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Abstract: Background: Urinary tract infection (UTI) is predominantly caused by
uropathogenic Escherichia coli (UPEC). Previous studies have reported that the fimbriae
of UPEC are involved in virulence and antimicrobial resistance. We aimed to analyze the
fimbrial gene profiles of UPEC and investigate the specificity of these expressions in symp-
tomatic UTI, urinary device use, and levofloxacin (LVFX) resistance/extended-spectrum
beta-lactamase (ESBL) production. Methods: A total of 120 UPEC strains were isolated
by urine culture between 2019 and 2023 at our institution. They were subjected to an
antimicrobial susceptibility test and polymerase chain reaction (PCR) to identify 14 fimbrial
genes and their association with clinical outcomes or antimicrobial resistance. Results: The
prevalence of the papG2 gene was significantly higher in the symptomatic UTI group by
multivariate analyses (OR 5.850, 95% CI 1.390–24.70, p = 0.016). The prevalence of the c2395
gene tended to be lower in the symptomatic UTI group with urinary devices (all p < 0.05).
In LVFX-resistant UPEC strains from both the asymptomatic bacteriuria (ABU) and the
symptomatic UTI group, the expression of the papEF, papG3, c2395, and yadN genes tended
to be lower (all p < 0.05). Conclusion: The fimbrial genes of UPEC are associated with
virulence and LVFX resistance, suggesting that even UPEC with fewer motility factors may
be more likely to ascend the urinary tract in the presence of the urinary devices. These
findings may enhance not only the understanding of the virulence of UPEC but also the
management of UTI.

Keywords: fimbriae; urinary tract infection; drug resistance; virulence; uropathogenic
Escherichia coli

1. Introduction
Urinary tract infection (UTI) is among the most common bacterial infections en-

countered in clinical practice, predominantly caused by uropathogenic Escherichia coli
(UPEC) [1,2]. UTI can be seen in a wide spectrum ranging from asymptomatic bacteri-
uria (ABU) to pyelonephritis and urosepsis, resulting in increased morbidity and medical
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costs [3–5]. Numerous virulence factors of UPEC have been determined [6–9], particularly
fimbriae as an adherence factor, playing a role in colonizing the urinary tract [10–12]. The
ability of E. coli to adhere to the uroepithelial cells is a critical virulence factor, and this ad-
herence is largely mediated by fimbriae, particularly type 1 fimbriae and P fimbriae [13–16].
Previous studies showed that P fimbriae are prevalent among UPEC strains associated
with pyelonephritis [17]. This finding indicates an association between fimbriae and UTI.
Additionally, the use of urinary device has been reported to increase the incidence of UTI in
numerous studies [5,18–20]. Although there have been a few reports on the relationship be-
tween type 1 fimbriae and urinary devices [21], comprehensive analyses of the relationship
between fimbriae, virulence, and urinary devices have been limited, and this relationship
remains unclear. Furthermore, the increasing prevalence of antimicrobial-resistant bacte-
ria, including levofloxacin (LVFX)-resistant and extended-spectrum β-lactamase (ESBL)-
producing UPEC strains, has emerged as a significant concern in the management of
UTI [22–24]. While the association between fimbriae and levofloxacin resistance/extended-
spectrum beta-lactamase production has been reported [25–28], few studies have evaluated
antimicrobial resistance based on virulence and fimbriae [29]. Understanding the fimbrial
genes associated with virulence is essential for developing effective treatment strategies
and managing the increasing incidence of UTI caused by antimicrobial-resistant bacteria
and the use of urinary devices.

In this study, we aimed to analyze the fimbrial gene profiles of UPEC and investigate
the specificity of these expressions in the symptomatic UTI group, the use of urinary
devices, and antimicrobial-resistant strains. By investigating the specificity, we aim to
better understand how these genes relate to virulence and antimicrobial resistance.

