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Scaled laboratory experiments explain the kink
behaviour of the Crab Nebula jet
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H.S. Park8, B.A. Remington8, D.D. Ryutov8, S.C. Wilks8, R. Betti4,5, A. Frank4,5, S.X. Hu4, T.C. Sangster4,

P. Hartigan9, R.P. Drake10, C.C. Kuranz10, S.V. Lebedev11 & N.C. Woolsey12

The remarkable discovery by the Chandra X-ray observatory that the Crab nebula’s jet

periodically changes direction provides a challenge to our understanding of astrophysical jet

dynamics. It has been suggested that this phenomenon may be the consequence of magnetic

fields and magnetohydrodynamic instabilities, but experimental demonstration in a controlled

laboratory environment has remained elusive. Here we report experiments that use

high-power lasers to create a plasma jet that can be directly compared with the Crab jet

through well-defined physical scaling laws. The jet generates its own embedded toroidal

magnetic fields; as it moves, plasma instabilities result in multiple deflections of the

propagation direction, mimicking the kink behaviour of the Crab jet. The experiment is

modelled with three-dimensional numerical simulations that show exactly how the instability

develops and results in changes of direction of the jet.
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X
-ray images from the Chandra X-ray Observatory1,2 show
that the South-East jet in the Crab nebula changes
direction every few years (Supplementary Fig. 1). This

fascinating phenomenon is also seen in jets associated with pulsar
wind nebulae and other astrophysical objects3–5, and therefore is
a fundamental feature of astrophysical jet evolution that needs to
be understood6–13. The South-East Crab nebula jet is a highly
collimated, mildly relativistic gas outflow from a pole of the
rapidly rotating Crab pulsar, confined by a toroidal magnetic field
(B) and accelerated outwards initially by means of magnetic fields
(Poynting flux) drawing from the pulsar rotational energy6,8–15.

Astrophysical jets can be studied in a controlled environment
using appropriately scaled laboratory experiments that reproduce
and study critical physical aspects; even though laboratory-
generated supersonic plasma jets and astrophysical jets have
very different scales, they can have similar dimensionless
hydrodynamic and magnetic field parameters (as will be shown
below) and therefore can share common physical properties16–18.
These important similarities allow us to scale our laboratory
results to the conditions in the Crab nebula, showing that the
laboratory approach provides an incisive platform for studying
various properties of astrophysical jets. To mimic the kink
behaviour of the Crab jet, a laboratory experiment requires
magnetic fields with the right properties: the fields must have a
strong azimuthal (toroidal) component generated near the target
where the jet is launched, and the fields must be embedded in
(‘frozen-in’), and advected with, the fast moving magnetized
plasma flow.

The development and use of diagnostics that enable visualiza-
tion and quantification of magnetic fields and magnetohydro-
dynamic (MHD) instabilities is as important as the creation of the
plasma jet itself. Most conventional plasma diagnostics, using
X rays and optical photons, are sensitive to plasma density and
temperature but not to electromagnetic fields19–21. The recently

developed method of monoenergetic proton radiography22

(Methods section) is sensitive to electromagnetic fields and can
provide spatial visualization and quantitative measurements.

Here we report experiments using scaled plasma jets, generated
by high-power lasers, to reproduce and model the Crab jet
(Methods section and Supplementary Fig. 2). Magnetic fields
and current-driven MHD instabilities taking place in the jet,
visualized and measured directly by monoenergetic proton
radiography22, have been unambiguously identified as the
mechanisms that cause such a unique jet kink behaviour. We
show how the toroidal magnetic field embedded in the supersonic
jet triggers plasma instabilities and results in considerable
deflections throughout the jet propagation, mimicking the kinks
in the Crab jet. We also demonstrate that these kinks are
stabilized by high jet velocity, consistent with the observation
that instabilities alter the jet orientation but do not disrupt the
overall jet structure. Our laser experiments produce plasma jets
characterized by higher plasma temperatures (4BkeV) and
faster flow velocities (4B1,000 km s� 1) that are at least one to
two orders of magnitudes higher (faster) than those achievable by
other experimental approaches19–21. Our experiments also
produce plasma jets that have magnetic Reynolds numbers
large enough for the magnetic field to be ‘frozen into’ the plasma
flow. Consequently, the plasma in the jet must follow the field
topology and its evolution, which is locally kinked but globally
‘collimated’ along the propagation axis. We successfully model
these laboratory experiments with a validated three-dimensional
(3D) numerical simulation, which in conjunction with the
experiments provide compelling evidence that we have an
accurate model of the most important physics behind the
observed kinking of the Crab nebula jet. These experiments not
only advance our knowledge of the structure and dynamics of the
Crab jet, but also open up opportunities for laboratory study of
jets from a variety of other astrophysical objects.
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Figure 1 | Experiments and proton radiographs. (a) Schematic of a laser-beam-irradiated, cone-shaped target, and resulting plasma jet comprised of ions

