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Abstract

Motivation: Genome-wide association studies (GWAS) have discovered thousands of significant genetic effects on
disease phenotypes. By considering gene expression as the intermediary between genotype and disease pheno-
type, expression quantitative trait loci studies have interpreted many of these variants by their regulatory effects on
gene expression. However, there remains a considerable gap between genotype-to-gene expression association
and genotype-to-gene expression prediction. Accurate prediction of gene expression enables gene-based associ-
ation studies to be performed post hoc for existing GWAS, reduces multiple testing burden, and can prioritize genes
for subsequent experimental investigation.

Results: In this work, we develop gene expression prediction methods that relax the independence and additivity
assumptions between genetic markers. First, we consider gene expression prediction from a regression perspective
and develop the HAPLEXR algorithm which combines haplotype clusterings with allelic dosages. Second, we intro-
duce the new gene expression classification problem, which focuses on identifying expression groups rather than
continuous measurements; we formalize the selection of an appropriate number of expression groups using the
principle of maximum entropy. Third, we develop the HAPLEXD algorithm that models haplotype sharing with a
modified suffix tree data structure and computes expression groups by spectral clustering. In both models, we pen-
alize model complexity by prioritizing genetic clusters that indicate significant effects on expression. We compare
HAPLEXR and HAPLEXD with three state-of-the-art expression prediction methods and two novel logistic regression
approaches across five GTEx v8 tissues. HAPLEXD exhibits significantly higher classification accuracy overall;
HAPLEXR shows higher prediction accuracy on approximately half of the genes tested and the largest number of
best predicted genes (r2 > 0:1) among all methods. We show that variant and haplotype features selected by
HAPLEXR are smaller in size than competing methods (and thus more interpretable) and are significantly enriched
in functional annotations related to gene regulation. These results demonstrate the importance of explicitly model-
ing non-dosage dependent and intragenic epistatic effects when predicting expression.

Availability and implementation: Source code and binaries are freely available at https://github.com/rapturous/
HAPLEX.

Contact: derek.aguiar@uconn.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The ability to detect, prevent and treat complex disease is enhanced
by an understanding of the latent genetic and regulatory architec-
tures of the phenotype-related genes. Genome-wide association stud-
ies (GWAS) have identified thousands of associations between
genetic variation and disease, providing evidence for particular gen-
omic regions that influence complex traits (MacArthur et al., 2017).
However, identification of the molecular mechanisms that affect dis-
ease etiology and cause the genetic association remains difficult for a
majority of these instances (Visscher et al., 2017). Motivated by the
observation that most GWAS associations were discovered in non-

coding regions and complex diseases are ultimately functions of mo-
lecular phenotypes, expression quantitative trait loci (eQTL) studies
interpret genetic associations through their regulatory effects on
gene regulation (GTEx Consortium, 2015). In cis-eQTL analysis,
the normalized and covariate corrected expression is regressed on
the minor allele dosage for variants close to (typically 1 Mb) the
transcription start site (TSS) of the gene (i.e. cis-SNPs; Nica et al.,
2013).

Recent work has built prediction models based on the assump-
tion that significant eQTL associations should explain variation in
gene expression (Barbeira et al., 2018, 2019; Gamazon et al., 2015;
Manor and Segal, 2013). The ability to accurately infer gene
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expression from genetic data (i) enables post hoc gene-based associ-
ation tests for the hundreds of existing GWAS that lack gene expres-
sion data; (ii) reduces the multiple testing burden in GWAS (�104

gene tests instead of �106 variant tests); and (iii) enables easier
translation of findings to prioritize target genes for follow-up mo-
lecular experimentation. These methods assume that genetic vari-
ation either directly affects regulatory mechanisms by, e.g. altering
transcription factor binding, or acts as a proxy for intermediate mo-
lecular phenotypes that influence expression, e.g. variation affecting
chromatin accessibility (Degner et al., 2012; Maurano et al., 2015;
Neph et al., 2012). Although these methods have great utility for
prioritizing GWAS results, they have been shown to exhibit an ac-
curacy near 0 for most genes in the Depression Genes and Networks
(Battle et al., 2014) and Genotype-Tissue Expression (GTEx)
cohorts (GTEx Consortium, 2015; Li et al., 2018).

Explaining the gap between association and predictability
requires interpreting how specific assumptions affect model robust-
ness to varying genetic and regulatory architectures (Eichler et al.,
2010; Kong et al., 2009). All methods either explicitly or implicitly
assume a particular disease model; e.g. methods that predict expres-
sion as a linear function of independent common variants will mis-
represent rare variant contributions to common disease or
dominance effects (Carlborg and Haley, 2004; Cirulli and
Goldstein, 2010). Missing or underrepresented (e.g. structural) vari-
ation that is not linked with typed variation violate minor allele dos-
age and linkage disequilibrium (LD) assumptions (Scherer et al.,
2007). Further, intragenic epistatic interactions between variants
can alter protein conformation (Bank et al., 2015), while intergenic
epistasis has been implicated in many complex human diseases,
including Alzheimer’s disease (Combarros et al., 2009), type 2 dia-
betes (Cox et al., 1999; Wiltshire et al., 2006), autoimmune disease
(Wanstrat and Wakeland, 2001) and cancer susceptibility (Fijneman
et al., 1996). Both epistatic effects violate the independence, linear-
ity and additivity assumptions of existing linear regression models.