2. Results
2.1. Patient Demographics and Distribution of Fimbrial Genes

The ABU group consisted of 39 women (56.5%) and 30 men (43.5%), with an average
age of 64 years, including 15 patients with diabetes (21.7%). The symptomatic UTI group
consisted of 32 women (62.7%) and 19 men (37.3%), with an average age of 65.8 years,
including 13 patients with diabetes (25.5%). A total of 120 UPEC strains were analyzed
using PCR to assess the prevalence of 14 fimbrial genes, including fimH, papEF, papG1,
papG2, papG3, sfaS, focG, afa/draBC, bmaE, gafD, c2395, ppdD, yadN, and ygiL (Table 1). The
fimH and ppdD genes were the most prevalent and were present in all strains (120/120).
The other genes, listed in order of prevalence, were as follows: ygiL (71.7%), yadN (32.5%),
c2395 (26.7%), papEF (22.5%), papG3 (15%), papG2 (10.8%), papG1 (10%), sfaS (6.7%), focG
(5%), afa/draBC (2.5%), bmaE (0%), and gafD (0%).

2.2. Comparison of the Distribution of Fimbrial Genes Between ABU and Symptomatic
UTI Groups

All UPEC strains were divided into ABU (n = 69) and symptomatic UTI (n = 51) groups
(Table 2). The papG2 gene was significantly more prevalent in the symptomatic UTI group,
with a prevalence of 19.6% (10/51), compared to 5.8% (4/69) in the ABU group (p = 0.024).
Multivariate analysis showed that papG2 was significantly associated with symptomatic
UTI (OR 5.850, 95% CI 1.390–24.70, p = 0.016) (Table 3). There were no significant differences
in the distribution of other fimbrial genes between the two groups (all p > 0.05). Both groups
were further classified by urinary device use. The prevalence of the use of urinary devices
was 49% (34/69) in the ABU group and 51% (26/51) in the symptomatic UTI group (Table 4).
The prevalence of the papG2 gene was significantly higher in the symptomatic UTI group
without a urinary device than with a urinary device (p = 0.036), and the prevalence of the
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c2395 gene was significantly lower in the symptomatic UTI group with a urinary device
than without a urinary device (p = 0.013).

Table 1. Distribution of fimbrial genes among 120 E. coli strains.

Gene Description Total (n = 120)

fimH Type 1 fimbria adhensin 120 (100%)
papEF P fimbria 27 (22.5%)
papG1 P fimbria adhesin (allele 1) 12 (10%)
papG2 P fimbria adhesin (allele 2) 13 (10.8%)
papG3 P fimbria adhesin (allele 3) 18 (15%)
sfaS S fimbria 8 (6.7%)
focG F1c fimbria 6 (5%)
afa/draBC Afa/Dr fimbriae 3 (2.5%)
bmaE M fimbriae 0 (0.0%)
gafD G fimbria 0 (0.0%)
c2395 Putative type IV pili 32 (26.7%)
ppdD Putative type IV pili 120 (100%)
yadN Yad fimbriae 39 (32.5%)
ygiL Ygi fimbriae 86 (71.7%)

Table 2. Differences in fimbrial genes between the ABU group and symptomatic UTI group.

Gene ABU (n = 69) Symptomatic UTI (n = 51) p Value

fimH 69 (100%) 51 (100%)
papEF 15 (21.7%) 12 (23.5%) 0.828
papG1 9 (13%) 4 (7.8%) 0.554
papG2 4 (5.8%) 10 (19.6%) 0.024
papG3 10 (14.5%) 9 (17.6%) 0.801
sfaS 5 (7.2%) 4 (7.8%) ns
focG 4 (5.8%) 3 (5.9%) ns
afa/draBC 2 (2.9%) 2 (3.9%) ns
bmaE 0 (0.0%) 0 (0.0%)
gafD 0 (0.0%) 0 (0.0%)
c2395 19 (27.5%) 14 (27.5%) ns
ppdD 69 (100%) 51 (100%)
yadN 24 (34.8%) 16 (31.4) 0.845
ygiL 51 (73.9%) 36 (70.6%) 0.686

ABU, asymptomatic bacteriuria; Symptomatic UTI, symptomatic urinary tract infection; ns, not significant.

Table 3. Multivariate logistic regression analysis of the risk factors for symptomatic UTI.

Gene Odds Ratio (95% CI) p Value

papEF 0.385 (0.075, 1.970) 0.251
papG2 5.850 (1.390, 24.70) 0.016
papG3 3.300 (0.481, 22.60) 0.224
sfaS 1.020 (0.161, 6.500) 0.980
afa/draBC 1.090 (0.128, 9.230) 0.938

CI, confidence interval.