and electrons, also indicating the resulting toroidal magnetic field directions (Methods). Side-on (proton flux into the paper) radiographic images show the

proton fluence distribution at t0þ4.70 ns with 15-MeV protons and at t0þ4.92 ns with 3.3-MeV protons, where t0 is the time when the lasers turned on.

The enlarged image shows a sequence of clumps and changes of jet direction. Cartoons in b illustrate the configurations of self-generated, spontaneous

magnetic fields (B1 and B2) associated with the two plasma plumes. The resultant magnetic field can be decomposed into poloidal (BP¼BRþBz) and

toroidal (Bj) components. The field structure is crucial for the excitation of the kinks. (c) Lineouts from the images in a along the axes of the plasma jets.

The unit of the vertical axis is proton counts, which is proportional to the proton fluence. (d) Schematic illustrations of the fastest growing MHD

current-driven instabilities: mode m¼0 (sausage, leading to jet propagation clumping) and m¼ 1 (kink, leading to jet direction changing). Higher modes

(m41) are also expected to be excited, but will have smaller effects and are not illustrated here.
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Results
Laser-driven scaled plasma jet. In our laboratory experiments,
we form plasma jets through the collision of expanding,
laser-driven plasma plumes (Fig. 1). The laser-foil interaction
induces self-generated magnetic fields due to the Biermann
battery effects23 (qB/qtprne�rTe, where ne and Te are
electron density and temperature, respectively) that are
predominantly toroidal with respect to each plume and to the
jet that is formed from the collision of these plumes (Fig. 1b).
The magnetic fields are embedded in and advance with the
moving jet (qB/qtpr� (vj�B), where vj is jet velocity),
mimicking the fundamental scenario that magnetic fields are
anchored in the rapidly spinning Crab pulsar and advected with
the Crab jet.

Figure 1a shows proton radiographs of the plasma jets at
different times, indicating a structure that is collimated through-
out its propagation but has a sequence of clumps and changes of
direction along its length. These features reflect perturbations in
the magnetic field structure around the jet (Fig. 2), and they grow
locally and expand at each axial position where the jet is unstable.
The shape of the jet is serpentine due to the kink instability, and
so can be viewed as comprised of ellipsoidal blobs that are
typically viewed with the proton radiography from an angle
yB45�. Adopting this picture, we can apply the analysis of ref. 24
for ellipsoidal blobs. Interpreting the structures seen in the proton
radiography images as caustics, we use the criterion for caustic
formation24, which indicates that B40.8 MG for y¼ 45�. Shown
in Fig. 1d are cartoons illustrating the most feasible and fast
growing MHD current-driven instabilities: Mode m¼ 0 (sausage)
arises as the Bj tension is enhanced by radial contraction,
responsible for the axis pinching when |Bj|4O2|BP|.
Mode m¼ 1 (kink) arises when the strength and pressure of Bj
increase at the inside of the kinks and decrease outside.
|Bj||BP|� 1l(2prj)� 14a, with a¼ 1 is the Kruskal–Shafranov
criterion for the kink instability25, where l is the modulation
wavelength and rj the jet radius. In astrophysical jets, effects like
expansion can tend to stabilize the jet10, resulting in a larger than
but of order unity. This scenario is illustrated by experiment with
a flat target (Fig. 3) where the plasma jet is stabilized when
magnetic field is overwhelmed by the parallel components as the
toroidal components around the jet are too weak to excite the
MHD instability. The unstable modes have a growth rate g
comparable to the inverse of the time required for phase velocity

of an Alfvén wave (vA¼B/O4pr) to cross the unstable jet
column26

g ¼ G
2prj

l

� �
vA

rj
: ð1Þ

Using the measured values rjB0.5 mm and lB0.6–0.7 mm, and
vAB1,000 km s� 1 around the jet launching region, we find
gB3� 109 s� 1, which is consistent with the instability evolution
time implied by Fig. 1a.

