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Abstract 

Artificial intelligence can facilitate clinical decision making by considering massive amounts of medical 
imaging data. Various algorithms have been implemented for different clinical applications. Accurate 
diagnosis and treatment require reliable and interpretable data. For pancreatic tumor diagnosis, only 
58.5% of images from the First Affiliated Hospital and the Second Affiliated Hospital, Zhejiang University 
School of Medicine are used, increasing labor and time costs to manually filter out images not directly 
used by the diagnostic model. 
Methods: This study used a training dataset of 143,945 dynamic contrast-enhanced CT images of the 
abdomen from 319 patients. The proposed model contained four stages: image screening, pancreas 
location, pancreas segmentation, and pancreatic tumor diagnosis. 
Results: We established a fully end-to-end deep-learning model for diagnosing pancreatic tumors and 
proposing treatment. The model considers original abdominal CT images without any manual 
preprocessing. Our artificial-intelligence-based system achieved an area under the curve of 0.871 and a F1 
score of 88.5% using an independent testing dataset containing 107,036 clinical CT images from 347 
patients. The average accuracy for all tumor types was 82.7%, and the independent accuracies of 
identifying intraductal papillary mucinous neoplasm and pancreatic ductal adenocarcinoma were 100% 
and 87.6%, respectively. The average test time per patient was 18.6 s, compared with at least 8 min for 
manual reviewing. Furthermore, the model provided a transparent and interpretable diagnosis by 
producing saliency maps highlighting the regions relevant to its decision. 
Conclusions: The proposed model can potentially deliver efficient and accurate preoperative diagnoses 
that could aid the surgical management of pancreatic tumor. 

Key words: artificial intelligence (AI), computed tomography (CT), deep learning, convolutional neural network 
(CNN), tumor  

Introduction 
Pancreatic cancer, one of the most frequent, has 

poor prognosis and is usually fatal [1-3]. Patients 
without tumor need only further observation, while a 
pancreatic tumor diagnosis requires urgent action and 
a definite surgical plan. The risk of exacerbation and 
death increases if treatment is delayed, making the 

accurate diagnosis of pancreatic tumor crucial to its 
successful surgical treatment. 

Artificial intelligence (AI) can help improve the 
accuracy of image interpretation and make diagnostic 
expertise more widely available [4, 5]. However, AI 
methods for diagnosing pancreatic tumors are not 
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well developed as the task is especially challenging. 
First, the target is highly variable in shape, size, and 
location and occupies only a very small fraction of the 
entire CT image. The pancreas occupies only about 
1.3% of each CT image in our CT dataset. The 
remaining information are from other organs such as 
the liver, stomach, intestines and image background, 
which barely impact the diagnosis by the AI model. 
Furthermore, a tumor’s high similarity to the 
surrounding tissues further reduces accuracy and 
diagnostic efficiency [6]. A third point is the lack of a 
suitable pancreas image dataset, which directly affects 
the development of an AI model. 

Previous studies have attempted to solve these 
problems. An effective method is pancreas 
segmentation. Chakraborty et al. predicted high-risk 
intraductal papillary mucinous neoplasms (IPMN) of 
the pancreas based on random forests and support 
vector machine learning applied to manually 
segmented CT images [7]. Wei et al. presented a 
support vector machine system containing 24 
guideline-based features and 385 radiomics high- 
throughput features combined with regions of interest 
(ROI) marked by a radiologist to diagnose pancreatic 
serous cystic neoplasms (SCN) [8]. With the 
development of deep-learning frameworks [9], 
researchers have been able to construct effective deep 
encoder-decoder networks [10] for pancreas 
segmentation, boosting diagnostic accuracy [11-14]. 
Zhu et al. reported a multi-scale segmentation method 
for screening pancreatic ductal adenocarcinoma 
(PDAC) by checking if a sufficient number of voxels 
were segmented as tumors [15]. Liu et al. segmented 
the pancreas first, and then classified abnormalities to 
detect PDAC [16]. However, efficiently obtaining an 
immediate diagnosis and treatment recommendation 
without increasing medical specialists’ workload or 
procedural costs is a major problem. As the original 
patient data (taken from hospital records) contains CT 
examination diagnosis reports and images from 
different imaging planes and angiography phases, the 
proportion of effective CT images that can be used for 
diagnosis is small. Therefore, the key to successful 
clinical application of a deep-learning framework is 
detailed automated preprocessing of the original data. 