2.3. Comparison of the Distribution of Fimbrial Genes by Antimicrobial Susceptibility Testing

Both groups were further classified by antimicrobial susceptibility. LVFX-resistant
strains were 57% prevalent (39/69) in the ABU group and 61% (31/51) in the symptomatic
UTI group (Table 5). In LVFX-resistant UPEC, a decrease in papEF, papG3, c2395, and
yadN was suggested in both the ABU group and the symptomatic UTI group compared to
LVFX-susceptible UPEC (all p < 0.05). Additionally, a decrease in sfaS was suggested in the
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LVFX-resistant UPEC of the symptomatic UTI group. The prevalence of ESBL-producing
strains was 38%, with 69% (26/69) in the ABU group and 39% (20/51) in the symptomatic
UTI group (Table 6). In ESBL-producing UPEC, a decrease in papEF, focG, c2395, and
yadN was suggested in both the ABU group and the symptomatic UTI group compared
to non-ESBL-producing UPEC (all p < 0.05). No significant differences were observed in
the distribution of other fimbrial genes (all p > 0.05). All strains were classified into four
groups: 48 non-ESBL-producing group and LVFX-susceptible, 26 non-ESBL-producing
group and LVFX-resistant (including -intermediate) group, 2 ESBL-producing group and
LVFX-susceptible group, and 44 ESBL-producing group and LVFX-resistant (including
-intermediate) group (Table 7). We compared the fimbrial genes in ESBL production under
the same LVFX conditions, and focG was significantly lower in ESBL-producing strains
(p = 0.048). No significant differences were observed in the distribution of the other fimbrial
genes (all p > 0.05).

Table 4. Distribution of fimbrial genes with and without a urinary device.

Gene
ABU (n = 69)

p Value
Symptomatic UTI (n = 51)

p Value
Device− (n = 35) Device+ (n = 34) Device− (n = 25) Device+ (n = 26)

fimH 35 (100%) 34 (100%) 25 (100%) 26 (100%)
papEF 8 (22.9%) 7 (20.6%) ns 8 (32.0%) 4 (15.4%) 0.199
papG1 7 (20.0%) 2 (5.9%) 0.151 2 (8.0%) 2 (7.7%) ns
papG2 2 (5.7%) 2 (5.9%) ns 8 (32.0%) 2 (7.7%) 0.036
papG3 5 (14.3%) 5 (14.7%) ns 4 (16.0%) 5 (19.2%) ns
sfaS 3 (8.6%) 2 (5.9%) ns 2 (8.0%) 2 (7.7%) ns
focG 2 (5.7%) 2 (5.9%) ns 3 (12.0%) 0 (0.0%) 0.110
afa/draBC 1 (2.9%) 1 (2.9%) ns 1 (4.0%) 1 (3.8%) ns
bmaE 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
gafD 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
c2395 10 (28.6%) 9 (26.5%) ns 11 (44.0%) 3 (11.5%) 0.013
ppdD 35 (100%) 34 (100%) 25 (100%) 26 (100%)
yadN 10 (28.6%) 14 (41.2%) 0.318 10 (40.0%) 6 (23.1%) 0.237
ygiL 26 (74.3%) 25 (73.5%) ns 19 (76.0%) 17 (65.4%) 0.541

ABU, asymptomatic bacteriuria; Symptomatic UTI, symptomatic urinary tract infection; ns, not significant.

Table 5. Differences of fimbrial genes among levofloxacin-susceptible and -resistant strains.

Gene
ABU (n = 69)

p Value
Symptomatic UTI (n = 51)

p Value
LVFXS (n = 30) LVFXR (n = 39) LVFXS (n = 20) LVFXR (n = 31)