In this work, we consider the problem of gene expression predic-
tion from novel modeling perspectives. First, we introduce the gene
expression classification problem, which assumes expression can be
partitioned into discrete classes. Both low and high expression
groups in RNA-seq data have previously been associated with dis-
ease risk (Gamazon et al., 2015; Zheng et al., 2018) and cancer
prognoses (Tichỳ et al., 2019). Further, allele specific expression
and single-cell RNA-seq data commonly include genes with multi-
modal expression (Kharchenko et al., 2014; Shalek et al., 2013),
and recently, methods have been developed to detect differential ex-
pression in discretized expression data (Sekula et al., 2019).

Next, we present methods that relax the assumption of inde-
pendence and additivity between genetic markers, thereby modeling
intragenic epistatic and non-dosage-dependent effects. Specifically,
our methods consider shared haplotype segments (called tracts) that
are independent of allele dosages. In total, our contributions
include:

• formalizing the gene expression classification problem;
• developing an expression discretization algorithm based on max-

imum entropy to choose expression classes;
• developing the HAPLEXD algorithm for gene expression classifi-

cation, which captures the exponential haplotype tract sharing in

a compact suffix tree model. We penalize model complexity by

prioritizing clusters that affect gene expression. Finally, we repre-

sent the genetic effects on expression with a graph theoretic

model that yields an efficient spectral clustering algorithm to

classify unseen test data;
• developing the HAPLEXR algorithm for gene expression regres-

sion. HAPLEXR combines the strengths of a typical dosage

model with haplotype clusters using a penalized linear model;
• demonstrating increased classification and regression accuracy

on experimental data from five human tissues; and
• interpreting our results with respect to regulatory annotations.

In Section 2, we describe prior work on predicting gene expres-
sion from genetic data. Section 3 describes the haplotype clustering
models for classification and regression problems, penalization
methods and prediction algorithms. We present results in Section 4
and a discussion of caveats, future directions, and open problems in
Section 5.

2 Related work

Given pairs of genetic sequences and normalized gene expression as
training data, expression prediction models infer gene expression for
previously unseen genetic sequences. Prior methods make explicit
modeling assumptions on how genetic variants interact to influence
gene expression. Regularized linear models and K-nearest neighbor
(KNN) methods showed varying success in predicting the expression
from immune precursor cells when trained on cis-SNPs from
HapMap Phase II data (International HapMap Consortium et al.,
2007; Manor and Segal, 2013; Stranger et al., 2007). Surprisingly,
simple models, like using only the single SNP most correlated with
gene expression, outperform similar linear models trained on all cis-
SNPs for about one third of all genes. Non-linear models, e.g. KNN,
demonstrate greater accuracy on some genes than regularized linear
regression models, suggesting potential model improvements from
relaxing the SNP dosage and additivity assumptions (Manor and
Segal, 2013).

The seminal PrediXcan method imputes gene expression from
genomic variants using an additive genetic model (Gamazon et al.,
2015).

Yg ¼
X

j

wj;gXj þ � (1)

where Yg is the expression of gene g, wj;g is the effect size of variant j
for gene g, Xj counts the number of reference alleles for variant j
across samples and � is an independent error term capturing non-
additive and non-genetic factors influencing expression. The effect
sizes wj;g can be estimated using penalized linear regression inference
algorithms. Although lasso was found to perform similarly to elastic
net in estimating wj;g, elastic net produced results that were more ro-
bust to perturbations of the input variants (Gamazon et al., 2015).

Recent follow-up work suggests that there exists significant
opportunities to improve existing linear dosage-dependent models
(Li et al., 2018). First, methods based on penalized regression often
infer regression models with all zero coefficients. This is reflected in
the fact that the PrediXcan DGN and GTEx models predicted the
expression of only 11 538 and 6695 genes in DGN and GTEx, re-
spectively. Second, most genes were found to have estimated accur-
acy (r2) near 0. Existing methods have been shown to be useful in
the prioritization of GWAS results, reducing multiple testing bur-
den, and detecting new gene-to-phenotype associations (Gamazon
et al., 2015); but their usefulness with regards to prediction and im-
putation is fundamentally a function of their accuracy, which is lim-
ited by model assumptions.

3 Materials and methods

Linear regression methods assume that gene expression is a linear
function of additive minor allele dosages. Although computationally
and statistically convenient, these assumptions preclude modeling
non-additive gene–gene or variant–variant interaction effects (i.e.
epistasis). In this section, we present two methods, HAPLEXR and
HAPLEXD that relax the additivity and independence assumptions
on variant–variant interactions.

Let H 2 f0;1gn�p denote the haplotype data matrix. We note
that, although this representation of the haplotypes assumes biallelic
data, our methods extend to non-biallelic sequences. For ease of ex-
position, we consider the problem of finding genetic predictors of
gene expression for a single gene g and the haplotype data is split
into two sets: n�2 reference haplotypes from ðn=2Þ � 1 individuals
and two test haplotypes from a distinct individual. Our methods can

Haplotype-based gene expression prediction i195



be applied to each gene independently, for which we will omit the g
subscript for convenience, and extend to more than two test haplo-
types. Haplotypes and individuals are indexed by i; haplotypes are
denoted hi and have length p defined by a 106 bp window around
the TSS of the gene. The haplotypes for individual i are indicated by
ðh2i; h2iþ1Þ. Each individual-gene pair has a corresponding normal-
ized and covariate corrected expression value y 2 R; the collection
of which is the column vector Y. Our goal is to learn a function of
the haplotypes f(H) that predicts gene expression.