This study proposes a fully end-to-end deep- 
learning (FEE-DL) model for the automatic diagnosis 
of pancreatic tumors from original abdominal CT 
images. The model’s methodology has four steps for 
locating pancreatic tumors from the original data: 
image screening, pancreas location, pancreas 
segmentation, and pancreatic tumor diagnosis. The 
model was trained with a dataset of 143,945 clinical 
CT images from 319 patients, and tested on 107,036 
clinical CT images from 347 patients. Its quick and 

accurate pancreatic tumor diagnoses can potentially 
aid surgical decision making. 

Methods 
Dataset preparation 

Dynamic contrast-enhanced CT images of the 
abdomen were utilized by the FEE-DL model. The 
study was approved by the hospital’s Institutional 
Review Board and informed consent was obtained 
from patients and healthy control subjects. The 
training dataset were randomly collected from the 
Second Affiliated Hospital, Zhejiang University 
School of Medicine (Zhejiang, China). The 
independent testing dataset were randomly collected 
from both the First Affiliated Hospital and the Second 
Affiliated Hospital, Zhejiang University School of 
Medicine (Zhejiang, China). All patients underwent 
preoperative abdominal contrast-enhanced CT 
scanning. Both hospitals used two different scanners: 
the first used a 64-slice and a 256-slice CT (Philips 
Healthcare), and the second used a 40-slice new dual 
source CT (Siemens AG) and a 320-slice CT (Toshiba 
Medical Systems). Both institutions used the same CT 
scanning parameters: 120 kVp tube voltage, 125-300 
mAs tube current, 0.6-1.25 mm pitch, 3-5 mm slice 
thickness, and 3-5 mm reconstruction interval. 
Experienced radiologists labeled the location of the 
pancreas in the arterial phase of CT scans using 
Adobe PhotoShop software and classified the patients 
as either with or without pancreatic tumor. 

Model training using a dataset of 143,945 clinical, 
512 × 512 pixel, 8-bit, CT images: 133,591 from 284 
patients with tumors and 10,354 from 35 tumor-free 
control patients. Overall, there were 211 males and 
108 females (age range 37-90 years, mean 63.3 years). 

 

Table 1. Types of pancreatic tumor in the training and testing 
datasets 

Type Training dataset Testing dataset 
Normal 35 82 
PDAC 209 170 
IPMN 6 17 
PNET 1 - 
SCN - 16 
Other 68 62 
All 319 347 
IPMN, intraductal papillary mucinous neoplasms; PDAC, pancreatic ductal 
adenocarcinoma; PNET, pancreatic neuroendocrine tumors; SCN, serous cystic 
neoplasms. 

 
 
Table 1 lists the types of pancreatic tumor and 

their frequency in the training and testing datasets. 
Pancreatic cancer (PDAC) and pancreatic tumors such 
as IPMN, pancreatic neuroendocrine tumors (PNET), 
SCN, and ‘Other’ are considered as positive cases. 
Rare cases or lesions on the pancreas caused by 
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adjacent abdominal organ diseases are labeled as 
‘Other’, including gallbladder cancer, cholangio-
carcinoma, ampullary carcinoma, duodenal 
carcinoma and metastatic cancer. To effectively 
enlarge our training dataset to improve the robustness 
of the proposed model, we performed four data 
augmentation operations: randomly setting 
brightness in range (-0.8, 0.8), randomly setting 
contrast in the range (-0.8, 0.8), random elastic 
transformation with an alpha affine of 30, and random 
cropping to 450 × 450 pixels followed by resizing to 
512 × 512 pixels. The model was then tested with an 
independent dataset of 90,194 images from 265 tumor 
patients and 16,842 images from 82 control patients 
(216 males and 131 females, age range 24-88 years, 
mean 61.8 years). Table 2 lists detailed patient 
characteristics. 

Image screening 
The original patient data obtained from the 

hospitals cover multiple files. However, existing 
methods focus on the analysis of CT images 
containing the pancreas, and ignore the importance of 
screening the original data at an early stage, as shown 
in Figure 1A. The proposed model first screens out 
transverse plane CT images containing the pancreas 
before deep-learning diagnosis (Figure 1B). 