fimH 30 (100%) 39 (100%) 20 (100%) 31 (100%)
papEF 11 (36.7%) 4 (10.3%) 0.017 11 (55.0%) 1 (3.2%) <0.001
papG1 5 (16.7%) 4 (10.3%) 0.488 2 (10.0%) 2 (6.5%) 0.640
papG2 3 (10.0%) 1 (2.6%) 0.310 5 (25.0%) 5 (16.1%) 0.486
papG3 8 (26.7%) 2 (5.1%) 0.016 8 (40.0%) 1 (3.2%) 0.001
sfaS 4 (13.3%) 1 (2.6%) 0.159 4 (20.0%) 0 (0.0%) 0.019
focG 2 (6.7%) 2 (5.1%) ns 2 (10.0%) 1 (3.2%) 0.553
afa/draBC 0 (0.0%) 2 (5.1%) 0.501 0 (0.0%) 2 (6.5%) 0.514
bmaE 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
gafD 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
c2395 14 (46.7%) 5 (12.8%) 0.003 10 (50.0%) 4 (12.9%) 0.009
ppdD 30 (100%) 39 (100%) 20 (100%) 31 (100%)
yadN 18 (60.0%) 6 (15.4%) <0.001 12 (60.0%) 4 (12.9%) <0.001
ygiL 23 (76.7%) 28 (71.8%) 0.784 16 (80.0%) 20 (64.5%) 0.348

ABU, asymptomatic bacteriuria; Symptomatic UTI, symptomatic urinary tract infection; LVFXS, Levofloxacin-
susceptible strains; LVFXR, Levofloxacin-resistant strains.
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Table 6. Differences of fimbrial genes among ESBL-producing and non-producing strains.

Gene
ABU (n = 69)

p Value
Symptomatic UTI (n = 51)

p Value
ESBL− (n = 43) ESBL+ (n = 26) ESBL− (n = 31) ESBL+ (n = 20)

fimH 43 (100%) 26 (100%) 31 (100%) 20 (100%)
papEF 13 (30.2%) 2 (7.7%) 0.036 10 (32.3%) 2 (10.0%) 0.095
papG1 7 (16.3%) 2 (7.7%) 0.466 3 (9.7%) 1 (5.0%) ns
papG2 4 (9.3%) 0 (0.0%) 0.289 7 (22.6%) 3 (15.0%) 0.721
papG3 9 (20.9%) 1 (3.8%) 0.077 9 (29.0%) 0 (0.0%) 0.008
sfaS 4 (9.3%) 1 (3.8%) 0.643 4 (12.9%) 0 (0.0%) 0.145
focG 4 (9.3%) 0 (0.0%) 0.289 3 (9.7%) 0 (0.0%) 0.271
afa/draBC 1 (2.3%) 1 (3.8%) ns 2 (6.5%) 0 (0.0%) 0.514
bmaE 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
gafD 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
c2395 16 (37.2%) 3 (11.5%) 0.027 14 (45.2%) 0 (0.0%) <0.001
ppdD 43 (100%) 26 (100%) 31 (100%) 20 (100%)
yadN 21 (48.8%) 3 (11.5%) 0.002 15 (48.4%) 1 (5.0%) 0.001
ygiL 32 (74.4%) 19 (73.1%) ns 21 (67.7%) 15 (75.0%) 0.755

ABU, asymptomatic bacteriuria; Symptomatic UTI, symptomatic urinary tract infection; ESBL−, extended-
spectrum beta-lactamase-non-producing strains; ESBL+, extended-spectrum beta-lactamase-producing strains; ns,
not significant.

Table 7. Distribution of fimbrial genes among levofloxacin-susceptible or -resistant strains and
ESBL-producing or -non-producing strains.

Gene ESBL− LVFXS

(n = 48)
ESBL− LVFXR

(n = 26)
ESBL+ LVFXS

(n = 2)
ESBL+ LVFXR

(n = 44)

ESBL− LVFXR

vs. ESBL+ LVFXR

(p Value)

fimH 48 (100%) 26 (100%) 2 (100%) 44 (100%)
papEF 21 (43.8%) 2 (7.7%) 1 (50%) 3 (6.8%) ns
papG1 8 (16.7%) 3 (11.5%) 0 (0.0%) 8 (18.2%) 0.664
papG2 7 (14.6%) 4 (15.4%) 1 (50%) 2 (4.5%) 0.186
papG3 16 (33.3%) 2 (7.7%) 0 (0.0%) 1 (2.3%) 0.551
sfaS 8 (16.7%) 0 (0.0%) 0 (0.0%) 1 (2.3%) ns
focG 4 (8.3%) 3 (11.5%) 0 (0.0%) 0 (0.0%) 0.048
afa/draBC 0 (0.0%) 3 (11.5%) 0 (0.0%) 1 (2.3%) 0.141
bmaE 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
gafD 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
c2395 24 (50%) 6 (23.1%) 0 (0.0%) 3 (6.8%) 0.069
ppdD 48 (100%) 26 (100%) 2 (100%) 44 (100%)
yadN 30 (62.5%) 6 (23.1%) 0 (0.0%) 4 (9.1%) 0.158
ygiL 37 (77.1%) 16 (61.5%) 2 (100%) 32 (72.7%) 0.426