Modelling of experiments with numerical simulation. To model
the observations of the plasma jet, a 3D numerical simulation was
performed with the radiation-MHD code FLASH27,28 (Methods
section). The simulation was post-processed to provide a more
complete physical picture of the jet behaviour, leading to the
images in Fig. 4 showing the spatial variations of various
quantities at tEt0þ 5.0 ns in the plane containing the jet’s axis.
Figure 4a shows that a modulated central ‘spine’ (backbone)
region with stronger field strength is formed, and is surrounded
by asymmetrically distributed, weaker fields around the jet core.
When the field is sufficiently large and has nonuniform toroidal
components Bj, current-driven MHD kink modes are excited
with the susceptibility increasing with increasing |Bj/BP|
(Fig. 4b). Such a structure is confirmed by the corresponding
distribution of b¼ 8pnkT/B2 (the ratio of plasma thermal to
magnetic pressures) in Fig. 4c: in the jet core boB1, showing the
flow is magnetically dominated, while in the surrounding plasma
b41. This indicates that the jet is globally collimated due to
inertial confinement and magnetic tension, but locally kinked.
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Figure 2 | Two images connected with each radiograph. (a) Image of

proton fluence versus position, taken with 3-MeV DD protons at 4.92 ns

from the onset of the laser drive on the subject cone target, showing a clear

kink structure which indicates that the jet propagation was subjected to

plasma instabilities. (b) Image displaying mean proton energy versus

position shows a very uniform distribution, with no hint of the density

structure of the jet. The latter would be expected if Coulomb scattering43

were important, indicating that the structures seen in the fluence image are

due to deflections of protons by magnetic fields.
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Figure 3 | Plasma jet and magnetic field configurations generated by a

laser-driven flat target. (a) Cartoons of face-on and side-on views of a

plasma jet and associated toroidal magnetic fields after reconnection due to

collision of two plasma plumes from a laser-driven plastic foil. (b) Radial

distribution of magnetic fields indicate the toroidal components around the

jet are too weak to excite the MHD instability (overwhelmed by the parallel

components, that is, Bj/Bpoo1). (c) Proton side-on radiographic image

shows the jet is stable to MHD instabilities when toroidal components are

weak (white arrow points the position of flat foil target). It also suggests

that in this type of experiment the toroidal fields generated by the plasma

current are too weak to destabilize the jet propagation. The jet is

predominately collimated by inertial confinement due to the hydrodynamic

compression produced by the collision of the two plumes.
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The jet is not in force-free equilibrium: the gradient of thermal
pressure is not in local balance with the sum of magnetic-pressure
gradient and magnetic tension (hoop stress �Bj

2 /4pr); that is,

� @

@r

B2
jþB2

P

8p

� �
�

B2
j

4pr
6¼ @P

@r
: ð2Þ

The ‘clumps’ and ‘kinks’ shown in Fig. 4a–c are similar to those
we observe in the experiments (Fig. 1a). The distribution of the
simulated plasma density depicted in Fig. 4d shows a clear kink
structure that is correlated with the field topology in Fig. 4a.

Validation of numerical simulations. The FLASH simulation
was used to predict the physical properties of the jet
(Methods section). These were compared quantitatively with the
experimental measurements, including proton radiography
(Fig. 1) and Thomson scattering29 (Supplementary Fig. 3).
Figure 5a shows the measured jet positions and velocities which
match the simulations well, providing compelling evidence for the
validity of the numerical simulation. The velocity at the front of

the jet after it has been traveling for several nanoseconds is
estimated to be vjB1,500 km s� 1, indicating supersonic jet
propagation with an internal Mach number MB3. Such a high
jet velocity has two important effects on jet propagation. First,
high Mach numbers suppress the Kelvin-Helmholtz instability,
lessening the entrainment of the surrounding plasma in the jet
plasma. Second, the high jet velocity helps to move the ‘frozen-in’
non-uniform fields, leading to smoothing of asymmetric magnetic
field line distributions, stabilizing the jet. Further validation is
provided in Fig. 5b,c, where plasma densities and temperatures
measured using Thomson scattering are plotted against the time-
resolved jet positions, respectively (Supplementary Fig. 3), and
agree well with the numerical simulation. Again, this consistency
greatly increases our confidence that the simulation has captured
the most important physics in the experiments.

Discussion
The magnetization parameter (¼B2/8prvj

2, the ratio of the jet
magnetic to ram pressures) shown in Fig. 6a is sZ1 near the
region where the jet was launched, and B10� 2–10� 3 near the
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Figure 4 | Images of various physical properties in the 3D numerical simulation of the jet. (Images correspond to t¼ t0þ 5 ns, the detailed evolution of

the simulation can be accessed online in Supplementary Movies 1,2,3 and 4). (a) The amplitudes of the self-generated magnetic fields that are advected

with the jet flow show a collimated flow with a wiggling central ‘spine’. Outside the jet surface, the bulk flow has asymmetrically distributed magnetic fields.