Haplotype sharing of substrings, or tracts, is central for our algo-
rithmic approaches. We define a tract for a pair of haplotypes as a
shared substring that starts and ends at the same positions in both
haplotypes. For example, if hi ¼ 0011 and hj ¼ 1010 are two haplo-
types, then the substring 01 is a shared tract, as it starts at position 2
and ends at position 3 in both haplotypes. A common theme be-
tween HAPLEXD and HAPLEXR is to compute sets of shared
tracts, called signature tract sets (STSs) that are haplotypic predic-
tors of gene expression.

3.1 Gene expression regression
We first consider the problem of predicting continuous expression
from haplotype data. To estimate gene expression, RNA-seq reads
are first mapped to the genome or transcriptome and converted to
read counts. Read counts are typically normalized to control for
gene lengths, the number of sequencing reads, batch effects and stat-
istical biases, e.g. PCR, GC-content and genetic relatedness (Conesa
et al., 2016). In eQTL analyses, the resulting expression vector Y is
typically assumed to be normally distributed after normalization
(Kendziorski et al., 2006).

The gene expression regression problem. Given a haplotype ma-
trix H 2 f0; 1gn�p, and expression vector Y, find a function f :
ðhi; hiþ1Þ7!R for i ¼ 0; 2; . . . ;n� 2 that minimizes some loss func-
tion LðY; Ŷ Þ where Ŷ is the predicted values of expression for haplo-
types in H.

We develop the statistical model, HAPLEXR, based on STSs to
solve this problem (Supplementary Methods, Section S1.1).

3.1.1 Genetic clustering model

We cluster haplotypes using an algorithm similar to the SHAPEIT
model (Delaneau et al., 2012). Let J be a positive integer denoting
the marginal partition size of a genetic clustering. Consider the set
of all unique haplotype sequences from index j to index l; let this set
be Hj!l. The genetic clustering model starts at the first variant pos-
ition j¼0, and grows the set Hj!l until jHj!lj � J. We then define a
partitioning of the haplotypes using Hj!l�1 as the cluster labels and
insert each haplotype into a cluster if and only if its sequence exactly
matches the cluster label. We iterate with j¼ l and stop when l¼p.

3.1.2 Regression model

We represent cluster membership as a one-hot encoded feature in
our model. Since humans are diploid, a single sample has two cluster
membership vectors. We sum the two vectors for a single sample
element-wise to generate the genetic model feature vector and ap-
pend SNP dosages to create the design matrix Xd. We then fit an
elastic net regression with penalization parameters k1 and k2 such
that

b
^
¼ argmin

b

1

n
jjy�Xdbjj2 þ k1jjbjj1 þ

k2

2
jjbjj2

� �
; (2)

with k1

k1þk2
¼ 0:5. We perform 10-fold cross-validation to determine

k2 with respect to mean squared error (Gamazon et al., 2015;
Pedregosa et al., 2011). The STS is then identified by the set of var-
iants with positive jb̂j values.

3.2 Gene expression classification
Next, we consider predicting discrete gene expression, for which we
require classes of expression values. Although discretizing gene ex-
pression can be implemented directly on the RNA-seq read counts,

it is unclear how one could then correct for experimental covariates.
Instead, we consider discretizing the covariate corrected expression
from the continuous modeling section into E groups using the prin-
ciple of maximum entropy.

3.2.1 Expression discretization

We define expression discretization as the grouping of the n=2 input
expression values Y into E 2 Z>0 clusters. By sorting Y in ascending
order, we can partition the elements into clusters with ascending
mean expression by choosing E � 1 breakpoints (with ties, if any, in
the same cluster). Each clustering of the expression values induces a
clustering of the n haplotypes. We choose a method for computing
the E-clustering that is free from distributional assumptions based
on the method of information entropy maximization (Jaynes, 2003;
Supplementary Methods, Section S1.4).

Let a be the average expression of the n haplotypes in Y. We
want to compute based on general principles (‘maximum ignor-
ance’) a partition of expression values Y into E clusters based only
on the information given by n, a, E and r, where r is the set of E-
averages for a particular partition of E clusters r ¼ fa1; a2; . . . ; aEg.

Note that for any E there are
n� 1
E� 1

� �
feasible r, assuming no

empty clusters. We can reformulate this partition in terms of a ran-
dom variable W with outcomes a1; a2; . . . ; aE.

Consider cluster i whose ni elements have average expression ai.
We view cluster i as a multi-set with ni elements all equal to ai, i.e.
each expression value in the cluster is replaced by its discretized
value (the cluster average). In this way, the random variable W has
the set of outcomes r, and a corresponding discrete probability dis-
tribution defined by the E-clustering. That is, the probability pi of
an observation (ai) is given by the solution of the entropy maximiza-
tion problem.

For each E 2 f2;3; 4g, we approximate the maximum entropy
solution for discretization of the expression values using a heuristic
algorithm. We compare the entropy of 100 randomized configura-
tions to partition expression values and select the partition that
yields the highest entropy �

PE
i pi log 2ðpiÞ where pi is the empirical

probability of a haplotype belonging to expression class i.
The gene expression classification problem. Given a haplotype

matrix H 2 f0;1gn�p, and discretized expression vector Yd, find a
function f : ðhi; hiþ1Þ 7!f1; . . . ;Eg for i ¼ 0;2; . . . ;n� 2 that mini-

mizes the loss function LðYd; Ŷ dÞ where Ŷ d is the predicted expres-
sion classes for haplotypes in H. Here, we develop a discrete
mathematics model, HAPLEXD, to solve this problem (Fig. 1).