ESBL−, extended-spectrum beta-lactamase-non-producing strains; ESBL+, extended-spectrum beta-lactamase-
producing strains; LVFXS, Levofloxacin-susceptible strains; LVFXR, Levofloxacin-resistant strains; ns,
not significant.

3. Discussion
The present study provides virulence and antimicrobial resistance associated with

fimbriae in UPEC strains. We have identified significant differences in the expression of
specific genes by analyzing the prevalence of the fimbrial genes in UPEC strains from
both the ABU and the symptomatic UTI groups. The papG2 gene was significantly more
prevalent in the symptomatic UTI, and it was suggested that papG2 may be related to
virulence. Furthermore, in the symptomatic UTI group with a urinary device, the expression
rate of the c2395 gene, which is suggested to be associated with motility, was significantly
lower compared to the symptomatic UTI group without a urinary device. This finding
suggests that such devices may allow bacteria with limited fimbriae involved in motility
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to ascend the urinary tract, and the UPEC potentially exhibit virulence. In addition,
comparative analysis between LVFX-sensitive and -resistant strains suggested that the
expression of fimbrial genes such as papEF, papG3, sfaS, c2395, and yadN was decreased in
LVFX-resistant strains. These findings not only improve our understanding of the virulence
of UPEC but may also help manage UTI to solve increasing antimicrobial-resistant bacteria
and medical costs.

Our study further supports existing data that has previously linked fimbrial genes to
the virulence of UPEC. In a previous study, various types of fimbrial genes have been ana-
lyzed as virulence factors. FimH, necessary for adhesion to the bladder epithelium, is highly
expressed in 95–100% of UPEC [7,25,30], suggesting that it is essential for colonization of
the urinary tract. Although there are few reports on PpdD, it has been suggested to be
important for urothelial adhesion and has been reported to be highly expressed in 97–100%
of UPEC isolated from humans and animals [31,32]. The papG2 has been associated with
pyelonephritis and upper urinary tract infections in numerous studies [8,31,33–35]. In our
study, fimH and ppdD were expressed in all UPEC strains (100%), and papG2 was signifi-
cantly elevated in the symptomatic UTI group (OR 5.850, 95% CI 1.390–24.70, p = 0.016),
supporting previous studies. Adhesive fimbria, such as type 1 and P-fimbria, contain ad-
hesins at the tips that play important roles in UTI [36–38]. FimH, the type 1 fimbria adhesin,
binds to the mannosylated glycoproteins on the surface of human bladder epithelial cells
and promotes facilitating bacterial colonization, invasion, and biofilm formation [39,40].
This factor is essential for the effective colonization of the urinary tract and is consequently
a frequently identified fimbrial virulence factor of UPEC in our data. PapG, the P-fimbria
adhesin, exists in three alleles (PapG1, G2, and G3). Each PapG allele is known to have a
distinct isoreceptor specificity, which, in turn, results in altered host tissue tropism [41].
PapG2 binds to the Gala1–4Gal (galabiose) on the surface of human kidney epithelial
cells, is involved in kidney colonization [42–44], and consequently establishes a robust
inflammatory response during renal colonization [34]. Our data also indicated that this
factor was significantly associated with symptomatic UTI, consistent with previous reports.
However, not all UPEC strains associated with pyelonephritis possess papG2, indicating
that other virulence factors may contribute to symptomatic UTI. In the symptomatic UTI
group without a urinary device, the papG2 gene was significantly more prevalent than in
the symptomatic UTI group with a urinary device. The use of urinary devices has been
reported to increase the incidence of UTI, which is believed to be due to the adhesion of
bacteria and the formation of biofilms [22–24,45]. Although there have been a few reports
on its relationship with type 1 fimbriae [24,46], all UPEC strains possessed type 1 fimbriae,
so our study had no specificity. These findings suggest that papG2 may possess virulence
and an enhanced ability to ascend the urinary tract without relying on urinary devices. The
finding that c2395, which is suggested to be associated with motility [47], was significantly
lower in the group with symptomatic urinary tract infections who had urinary tract de-
vices suggests that such a device may facilitate the ascent of UPEC with limited motility,
potentially enhancing its pathogenicity.

