregulated during the floral transition
of the rose (Fig. 9), suggesting that genes of the MADS-
box family play pivotal roles in the induction of the rose
floral transition.

Conclusions

Our results provide a comprehensive high-resolution
characterization of gene expression profiles during the
rose floral transition process. A number of DEGs were
detected from the vegetative to reproductive growth
stages, and these belonged to circadian rhythm, autono-
mous, hormone, and sugar metabolism pathways. A mo-
lecular mechanism was proposed in which many
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pathways collectively regulated the floral transition in R.
chinensis ‘Old Blush. These results provide a valuable
resource for studies in other closely related species with
similar agricultural and ornamental value.

Methods

Plant material and experimental procedures

R. chinensis ‘Old Blush’ is a diploid continuously flower-
ing rose; it contributed a key trait, recurrent flowering,
to modern roses. Spring (January) samples were collected
from a farm at Kunming Yang Chinese Rose Gardening
Co., Ltd, Yunnan Province of China (24°45'N, 102°53’E) in
2015. Summer (July) and autumn (October) samples were
obtained at the Xiao Tangshan nursery (40°09'N, 116°26’E),
affiliated with Beijing Forestry University, (Beijing, China)
in 2015. Leaves adjacent to the SAM were discarded as
soon as possible, and mixed samples (~0.3 g) for each stage
were collected from replicated plants, which were 1-year-
old cutting seedlings. All samples were collected from 12:00
to 17:00, transferred immediately to liquid nitrogen, and
stored at —80 °C until for for RNA-seq and RT-qPCR. Using
paraffin sections, vegetative meristem (VM), pre-floral
meristem (TM), and floral meristem (FM) spring samples
were identified for transcriptome sequencing and sugar and
hormone measurements, while summer and autumn sam-
ples were identified and then used for TR-qPCR. The
spring samples of the VM, TM, and FM stages were used to
construct nine libraries, named VM_YYF1, VM_YYF2,
VM_YYF3, TM_YYF1, TM_YYF2, TM_YYF3, FM_YYF],
FM_YYF2, and FM_YYF3. Each stage had three replicates.

Microscope observations

Shoots adjacent to leaves were cut and fixed quickly in
FAA solution (formalin: acetic acid: 50% ethanol =5/5/
90 v/v). Fixed samples were dehydrated with a graded
ethanol series (50 - 100%) embedded in paraffin, and sec-
tioned into 8-pm slices (Lecia Microtome, Wetzlar,
Germany). Dried sections were deparaffinized with xylene,
hydrated in a decreasing ethanol series, and stained with
Safranin and Fast Green. Slices were sealed using neutral
gum and examined under a Scope A1l microscope (Zeiss,
Jena, Germany). Figures were assembled using Adobe
Photoshop (Adobe Systems, Mountain View, CA, USA).

Measurements of sugar, starch, and hormone contents
The total sugar and starch contents were measured at three
developmental stages, VM, TM, and FM. Approximately
0.3 g fresh weight of shoots was used for sugar and starch
extraction, and sugar and starch contents were measured
using the sulfuric acid-anthrone colorimetric method [42].
We used high-performance liquid chromatography-mass
spectrometry (AB 5500, Beijing, China) to perform hor-
mone identification and quantification, according to the
protocol described in detail by Pan et al. [43].
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RNA extraction, quantification, and RT-qPCR analysis
Total RNA was extracted using EasySpin RNA Reagent
(RN38; Aidlab Biotechnology, Beijing, China) according to
the manufacturer’s protocol and treated with RNase-free
DNase I (Takara, Dalian, China) to remove genomic DNA
contamination. The specific primers for RT-qPCR were de-
signed using PrimerQuest Tool (Additional file 12), and
synthesized by Sangon Biotech Co., Ltd. (Beijing, China).
Expression levels were normalized against the reference
genes RcActin and RcTCTP [17]. RT-qPCR was conducted
using the qTOWER 2.2 PCR System (Jena, Germany) and
SYBR Green PCR Master Mix (TaKaRa, Japan). Each reac-
tion was performed in a total reaction mixture volume of
20 pL containing 2 pL of first-strand cDNA as template.
The amplification program was as follows: 3 min at 95 °C
and 40 cycles of 10 s at 95 °C and 30 s at 60 °C. Each reac-
tion was performed in three replicates. Expression levels of
candidate genes were determined using the 2™°““* method.

RNA deep sequencing and library construction

The quality and quantity of RNA was determined using
the NanoPhotometer® spectrophotometer (IMPLEN,
Westlake Village, CA, USA). Furthermore, the RNA
concentration and integrity were assessed using the
Qubit® RNA Assay Kit and Qubit® 2.0 Fluorometer
(Life Technologies, Carlsbad, CA, USA) and the RNA
Nano 6000 Assay Kit of the Agilent Bioanalyzer 2100
system (Agilent Technologies, Santa Clara, CA, USA),
respectively. A total of 3 pg of RNA per sample was
used to construct the ¢cDNA library. The library was
generated using the NEBNext® Ultra™ RNA Library
Prep Kit for Illumina® (NEB, Ipswich, MA, USA) fol-
lowing manufacturer’s instructions. Nine mixed RNA
samples were subsequently used for cDNA library con-
struction, and library quality was assessed using the
Agilent Bioanalyzer 2100 system. The amplified frag-
ments were sequenced using the Illumina HiSeq 4000
platform and 150-bp paired-end reads were obtained by
Beijing Novogene Bioinformatics Technology Co., Ltd.
(Beijing, China).

De novo assembly and annotation

For the assembly library, raw data in fastq format were first
processed using in-house Perl scripts. The raw reads were
filtered by removing adapter sequences, reads containing
poly-N sequences, and low-quality sequences. Clean reads
were de novo assembled using Trinity [44], and the tran-
scriptome reference database was obtained. All raw read
data were deposited in the Genome Sequence Archive with
the project ID PRJCA000258.

FPKM was used to obtain the relative expression levels
[45]. A differential expression analysis of the two groups
was performed using the DESeq R package (1.10.1). The
resulting P-values were adjusted using Benjamini and
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Hochberg’s approach for controlling the false discovery
rate. The DEGs were identified with a |fold change| > 1.5
and a FDR < 0.05 between each comparison. The DEGs
were annotated using the Mercator web tool [46] and
then loaded to MapMan software for a functional en-
richment analysis [47]. Additionally, gene expression
data v (from the VM to FM stage) were normalized to 0,
logt™"YM) “and logd™/ V™) and DEGs were clustered by
STEM [48]. Then Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomics (KEGG) path-
way analyses were performed [49, 50]. PCA analysis,
venn diagrams, and hierarchical clustering heat maps
in this study were generated using the gmodels, Venn
diagram and Pheatmap packages in R based on the
gene list and the levels of gene expression for each
tissue type.
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