The white arrow indicates where the jet is thermally launched (zB2 mm). (b) Image showing the ratio of toroidal (Bt¼ |Bj|) to poloidal (Bp¼ |BzþBR|)

field components. The image shows the locations where jet kinks take place and grow are correlated with the regions where Bj is stronger and

asymmetrically distributed. (c) The corresponding distribution of the ratio b of plasma pressure to magnetic pressure. The jet core and surrounding region

(bulk flow) have bo1. The instability occurs in the region where advection of the magnetic field is dominant and bo1. (d) The simulated plasma density

distribution shows ‘clumps’ and ‘kinks’ corresponding to the field topology. (The units for x, y, and z axes are cm.)
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jet head. These values compare very well to those of the Crab
nebula, where observations and simulations indicate that
sZ1 close to the pulsar pole where the jet is launched, and
sB10� 2–10� 3 near the termination shock where the jet
becomes subsonic13. The morphological similarities between the
Crab jet (Supplementary Fig. 1) and the laboratory jet can be
clearly seen in the simulated current density map (Fig. 6b). The
latter reveals kinks, knots, and large-scale radial deflections that
are reminiscent of the structures and dynamics observed in the
Crab pulsar outflow. This picture of a ‘current-carrying’ jet is in

agreement with existing numerical efforts on modelling the Crab
jet10,13 and the morphology mimics the jet structures observed in
Chandra X-ray imaging1.

These similarities provide rigorous justification of the relevance
of the plasma jet to the Crab nebula jet, preserving the facts that
the energy flux is predominantly carried by the Poynting flux
close to the pulsar pole and by the particles close to the
termination shock. The consistency between the experiments and
the simulation provides compelling evidence that strong toroidal
magnetic fields and the associated MHD kink instabilities are the
cause of the observed jet structure, and that the simulation has
captured the basic physics behind kink behaviour in jets.
Furthermore, this comparison confirms the hypothesis that the
observed directional change of the Crab jet can be caused by
strong toroidal magnetic fields and associated MHD kink
instabilities.

Other evidence of the relevance of our experiments to the jet in
the Crab nebula is provided by several important dimensionless
parameters. Both jets have a Lorentz factor of the order of unity
(G¼ 1 for the laboratory plasma jet and GE1.09 for the Crab
Nebula jet30). Similarity in the MHD equations requires that the
dissipative processes be negligible for both systems. This
requirement is met if the viscosity, thermal conduction, and
magnetic diffusion terms can be neglected in the momentum,
energy, and generalized Ohm’s law equations. Equivalently, a
number of corresponding dimensionless numbers, such as the
Reynolds number Re(¼ Lvj/n, the ratio of inertial forces to
viscous force, where L is jet scale size and n is the kinematic
viscosity), the Péclet number Pe(¼ Lvj/k, the ratio of heat
convection to conduction, where k is the thermal diffusivity), and
the magnetic Reynolds number RMe(¼ Lvj/Dm, the ratio of
flow velocity to diffusion velocity, where Dm is the magnetic
diffusivity) must be large in both systems. Table 1 shows that all
of these numbers are large, demonstrating that these important
conditions are met. Table 1 also lists the other physical
parameters and dimensionless numbers that are relevant to this
laboratory jet and to the jet in the Crab nebula. To scale the
laboratory results to the environment of the Crab nebula, the
MHD equations need to be invariant under the transformations
given below for the two systems17,18:

rlab ¼ arcrab; rlab ¼ brcrab; Plab ¼ cPcrab;

vlab ¼
ffiffi
c
b

p
vcrab; tlab ¼ a

ffiffi
b
c

q
tcrab; Blab ¼

ffiffi
c
p

Bcrab;
ð3Þ

where the subscripts ‘lab’ and ‘crab’ refer to the laboratory and
Crab nebula jets, respectively. As shown in Table 1, excellent
MHD scaling is obtained with aB1.6� 10� 20, bB1.7� 1025 and
cB1.1� 1019.

In summary, our scaled laboratory experiments and validated
numerical simulation reveal that the change in direction observed
in the Crab jet can be attributed to magnetic fields and the
associated MHD kink instabilities. This work not only advances
our knowledge of such jet structure and dynamics, but also opens
up tremendous opportunities in the laboratory to explore jets
from a variety of other astrophysical objects, including active
galactic nuclei, young stellar objects, X-ray binary systems and
pulsar wind nebulae.