3.2.2 Tractized suffix tree

Suffix trees are data structures for string representation used for
intra- and inter-string compression and pattern matching (Gusfield,
1997). We summarize the sharing of haplotype segments, or tracts,
and their gene expression in a tractized suffix tree (Aguiar et al.,
2014). The tractized suffix tree is a generalization of suffix trees
over a finite alphabet A, and is defined as follows: a string S over the
alphabet A is transformed into a string St of the same length, where
each symbol a at index j of S is replaced by a pair (a, j) in St. For our
purposes, we can encode a haplotype hi 2 f0; 1gp as a tractized
haplotype ht

i 2 f0; 1; . . . ;2pgp where each integer incorporates the
allele and positional information, i.e. ht

ij ¼ 2jþ hij for i ¼ 1; . . . ;n
and j ¼ 1; . . . ;p. For example, the tractized haplotype for hi ¼ 0011
is ht

i ¼ ð0;2; 5; 7Þ.
Formally, a tractized suffix tree GTðVT ;ETÞ is a rooted directed

tree containing only tractized strings and having O(np) leaves. The
tractized suffix tree encodes the sharing of haplotype sequences be-
tween distinct haplotypes as internal nodes (Fig. 1A). Vertices vT

k 2
VT correspond to a position in f1; . . . ; pg and each node has exactly
2 children besides the root which has �2 children. An edge ðvT

k ; v
T
l Þ

is labeled with a non-empty common substring for a subset of trac-
tized haplotypes. The tractized suffix tree’s characteristic property is
that any root-to-leaf path corresponds to a suffix of a subset of trac-
tized haplotypes. Importantly, tractized suffix trees allow inter-
string compression while enforcing zero intra-string compression.
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Given the tractized haplotype sequences ht
0; . . . ;ht

n�1, we con-
struct a tractized suffix tree using a modified Ukkonen’s algorithm
(Ukkonen, 1995; Supplementary Methods, Section S1.3). A tract is
created by concatenating the edge labels on a root-to-node path and
represents a shared substring among a set of haplotypes. Note that
tracts represent identical substrings in two or more haplotypes and
are compressed in the tractized suffix tree if and only if all substrings
start and end at the same position. Therefore, only inter-haplotype
sharing is compressed in the tree.

3.2.3 Tractized suffix tree augmentation

We build on prior work by augmenting the tractized suffix tree to
support expression prediction. We label the tractized suffix tree ver-
tices with sets of haplotypes in order to evaluate genomic tracts that
affect gene expression in subsequent algorithmic steps. First, all chil-
dren of the root are labeled with their set of descendent haplotypes.
Due to the infinite sites assumption, all non-root, internal vertices
have two children; let the parent and its two child nodes be denoted
vT

P ; vT
c1

, and vT
c2

respectively. Each internal vertex is labeled by the
tractized haplotype indices that are no longer descendent from that
vertex after traversing the edge from vP. That is, vc1

is labeled with
the tractized haplotype indices that are descendent from vc2

and con-
versely. We refer to a tree cluster as the two sets of haplotypes cre-
ated by the diverging edges from a non-root internal vertex. For
each of the 2p possible paths, a haplotype appears at most once in
these sets, yielding a O(np) space complexity.

3.2.4 Construction of the tractized suffix tree

Although linear for constant sized alphabets, the McCreight and
Ukkonen algorithms construct a suffix tree for a single p length se-
quence and O(p) alphabet in Oðp logðpÞÞ time (McCreight, 1976;
Ukkonen, 1995). Farach’s suffix tree algorithm closed the constant-
polynomial-sized alphabet gap, proving that this construction can
be achieved in linear time (Farach, 1997). However, Farach’s algo-
rithm requires reading the full input at once and is considered to be
largely a theoretical result due to large constants hidden in the com-
plexity (Senft and Dvo�rák, 2012). The construction of the tractized
suffix tree was originally proposed using Farach’s algorithm, but,
this construction is not online, a requirement for HAPLEXD. Using
the lemma that follows and algorithm details in the Supplementary
Methods, we can construct an online tractized suffix tree for n

tractized haplotypes each of length p in time O(np) using a modified
Ukonnen’s algorithm.

Lemma 1 Given an input tractized haplotype matrix of size 2pn, the

number of nodes in the tractized suffix tree is < 2pn for n � 3.

Proof. See Supplementary Methods, Section S1.3.

3.2.5 Penalization of model complexity

Given a decomposition of the expression for gene g of the n=2 indi-
viduals into E percentiles, our goal is to search for a set of shared
tracts in T that captures the differences in assignment of haplotypes
to expression percentiles (i.e. an STS). We parse the tractized suffix
tree using a depth first search. We keep an active haplotype list
which is set initially when we reach a child vc of the root node vr to
the set of haplotypes descendent from vc. Consider a parent internal
node vT

P with two internal child nodes vT
c1

and vT
c2

. When traversing
from vT

P to vT
c1

, we remove haplotype elements from vT
c2

. Likewise,
when we traverse from vT

c1
to vT

P , we add haplotype elements from
vT

c2
. Using the labels on the nodes that we created when constructing

the tree, we can selectively remove or add sets of haplotypes to track
the descendent haplotypes at any child node of the current node.