Table 2. Patient characteristics in the training and testing datasets 

Number Training dataset Testing dataset 
Patients 319 347 
Mean age 63.3 (Range: 37-90) 61.8 (Range: 24-88) 
Male 211 (~66.1%) 216 (~62.2%) 
Female 108 (~33.9%) 131 (~37.8%) 
Abnormal images 133,591 (284 people) 90,194 (265 people) 
Normal images 10,354 (35 people) 16,842 (82 people) 
Total images 143,945 107,036 

 
 
Figure 2 shows that the dataset we established is 

complex with three important characteristics: text 
reports (CT examination diagnosis reports and patient 
protocols), different imaging planes (coronal, sagittal, 
and transverse), and different angiography phases 
(arterial, venous, and delayed or portal vein phase). 
To control the image quality, screening selects only 
transverse plane CT images containing the pancreas. 

Each image in the dataset contains attributes 
such as ‘Patient Name’, ‘Image shape’, and ‘Series 
Description’. The model screens images according to 
‘Image shape’ being 512 × 512 and ‘Series Description’ 
being ‘Arterial phase’, ‘Venous phase’, or ‘Delayed 
phase’. In consideration of the different specifications 
of scanners, we enhanced the contrast of the images 
and then normalized them to 0–255 to highlight the 
pancreas structure and increase the versatility of the 
FEE-DL model. 

 

 
Figure 1. The original files obtained from the hospitals contain different file formats, different imaging planes and different angiography phases. (A) Artificial intelligence 
approaches currently used for pancreatic diagnosis focus on the analysis of valid CT images, and ignore the importance of screening the original data at an early stage. (B) Our 
proposed FEE-DL model first screens out transverse plane CT images containing the pancreas from complex original files before deep-learning diagnosis. 
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Figure 2. Multiplex original clinical data. (A-C) Images not directly used by the FEE-DL model containing (A) coronal plane CT scan, (B) sagittal plane CT scan, and (C) CT scan 
without pancreas. (D) Arterial, (E) venous, and (F) delayed phase CT scans. 

 
Figure 3. Workflow diagram of the model’s training and testing phase. In the training phase, after valid images screening and data augmentation from the original abdominal CT 
images, we constructed a deep-learning model involving pancreas location, pancreas segmentation, image fusion and pancreatic tumor diagnoses. The loss function is calculated 
according to the prediction and label, and the weights of the neural networks are updated according to the back-propagation algorithm. The best weights are fixed for subsequent 
use on the testing dataset to diagnose pancreatic tumor. 

 

Model establishment 
Figure 3 illustrates the model’s workflow. In the 

training phase, we screened valid images for 
diagnosis from the original abdominal CT images. 
After data augmentation, we constructed a 
deep-learning model involving three connected 
sub-networks, which are widely used in medical 
image recognition with demonstrated efficiency [17, 
18]. ResNet18 is used to recognize images containing 
the pancreas. Figure 2C shows transverse plane CT 
images without the pancreas, and are thus not directly 
used for the FEE-DL model diagnosis. U-Net32 makes 
predictions on each image pixel, yielding binary 

results for pancreas segmentation. During subsequent 
image fusion, we added texture features of the 
pancreas to the segmented result to provide a richer 
diagnosis basis for the next sub-network. As the last 
neural network in the FEE-DL model, ResNet34 is 
used to diagnose the presence of pancreatic tumor. 
The loss function is calculated as the deviation 
between the output of the neural network and the 
label, and the weights of each layer are updated 
according to the back-propagation algorithm. We 
determined the best weights with the minimal loss 
value, and fixed them for subsequent use on the 
testing dataset. 
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Figure 4. Architectures of the three sub-networks: (A) ResNet18 for pancreas location, (B) U-Net32 for pancreas segmentation, and (C) ResNet34 for pancreatic tumor 
diagnosis. (D) Detailed structures of the identity (ID), down sampling (DS), and convolution (Conv) blocks. (AvgPool, average-pooling; BN, batch normalization; Concate, 
concatenation; FC, fully connected; MaxPool, max-pooling; ReLU, rectified linear unit; Trans, transposed). 