Methods
Experiments. In our experiment, performed at the OMEGA Laser Facility31 and
illustrated schematically in Supplementary Fig. 2, the plasma jet was generated by
the interaction of laser beams with a special target. The target was constructed with
two 50-mm-thick, 3� 3 mm plastic (CH) foils separated by 60�. Each individual foil
was driven by two laser beams (0.351 mm in wavelength) at an angle B28� to the
foil normal, with total energy B1,000 J in a 1-ns, square-top laser pulse with full
spatial and temporal smoothing. The laser spot has a diameter of B850 mm
determined by phase plate SG4 (defined as 95% energy deposition), resulting in a
laser intensity of order of B2� 1014 W cm� 2. Laser ablation generated a plasma

2,000
a

b

c

Jet launching

Thomson

Thomson

Thomson

Proton

1,500

V
el

oc
ity

 (
km

 s
–1

)
Te

m
pe

ra
tu

re
 (

eV
)

D
en

si
ty

 (
g 

cm
–3

)

1,000

500

0

1.E–02

1.E–03

1.E–04

1.E–05

1.E–06

1.E+04

1.E+03

0 2 4

Distance (mm)

6 8 10

1.E+02 Te
Ti

1.E+01

Figure 5 | Comparison between measurements and numerical simulation.

(a) Measured jet velocities (solid circles by protons (Fig. 1c) and open

circles by Thomson-scattering (Supplementary Fig. 3), with measurement

uncertainties (error bars) discussed therein, respectively), plotted as a

function of position in the jet flow compare well with simulated values

(blue line). The error bars of proton measured jet velocities indicate

DvB±80–120 km s� 1, including measurement uncertainties and

consequences of proton Coulomb scatterings. The increase in the simulated

jet velocity as the flow propagates outwards, is a consequence of the

gradient in the thermal plasma pressure, and leads to the decrease in the

simulated jet density shown in (b) (green line). The measured plasma

densities inferred from the Thomson-scattering data, which are shown as

open red triangles, agree reasonably with those of the simulation. (c) The

plasma temperatures T inferred from Thomson-scattering measurements

(assuming TeBTi, in this relevant region, see Supplementary Fig. 3)29,44,

which are shown as open red diamonds, compare reasonably well with

those of the simulation (black line).
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plume on each foil, and the collision of these plumes forms a high Mach
number plasma jet that propagates into the OMEGA chamber32. During laser
illumination and heating, BMegagauss B fields (predominantly toroidal) are
generated around each expanding, hemispherical plasma plume because of the
Biermann battery effect23 due to non-collinear electron density and temperature
gradients (rne�rTe). The collision of the plasma plumes with B fields
of opposing sign eventually results in magnetic reconnection, leading to the
formation a new magnetic topology with strong toroidal fields around the
plasma jet32.

Proton radiography. Monoenergetic proton radiography22 has been developed on
the OMEGA laser facility and utilized for backlighting of laser-produced plasma
jets. From the Lorentz force (FL¼ q(Eþ v�B)), deflections due to magnetic fields
can be estimated as:

n ¼ � q A� að Þa
AmpVp

Z
B�dl ð4Þ

where a(¼ 1 cm) and A(¼ 28 cm) are distances from backlighter to the subject
target and to the detector in this experiment, respectively; mp is the proton mass
and Vp is the proton velocity; q is the proton electric charge, n is the proton

deflection distance and dl is the differential pathlength along the proton trajectory.
This technology22 consists of a monoenergetic proton backlighter source and a
matched imaging detector.

The backlighter is formed by an exploding-pusher implosion with a
D3He- (deuterium-helium-3) filled, glass-shell capsule22 driven by 16–30 of the
60 OMEGA laser beams31. The capsule has a typical diameter B420 mm and shell
thickness B2 mm, filled with 18 atm of equimolar D3He gas. The laser delivered
B10 kJ in a 1 ns square pulse. Supplementary Table 1 summarizes the
characteristics of the typical backlighter used in these experiments. The timing of
the backlighter implosions was adjusted to provide radiographic images at different
times relative to when the lasers turned on. The detection system33 consists of a
layered assembly of metallic foils and solid-state nuclear track detector CR-39 on
which backlighting protons are recorded at 100% efficiency. The CR-39 has a
chemical composition of C12H18O7. When a charged particle passes through
CR-39, it leaves a trail of damage along its track in the form of broken molecular
chains and free radicals. The amount of local damage along the track is related to
the local rate at which energy is lost by the particle. In particular, since dE/dx is
different for protons at different energies, protons with different energies result in
different track diameters. In this experiment, the CR-39 is etched for 2–3 h in a 6N
solution of NaOH, which reveals the tracks with diameters on the order of
B10 mm. An automated microscope system scans and records information about
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current density (J) at t¼ t0þ 5 ns. The image clearly shows the kinked morphology of the jet. (The units for x, y, and z axes are cm.)