Consider an arbitrary internal vertex in the tractized suffix tree,
which has two child vertices and recall our discretization of the nor-
malized gene expression values into E classes. We evaluate the ef-
fectiveness of a tree cluster to separate expression classes using two
methods (Fig. 1B). In the first method, we create a 2� E table where
the cell (i, e) counts the number of haplotypes in tree cluster i that
have expression e. For each tractized suffix tree node we compute:

• a v2 test statistic with ðE� 1Þ degrees of freedom, and
• the conditional entropy of the observed haplotypes in expression

classes by normalizing the entries in the tree cluster contingency

tables and interpreting them as empirical probabilities.

By retaining a subset of the tract tree clusters, we penalize the
classification model complexity.

3.2.6 Spectral clustering and classification

The HAPLEXD classification model (i) creates a similarity matrix
over haplotypes, (ii) associates this matrix with an undirected
weighted graph and (iii) classifies a new individual with respect to a
spectral clustering of the graph (Shi and Malik, 2000). Let G ¼
fV;Eg be an undirected graph with weights on the edges represented
byW ¼ ðwi;jÞ, the weighted adjacency matrix of G. The vertices v 2
V represent haplotypes and the edge weights w are defined by a
similarity measure based on tract sharing. We take the top t clusters
in the tractized suffix tree and create a similarity weight wðhi;hjÞ 2
½0;1� between haplotypes hi and hj.

wðhi; hjÞ
wðhi; hjÞ ¼

cðhi;hjÞ
t

; if cðhi;hjÞ �
t

r

0; otherwise

8<
:

where r is a regularization parameter and cðhi;hjÞ counts the number
of co-occurrences of haplotypes hi and hj in tracts across the top t
clusters (i.e. part of the STS). We represent the graph G with weights
wðhi; hjÞ for i; j ¼ 1; . . . ; n as an n�n adjacency matrix (Fig. 1C).

We implement the Shi–Malik normalized spectral clustering al-
gorithm to group haplotypes with similar expression signatures (von
Luxburg, 2007). Given the graph G, the similarity matrix (the
weighted adjacency matrix of G) W, and the number of clusters E,
we first compute the unnormalized graph Laplacian matrix as
L ¼ D�W. Next, we compute the first E eigenvectors v1; . . . ; vE

of the generalized eigenproblem Lv ¼ kDv and the matrix
X ¼ ½v1; . . . ; vE�. Let the rows of X be xi; 1 � i � n where each
row corresponds to a node in V. We cluster the xi with k-means clus-
tering into clusters C1; . . . ;CE and V into clusters A1; . . . ;AE, where

A B

C D

Fig. 1. Overview of the HAPLEX algorithm. (A) The tractized suffix tree is a suffix

tree constructed from the tractized haplotype strings. Here, strings created by

appending a unique terminating character $ to haplotypes h0; h1 and h2 are trac-

tized and inserted into the tractized suffix tree. (B) We penalize the complexity of

our model by considering the clusters z1; . . . ; zt induced by the tractized suffix tree

(t� p) that most distinguish gene expression ŷ with respect to v2 or conditional en-

tropy H. The penalization measure is selected by cross-validation and the resulting

ranked clusters are denoted z	1; . . . ; z	t . (C) After the online insertion of a new sample

into the tractized suffix tree, a graph is constructed using z	1; . . . ; z	t to compute edge

weights between haplotypes. (D) Spectral clustering algorithms are used to compute

groupings of the graph vertices to render a discrete expression prediction for the

new sample. Here, the prediction is denoted by red and simplified to a single

haplotype
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Ai ¼ fjjj 2 Cig. We assign expression groups to clusters based on
co-occurrence with expression groups in the training data. Finally,
we predict the expression of an individual by clustering the test hap-
lotypes in G. In case the haplotypes of an individual are clustered in
separate groups, we output the expression class with the highest pur-
ity (Fig. 1D and Supplementary Methods, Section S1.2).

Given a similarity measure, the spectral clustering algorithm par-
titions the points of a set (nodes in the graph) into different subsets
according to their pairwise similarities (edge weights). The algo-
rithm partitions the graph by enforcing a bi-criteria optimization
that maximizes ‘within cluster’ similarity and minimizing ‘between
cluster’ similarity. In other words, the edges between different
partition-subsets have a low weight (points in different subsets are
dissimilar from each other), and the edges within a partition-subset
have high weights (points within the same cluster are similar to each
other). Formally, let the degree of node vi be di, and for a set of verti-
ces A 
 V, let �A ¼ V � A. The sum of the weights of edges between
A and �A is denoted cutðA; �AÞ, and the volume is volðAÞ ¼

P
i2Adi.