 

Architectures of deep neural networks 
Figure 4 shows the detailed architectures of the 

three sub-networks (see also Table S1-S3). ResNet18 
and ResNet34 have similar architectures but different 
depths, as shown in Figures 4A and 4C. The 
convolutional layers mostly capture the main local 
features of images with 3 × 3 filters, and the last fully 
connected layer gives a binary classification according 
to the global feature connected from all local features. 
Unlike a plain convolutional neural network (CNN), 
ResNet avoids gradient vanishing by using identity 
and down-sampling blocks. The former keeps the 
shape of the input and output the same, while the 
latter halves the size of the output and doubles the 
number of channels. By adding direct paths, 
information of the input or gradient is allowed to pass 
through multiple layers to improve accuracy. U-Net32 
consists of four down-sampling and four up-sampling 
steps, which reduce the 512 × 512 × 1 input image to a 
32 × 32 × 256 representation, which is then 
up-sampled to a 512 × 512 × 2 output. During down 
sampling, each step contains a convolution block, 
followed by a max pooling layer and a dropout layer. 
Up sampling has each step consisting of a transpose 
convolution layer, followed by a dropout layer and a 
convolution block. A key feature of the U-Net 
architecture is that the convolutional kernel output 
from the encoding half of the network is concatenated 
with each corresponding decoding step, which helps 
preserve the details of the original image. The final 

layer consists of a convolution with two 1 × 1 kernels, 
which outputs a score for each of two classes: 
belonging to the pancreas or not. The final 
segmentation is achieved by selecting the class with 
the highest score for each pixel. We accelerated the 
training process by using z-score normalization and 
batch normalization layers in all sub-networks. At the 
same time, a dropout layer and L2 regularization are 
used to prevent overfitting. 

All training, validation, and testing processes 
were performed in TensorFlow on a NVIDIA GeForce 
GTX 1050 Ti GPU. Adam optimizer [19] was used 
with default parameters β1 = 0.9 and β2 = 0.999. The 
dropout rate of the dropout layer was 0.4. Loss was 
calculated according to cross entropy. ResNet18’s 
batch size was set to 32, and the epoch to 100. 
Learning rate was initialized at 1 × 10−3, and reduced 
by a factor of 10 every 20 epochs. U-Net32 had a batch 
size of 2 and epoch of 50. Learning rate was initialized 
at 5 × 10−4, and reduced by a factor of 20 every 20 
epochs. ResNet34 had a batch size of 32, epoch of 86, 
and learning rate of 5 × 10−5. 

Statistical analysis 
The FEE-DL model’s performance was evaluated 

using accuracy (Acc) and F1 score (F1). The accuracy 
is defined as: 

Acc = (TP + TN) / (TP + FP + TN + FN) (1); 

where TP, TN, FP, and FN are the numbers of true 
positive, true negative, false positive, and false 
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negative detections, respectively. F1 score is the 
harmonic average of precision and recall: 

Precision = TP / (TP + FP)  (2) 

Recall = TP / (TP + FN)  (3) 

F1 = 2 × Precision × Recall/(Precision + Recall) (4) 

The evaluation of segmentation considered two 
metrics: dice similarity coefficient (DSC) [20] and 
mean intersection over union (MIoU) [21]. They are 
slightly different measures of the similarity between 
the ground truth and algorithm’s prediction. 

The DSC is defined as: 

DSC = 2 × TP / (FP + 2 × TP + FN) (5); 

and MIoU is the average of the intersection over 
union (IoU) in each category: 

IoU = TP / (FP + TP + FN)  (6) 

MIoU = (∑n IoU) / n   (7) 

The number of categories, n, is two here, 
representing whether or not the pixel belongs to the 
pancreas area. 

A receiver operating characteristic (ROC) curve 
is applied to visualize the performance of the final 

model, with its X and Y axes defined as the rates of 
false (FPR) and true (TPR) positives, respectively. In 
addition, the area under the ROC curve (AUC) is a 
classic quantitative metric. The closer the ROC curve 
is to the upper left corner, the higher the AUC value, 
and the more satisfactory the model’s performance. 