Table 1 | Physical parameters and similarity scaling between the laboratory jet and the Crab nebula jet.

Parameters and scales Plasma jet in OMEGA experiment* Scaled to the Crab nebulaw The kinked jet in the Crab nebulaw

Temperature Te B300 eV B1–130 eV
Ionization state Z B3.5 B1
Number density ne B5� 1019 cm� 3 B10� 2 cm� 3

Pressure P B4� 105 bar B4� 10� 14 bar
Jet radius rj B5� 10� 2 cm B1 pc
Jet velocity vj B400 km s� 1 o3� 105 km s� 1 B1.2� 105 km s� 1

Time scale t B10�9 s B1.5 years Bfew years
Magnetic field B B2 MG B0.6 mG B1 mG
Thermal plasma beta b B0.1–1 oo1
Magnetization parameter s B1–6 Z1
Mach number M B3 441
Reynolds number Re B2� 103 B2� 1017

Péclet number Pe B1–5 B4� 1015

Magnetic Reynolds number ReM B3� 103 B1� 1022

Biermann number Bi B6 B6� 108

Radiation number P B3� 105 B1� 1018

*Near the region of jet launching.
wNear the region of the pulsar pole.
The bold entries show the physical quantities from the two systems that can be directly compared through the scalings in equations (3), manifesting how the laboratory experiment parameters scale to
match those of the Crab nebula jet.
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the protons tracks, including their location on the piece of CR-39. Custom software
is used to determine track properties and to transform that information into an
image of proton fluence incident on the CR-39.

3D numerical simulation. The 3D Cartesian radiation-MHD simulation of the
experiment was performed using FLASH27,28,34, a publicly available, multi-physics,
finite-volume, shock-capturing code27. The simulation takes advantage of the full
range of HEDP capabilities of the code, so as to accurately model the physical
processes in play. The MHD equations are evolved using a directionally unsplit
staggered mesh solver35, extended to three temperatures36, adding also the
Biermann battery effect23,37,38. We include non-ideal effects such as explicit Spitzer
resistivity, implicit thermal conduction and heat exchange, as well as multi-group
radiation diffusion with multi-material tabulated opacities and equations of state.
The laser energy deposition is accurately modelled using a 3D optical ray trace laser
package39.

The computational domain spans 0.5 cm in X and Y, and 1 cm in Z
(Supplementary Fig. 4), and is discretized on B3.3� 107 zones (B20mm cell size).
The reconstruction is carried out with a Piecewise Parabolic Method40, employing
a minmod limiter. The Godunov fluxes are recovered with an HLLC (Harten, Lax
and van Leer-Contact)41 Riemann solver. Outflow boundary conditions are
imposed on all sides. The experimental target is modelled as two 3� 3 mm
polystyrene foils at a density of 1.04 g cm� 3 and room temperature with an angle
of 60� between them. A 3o laser beam (comprised of 1.6� 104 rays) with a 1 ns
square pulse profile and 1 kJ of energy illuminates each of the two foils. The
incidence angle and the SG8 phase plates (with very similar characteristics to the
SG4 plates used in the experiment) determine the spot size and shape for each
beam. The beams point at the center of the foils, albeit one of the beams is offset by
B100mm in the Z direction towards the target’s base to introduce an asymmetry
that excites the m¼ 1 (kink) mode. Conversely, we introduce a small-amplitude,
time-dependent, sinusoidal perturbation13,42 on the transverse velocity
components in the interaction region where the jet is formed, so as to excite the
m¼ 0 (sausage) mode. The amplitude of the perturbation is 1% of the flow speed,
with a period¼ 0.1� t¼ 0.1 ns, where t is the system’s timescale. The evolution of
the system is followed for 5 ns.

Data availability. The authors declare that the data supporting the findings of this
study are available within the article and its Supplementary Information files, and
are available from the authors on request. The FLASH code is publicly available
through the webpage of Flash Center, University of Chicago (flash.uchicago.edu).
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