The Shi–Malik Normalized spectral clustering algorithm minimizes
the objective function

NcutðA1; . . . ;AEÞ ¼
XE

i¼1

cutðAi; �AiÞ
volðAiÞ

: (3)

4 Results

We evaluated HAPLEXR, PrediXcan (elastic net regression;
Gamazon et al., 2015), lasso regression (Tibshirani, 1996), KNN
(Manor and Segal, 2013), and two logistic regression approaches
modeled after lasso and PrediXcan on the GTEx project version 8
data (phs000424.v8.p2). For KNN, we used K¼19, which was the
best K on average found in a previous study (Manor and Segal,
2013). We selected data from five of the GTEx tissues with high
sample count (> 500): skeletal muscle, sun exposed skin, thyroid,
lung, and whole blood. The cis-window around the TSS of each
gene was set to 106 bp, a commonly used window in eQTL studies
and in PrediXcan (Gamazon et al., 2015). We normalize the expres-
sion Y using the trimmed mean of M-values method (Robinson and
Oshlack, 2010). We then correct the expression by regressing out
the covariates provided by GTEx [RNA-seq platform/protocol,
probabilistic estimation of expression residuals (PEER) factors
(Stegle et al., 2012) and sex] and retaining the residuals. For testing,
we held out 10% of the samples from each tissue, removed variants
with MAF < 0.05, performed LD pruning with PLINK (plink –
indep-pairwise 200 100 0.8), removed indels, and removed clusters
with <5% of the training sample haplotypes (GTEx Consortium,
2017; Purcell et al., 2007). The continuous results include 15 000
genes from the 5 tissues and, due to the increased number of haplo-
type clusters in the discrete case, the discrete results include 7500
genes from 5 tissues.

Because PrediXcan, lasso, HAPLEXR and both configurations
of logistic regression employ regularized regression, some of their
fitted models have all-zero regression coefficients. For all subsequent
comparisons between methods, we retain only the genes for which
all compared methods produced non-zero models.

4.1 Continuous expression
First, we selected the partition size in the haplotype clustering (J) by
grid search on a random sample of 100 genes on chromosome 1 and
J ¼ f24;25; 26;27; 28g (Supplementary Fig. S1). We fit our model on
each gene in the sample on 90% of the samples for whole blood,
and measured the Pearson correlation between the true and inferred
expression on the remaining 10%. We selected the haplotype parti-
tion size which yielded the highest median Pearson correlation
(J¼32) for all further analysis.

Next, we computed the narrow-sense heritability between cis-
SNPs and gene expression levels in whole blood using the genome-
based restricted maximum likelihood method in the genome-wide
complex trait analysis software tool (Yang et al., 2011; Fig. 2).

Narrow-sense heritability is the proportion of expression variation
due to additive genetic variation and represents a theoretical upper
bound on additive methods. In concordance with previous results,
an increased r2 was indicative of increased h2 (Gamazon et al.,
2015; Li et al., 2018). All four methods appear to capture non-
additive genetic components of expression variation, but the propor-
tion of genes where r2 > h2 was greatest in KNN (0.483) and
HAPLEXR (0.335) compared with PrediXcan (0.292) and lasso
(0.287); however, we note that most of the contribution of this stat-
istic for KNN is for genes with low h2 due to KNN producing a
model for all genes. This behavior is exemplified by the abundance
of predictions for low h2 genes and comparatively fewer predictions
above h2 for highly heritable genes (Fig. 2, top-left).

When we restricted the results to genes that all methods con-
structed models for, we observed similar predictive performance
(mean r2) among HAPLEXR (0.0968), PrediXcan (0.0985) and
lasso (0.0986), but comparatively poor performance from KNN
(0.0455). To evaluate the relative performance, we compared the r2

improvement pairwise for each method (Fig. 3 and Supplementary
Figs S2–S4). HAPLEXR shows a considerable improvement on ap-
proximately two-third of the genes with respect to KNN and about
half of the genes with respect to PrediXcan and lasso (Fig. 3, top
three plots). There is a large overlap between the subset of genes
whose expression is well predicted by PrediXcan, lasso, and
HAPLEXR, but there is a significant subset of genes in each tissue
for which HAPLEXR renders predictions above given r2 thresholds
(Supplementary Fig. S6). KNN demonstrates this advantage mainly
at a relatively low threshold of r2 ¼ 0:1. HAPLEXR is also the best-
performing model for an average of about 37% of genes per tissue
that were predicted by any model with r2 > 0:1 (Table 1).

These findings suggest that (i) HAPLEXR captures some non-
additive signal in a subset of the GTEx genes in each tissue, (ii)
HAPLEXR’s non-additive signals are generally of higher quality
than KNN’s, but (iii) dosage-only additive models are still preferable
to haplotype clustering-based models for a subset of genes. Further,
we observed that lasso and PrediXcan capture a similar additive sig-
nal with most genes having little difference in r2 between the two
methods (Fig. 3, bottom).

HAPLEXR tends to select fewer features than PrediXcan and
lasso (Supplementary Fig. S5), making HAPLEXR more interpret-
able than both methods at high jbj thresholds. Each significant

Fig. 2. Comparing r2 and narrow-sense heritability across continuous methods. For

each gene, an estimate of narrow-sense heritability (h2) in blue, and regression r2 on

the test set in red. We compared h2 and r2 across gene expression in whole blood for

(top-left) KNN, (top-right) PrediXcan, (bottom-left) lasso and HAPLEXR (bottom-

right)
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haplotype feature that HAPLEXR selects represents a cluster of
about nine SNPs (Supplementary Table S1). Because we perform LD
pruning before generating candidate haplotype clusters, this finding
indicates that the haplotype clusters that HAPLEXR selects span
multiple LD blocks.