Saliency map 
A saliency map [22] improves the reliability of 

the model’s diagnoses by computing the derivative of 
the correct class scores with respect to the image 
pixels, therefore highlighting the areas contributing 
most to the neural network’s decision. As a 
visualization analysis tool, it can assist radiologists’ 
understanding of the computer-aided decision and so 
enhance the model’s credibility. 

Results 
Performance of sub-networks 

We trained the three sub-networks 
independently, and ultimately tested the whole 
model. Figure 5A-C plots the loss and accuracy for the 
training and validation datasets, and Table 3 lists the 
corresponding values. Valid images after data 

 

 
Figure 5. Performance of each sub-network in the training and validation datasets. (A) ResNet18 for pancreas location. (B) U-Net32 for pancreas segmentation. (C) ResNet34 
for pancreatic tumor diagnoses. (D) Representative results of pancreas segmentation. Rows from top to bottom are input CT images, ground truth, prediction, fusion results, and 
pancreas contours in CT, respectively, where radiologists’ annotations are shown in green and computerized segmentation is displayed in red. Higher resolution images are also 
shown on the lower left side. 
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augmentation were randomly divided into three 
groups at a ratio of 6:2:2 for training, validating, and 
testing, respectively, each sub-network. When neither 
accuracy nor loss improved further, training process 
was stopped. Figure 5D displays three representative 
segmentation results from the training dataset, 
showing the pancreas, as a typical small organ, 
occupying only a very small fraction (~1.3%) of each 
CT image. Comparison of the prediction and ground 
truth reveals good performance in segmenting 
pancreas images of different shapes and sizes. Image 
fusion obtained more abundant pancreas information 
for diagnosis. The DSC and MIoU quantitatively 
describe the degree of overlap between the labeled 
(green contours) and predicted (red contours) results. 
The MIoU values of the three examples from left to 
right are 98.1%, 95.3%, and 88.2%, and the DSC values 
are 98.1%, 95.1%, and 87.0%, respectively. 

 

Table 3. Performance of each sub-network 

Sub-network Epoch Training Acc 
(%) 

Validation Acc 
(%) 

Testing Acc (%) Training 
Loss 

ResNet18 100 99.8 96.5 97.1 5.81e-7 
U-Net32 50 96.9 (MIoU) 88.2 (MIoU) 88.0 (MIoU) 1.54e-3 
  96.8 (DSC) 83.7 (DSC) 83.7 (DSC)  
ResNet34 86 89.5 81.7 82.2 0.395 

Acc, accuracy; DSC, dice similarity coefficient; MIoU, mean intersection over union. 

Performance of the FEE-DL model 
An independent testing dataset of 107,036 

images from 265 tumor-positive examples and 82 
negative controls was used to evaluate the proposed 
model. Only 62,649 images remained after image 
screening, which means that only 58.5% of the original 
clinical CT images in the testing dataset were used for 
deep-learning diagnosis, indicating the importance of 
image screening. The confusion matrix shown in 
Figure 6A represents the model’s performance in 
detecting pancreatic tumors. The confusion matrix 
shows that it achieved an accuracy of 82.7% (287/347) 
and F1 score of 88.5%. The specificity is 69.5% (57/82), 
and the sensitive is 86.8% (230/265), indicating a 
strong performance in tumor detection. The ROC 
analysis in Figure 6B demonstrates the model’s 
validity for prediction, with an AUC of 0.871, which 
compares favorably with random prediction (AUC = 
0.5). We further explored the accuracy of the FEE-DL 
model in diagnosing whether there is a tumor for 
patients with each type of pancreatic tumor in the 
testing dataset, and compared them with the average 
accuracy, as shown in Figure 6C. The results indicate 
that PDAC and IPMN are more accurately identified 
than the average accuracy for all tumors, indicating 
the model’s greater suitability for detecting them 

 

 
Figure 6. Performance of the FEE-DL model. (A) Confusion matrix. (B) Receiver operating characteristic (ROC) curves of the model and random prediction for comparison. 
The area under the curve (AUC) was 0.871. (C) Prediction accuracy of different pancreatic tumors with respect to the average accuracy (82.7%). (IPMN, intraductal papillary 
mucinous neoplasm; PDAC, pancreatic ductal adenocarcinoma; SCN, serous cystic neoplasm). 
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specifically. The low accuracy of identifying normal 
cases may be caused by the imbalance of normal and 
pancreatic tumor cases in the training dataset. Note 
that although there is no SCN case in the training 
dataset, the model can still predict its occurrence, 
demonstrating the model’s robustness. The average 
testing time per patient was about 18.6 s from 
inputting the original abdominal CT image to 
diagnosis. These results indicate that the proposed 
model can rapidly diagnose pancreatic tumor with 
high accuracy. 