4.1.1 Variant set enrichment analysis

To characterize the regulatory function of variant and haplotype
features used in our model, we performed a variant set enrichment
(VSE) analysis on 76 annotations, predominately related to gene
regulation (Supplementary Table S2; Ahmed et al., 2017). VSE com-
pares the enrichment of an associated variant set across genomic
annotations to null variant sets computed by a permutation proced-
ure from reference GWAS tag SNP and 1000 Genomes Project data
(Supplementary Methods, Section S1.5). We consider subsets of var-
iants defined by thresholds f0:1;0:2;0:3g on the jbj coefficients of
HAPLEXR and by feature type with respect to SNPs, haplotypes,
and both (Fig. 4 and Supplementary Figs S10–S12). Here, we focus
on a jbj coefficient threshold of 0.1 because, as we increased this
threshold, the enriched variant set and overall enrichment decreased
(Supplementary Figs S7–S9).

We observed significant enrichment for regulatory annotations
across all variant features, tissues, and within tissues (Fig. 4). All
UCSC gene region and ENCODE annotations were significantly
enriched (VSE test, Bonferroni-corrected p � 0.001 and �0.05, re-
spectively), which is consistent with the known cis-regulatory role of
variation within transcription factor binding sites, intronic and un-
translated regions (Albert and Kruglyak, 2015; Chatterjee and Pal,
2009; Hughes, 2006). We also observed enrichment in enhancer and
promoter regions, H3K9ac, H3K4me3, H3K4me1 and H3K27ac
epigenetic modifications, and DNase I hypersensitive site. These
findings recapitulate similar results for expression QTLs in GTEx v3
and v7 data (GTEx Consortium, 2015, 2017). Interestingly, several
enhancer annotations were not significant when considering only
SNP variants, but when considering haplotypes variants or SNP and
haplotype variants combined, rose to the level of significance
(AncientEnhancer_e lung, Human_Enhancer_V_SEC skin and lung);
this result is supported by known haplotype specific enhancer
effects, e.g. in human disease and Drosophila pigmentation (Gibert
et al., 2017; Sebastiani et al., 2015).

Our high jbj variants were depleted in mammalian genomic
regions conserved across taxonomic groups and in regions associ-
ated with background selection. This is likely due to these regions (i)
not specifically being associated with genomic regulation and (ii)
being depleted of genetic variation due to negative selective pres-
sures (Hujoel et al., 2019; McVicker et al., 2009). The depletion of
high jbj SNP and haplotype features within repressed regions is con-
sistent with the depletion of eQTLs in repressed annotations across
cell lines and diseases (Brown et al., 2013; O’Brien et al., 2018;
Shpak et al., 2014). We also observed tissue specific significance pat-
terns, including depletion of enhancer and H3K4me1 modifications
in skin tissue; these results provide opportunities for future
investigation.

4.2 Discrete expression
We use discretized expression values computed by maximum en-
tropy for E ¼ f2;3; 4g in the training and evaluation of all discrete
models. After training models on 90% of the data, we evaluated
their performance for discrete expression prediction on the remain-
ing 10% of the data based on classification accuracy and F1 score.
For continuous models PrediXcan, lasso, KNN and HAPLEXR, we
discretized their predictions based on the same partitions yielded by
maximum entropy search.

We compared the discretized expression prediction of
HAPLEXD to competing methods for the five tissues (Table 2). We
find that for E¼3 and 4, HAPLEXD has statistically significantly
higher classification accuracy as determined by paired one-tailed t-
tests against each other method; in each test, we found that p <
8:14� 10�8 (Fig. 5). When considering the F1 score for each method
and tissue, the results are more mixed. As the discretization
approaches the continuous limit, PrediXcan and lasso appear to out-
perform their logistic regression counterparts; we conjecture this is
due to the regression methods being aware of the underlying order-
ing among the discrete expression classes. Interestingly, the perform-
ance of HAPLEXD relative to its continuous (and discrete)
competitors increases with E despite the method not explicitly mod-
eling the ordering of expression classes.

5 Conclusions and discussion

In this work, we introduced the problem of gene expression classifi-
cation and presented two methods, HAPLEXR and HAPLEXD, for
predicting continuous and discretized gene expression from haplo-
types. HAPLEXR and HAPLEXD consider haplotype sharing that
encodes non-linear effects between variants. We evaluated both
methods on GTEx experimental data across five tissues and demon-
strated that our methods capture a haplotype signal not effectively
modeled by the linear and additive variant dosage approaches. We
develop two additional linear models in the discrete case, and show
clear performance gains. In the continuous case, our methods per-
form similarly to lasso and PrediXcan when aggregated across

Fig. 3. Gene-wise improvement of r2. The improvement in r2 between HAPLEXR

compared with KNN (top), PrediXcan (top-middle) and lasso (middle-bottom)

sorted by improvement per gene. Bottom: improvement in r2 between PrediXcan

and lasso sorted by improvement per gene

Table 1. For each tissue and method, the number of genes best pre-

dicted by the method, with r2 > 0:1

Tissue HAPLEXR PrediXcan Lasso KNN

Blood 865 656 721 116

Thyroid 1525 1072 1198 230

Skin 914 706 694 150

Muscle 946 674 712 92

Lung 1035 788 881 245
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tissues, but deeper analysis on well-predicted genes shows that
HAPLEXR is complementary to the linear and additive models, cap-
turing a distinct signal. Finally, we demonstrated that our methods
capture biologically meaningful patterns supported by eQTL stud-
ies. Our results show that both methods capture epistatic interac-
tions that are not characterized by purely additive linear models, but
are complementary to additive and linear dosage models as they cap-
ture distinct signatures.