To improve the interpretability of the diagnoses, 
the saliency maps in Figure 7 visualize the regions 
that most influence the model’s decision in the testing 
images. Darker pixels, representing those with more 
influence, are the basis for diagnosis. Figure 7A-C 
shows the results from a patient with pancreatic 
tumor, and in contrast Figure 7D-F represents results 
from a normal case in arterial, venous, and delayed 
phase, respectively. Comparing the saliency maps in 
Figure 7A and D shows that in the tumor case 
pancreatic duct dilation and heterogeneous density 
are emphasized, corresponding to the lesions in the 
CT image. In contrast, the saliency map of a normal 
case has no area obviously highlighted. Similar 
applies to the comparisons of Figure 7B and E and 
Figure 7C and F. These results show that the model 
focuses most on the tumor, and extracts rich 
information from that region, indicating that its 
diagnostic basis is similar to that of clinicians. 

Discussion 
AI can play an important role in the diagnosis 

and treatment of disease, health management, drug 
research and development, and precision medicine. 
Its application to observing the pancreas has been 
hindered by the pancreas being highly variable in 
shape, size, and location, while occupying only a very 

small fraction of a CT image. The result has been low 
accuracy and poor diagnostic efficiency. This study 
proposes a FEE-DL model to assist pancreatic tumor 
diagnosis from original abdominal CT images 
without any manual preprocessing. The model 
includes four steps: image screening, pancreas 
location, pancreas segmentation, and pancreatic 
tumor diagnosis; and achieves an AUC of 0.871, F1 
score of 88.5%, and accuracy of 82.7% on an 
independent testing dataset of 347 patients. A further 
advantage of this work is the establishment of a larger 
dataset containing more pancreatic tumor types 
(PDAC, IPMN, SCN, and other) than previously 
available. This can assist the deep-learning system to 
identify images of various types of pancreatic tumor. 
The model independently identifies different 
pancreatic tumors, and performs strongest in 
detecting IPMN and PDAC. Another strength is the 
end-to-end automatic diagnosis, which takes only 
about 18.6 s per patient from inputting the original 
abdominal CT image to a diagnosis result. It can 
handle and meaningfully process massive sets of data 
quickly, accurately, and inexpensively, making it 
suitable for clinical use with important potential for 
diagnosing and recommending treatments. For 
example, the model could be used for large-scale 
pre-diagnosis during physical examination, or to 
assist diagnosis at low-level hospitals with scarce 
resources. A final feature of the model that can help 
improve its reliability is its ability to produce saliency 
maps to identify the areas of greatest importance to its 
diagnostic decision making. While our method uses 
only evidence from CT images, clinicians have an 
access to additional data such as patients’ health 
records and testimony, and definite diagnoses and 
treatment plans should continue to be based on the 
clinical judgment of specialists and not solely on the 
results of a deep-learning system. 

 

 
Figure 7. Comparison of saliency maps for (A-C) a tumor patient and (D-F) a normal control in different angiography phases: left, arterial phase; center, venous phase; and 
right, delayed phase. 
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In addition to classifying pancreatic tumors, 
assessing the tumor stage, following up after 
treatment to assess response, and predicting the 
resectability of a given pancreatic tumor to guide 
surgery are potentially important applications of our 
AI-based technique. Deep-learning algorithms have 
an important place in assisting clinical diagnosis. In 
the future, a multi-modal diagnostic model can be 
developed based on the fusion of different 
characteristics from CT images, MRI images and 
clinical examination data to further improve accuracy. 
In summary, this model can support clinical decision 
making by efficiently delivering accurate preoperative 
diagnoses that could aid the surgical management of 
pancreatic tumors. 
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