There are several opportunities to expand on the methods and
results presented here. HAPLEXR and HAPLEXD make the as-
sumption that we have access to phased haplotype data, which can
be difficult to experimentally derive or computationally infer
(Browning and Browning, 2011; Lippert et al., 2002). Additionally,
there are many choices for haplotype clustering model and an

increased computational burden of computing the clustering. In the
continuous case, we presented a computationally simple model that
lacks robustness to rare variants, errors in haplotyping, or varying
LD. Due to the computational burden of generating the clustering,
we inferred parameters via cross-validation on a held out sample,
but it is likely that individual genes have unique regulatory architec-
tures. In this case, a cross-validation procedure per gene would likely
yield more accurate models (Manor and Segal, 2013).

We computed the proportion of haplotype cluster features
among all HAPLEXR gene models. For every subset of genes whose
proportion of haplotype features are greater than those defined by
the thresholds 1

10 ;
2

10 ;
3
10 ; . . . ; 9

10

� �
, the median improvement in r2 of

HAPLEXR relative to PrediXcan and lasso across all tissues was
zero. However, there are two distinct sets of genes: one where the
linear models have significantly better performance and another

Fig. 4. Heatmap for the significance of enrichment across tissues and annotations (Supplementary Table S2) for a jbj threshold of 0.1. Cell color denotes the level of significance

for a particular variant set and annotation (VSE test, Bonferroni-corrected). Variant set naming convention indicates the tissue and type of variant (s, h and b, denoting SNP,

haplotype and both, respectively).

Fig. 5. For each method and E 2 f2; 3; 4g, the distribution of per-gene expression

classification accuracy over all tissues. Paired one-tailed t-tests of HAPLEXD classi-

fication accuracy with each other method for E ¼ 3 and 4 all have p < 8:14� 10�8

Table 2. Micro-averaged F1 score for each method and tissue, and

across all tissues, with E 2 f2; 3; 4g (rounded to three significant

figures)

E Tissue HD LR-EN LR-L HR PX Lasso KNN

Blood 0.498 0.576 0.575 0.574 0.579 0.579 0.536

Thyroid 0.606 0.594 0.594 0.598 0.602 0.602 0.553

2 Skin 0.539 0.579 0.578 0.582 0.585 0.584 0.546

Muscle 0.562 0.574 0.576 0.577 0.580 0.580 0.542

Lung 0.575 0.578 0.580 0.579 0.584 0.583 0.539

All 0.559 0.581 0.581 0.583 0.587 0.586 0.544

Blood 0.378 0.393 0.392 0.365 0.392 0.394 0.347

Thyroid 0.430 0.411 0.411 0.390 0.422 0.422 0.362

3 Skin 0.439 0.396 0.397 0.375 0.407 0.407 0.354

Muscle 0.359 0.392 0.391 0.369 0.396 0.396 0.351

Lung 0.456 0.393 0.393 0.372 0.403 0.403 0.351

All 0.413 0.398 0.398 0.375 0.405 0.405 0.353

Blood 0.334 0.294 0.293 0.281 0.304 0.304 0.260

Thyroid 0.392 0.312 0.312 0.301 0.331 0.330 0.271

4 Skin 0.348 0.297 0.297 0.286 0.314 0.314 0.265

Muscle 0.302 0.294 0.293 0.281 0.304 0.303 0.264

Lung 0.344 0.292 0.293 0.283 0.310 0.311 0.261

All 0.346 0.298 0.298 0.287 0.313 0.314 0.264

Note. Bolded entries denote the highest F1 score for a tissue. HD,

HAPLEXD; HR, HAPLEXR; PX, PrediXcan; LR-EN and LR-L, logistic re-

gression with elastic net and lasso regularization, respectively.
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where HAPLEXR produced the most accurate model. This suggests
that the linear and additive assumptions more accurately model the
regulatory architecture of the former, whereas the combination of
SNP and haplotype features more accurately models the latter. We
conjecture that to see a consistent advantage in r2 with respect to the
proportion of haplotype features, a genetic clustering model that is
more robust to varying LD, rare variation and haplotyping errors is
required.

An underlying assumption of all models that predict gene expres-
sion from genetic data is that the genetic markers act as a proxy for
intermediate molecular phenotypes that influence expression. These
include histone modifications, chromatin accessibility, and DNA
methylation. New studies like the Enhancing GTEx project aim to
characterize genetic and intermediate molecular phenotypes in mul-
tiple tissues per sample (eGTEx Project, 2017). Open problems and
future work in expression prediction include (i) determining how to
combine these regulatory markers with genetic models, (ii) incorpo-
rating other genes, pathways, and trans-eQTLs in expression predic-
tion and (iii) simultaneous modeling of correlated tissues or
conditions.

Finally, we note that HAPLEXR is distinct from, but shares simi-
larities with, the group lasso defined on dosages and genetic model
clusters (Yuan and Lin, 2006). Group lasso introduces an ‘2 penalty
on groups of covariates, preferentially forcing all covariates in a
group to be 0 or non-zero. HAPLEXR considers the haplotype clus-
ters themselves to be covariates. The sparse-group lasso is a convex
combination of lasso and group lasso penalties, and while more dif-
ficult to fit, is a more comparable statistical model to HAPLEXR
and subject of future work (Peng et al., 2010; Simon et al., 2013).
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