Regarding antibiotic resistance, this study further supports existing data that demon-
strate a correlation between UPEC and fimbrial genes. Quinolone-resistant UPEC had
lower fimbrial genes than quinolone-susceptible UPEC in numerous studies [26–28]. ESBL-
producing strains were previously found to have lower fimbrial genes than non-ESBL-
producing ones [25,48–50], but there were differences in the type of fimbrial genes among
the reports, and no consensus has been reached. In our study, fimbrial genes such as papEF,
papG3, sfaS, c2395, and yadN were suggested to be less abundant in LVFX-resistant UPEC
(all p < 0.05). This data showed that LVFX-resistant UPEC tends to have lower fimbrial
genes, supporting previous studies. Similar results were observed with ESBL-producing
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strains, but only two strains (4.3%) were LVFX-susceptible UPEC among them, suggesting
potential confounding effects due to LVFX-resistant UPEC. We compared the fimbrial genes
in ESBL production under the same LVFX conditions; the focG genes were significantly
lower (p < 0.05), and there were no significant differences in the other fimbrial genes (all
p > 0.05) (Table 7). These results suggested a weak relationship between ESBL-producing
bacteria and fimbrial genes. However, a consensus has yet to be established, and further
analysis involving a larger number of strains is warranted.

In quinolone-resistant UPEC, two hypotheses have been proposed to explain the
reduced virulence factors. The first hypothesis is that quinolone-resistant bacteria and
the reduction of fimbrial genes are associated with the phylogenetic origins of E. coli, as
demonstrated in several studies [51,52]. These genotypes of quinolone-resistant bacteria
more closely resemble the phylogenetic characteristics and virulence factor profiles of
animal-isolated strains than human quinolone-susceptible bacteria. This finding may have
resulted from foodborne infections linked to the excessive use of fluoroquinolones in food
animal production [52,53]. However, genetic diversity has been reported among quinolone-
resistant bacteria, leading to arguments against this hypothesis [28]. The second hypothesis
is that there may be a relationship between antimicrobial resistance genes and fimbrial
genes. Antimicrobial resistance may primarily arise from mutations in target genes [54] or
through the acquisition of resistance genes via mobile genetic elements such as plasmids
and integrons [55]. A previous study showed that horizontal transmission of antimicrobial
resistance genes leads to the downregulation of fimbrial genes [56]. This finding may play
a role in suppressing the expression of fimbrial genes, thereby protecting the pathogen
from attacks and detection by the host’s immune response. The relationship between drug
resistance and fimbrial genes has not yet been clarified, and further research is needed to
investigate these hypotheses.

The implications of our findings are multifaceted. The identification of papG2 as a sig-
nificant virulence factor in symptomatic UTI cases suggests that it may serve as a biomarker
for assessing the risk of symptomatic UTI. Moreover, in cases where urinary devices are
used, even if there are few motility factors, it may be better to treat them proactively if
there are virulence factors. Administering antimicrobials selectively to cases with virulence
factors may reduce the unnecessary use of antimicrobial agents and consequently lower
medical costs. Furthermore, numerous reports have indicated that polyvalent mannose-
based FimH inhibitors exhibit antiadhesive effects against UPEC [57–59]. Understanding
the mechanisms of fimbrial virulence factors may make it possible to develop new thera-
peutic strategies to inhibit bacterial adhesion and thereby prevent infections. In addition,
identifying the reduced expression of fimbrial genes in quinolone-resistant UPEC may
provide new insights regarding the use of antimicrobial agents. Specifically, this informa-
tion could serve as a basis for determining which antimicrobial agents to select when an
infection with resistant strains is suspected. To further evaluate the relationship between
fimbrial genes and virulence, as well as antimicrobial resistance, studies utilizing gene
knockout strains and comprehensive research that includes genes such as gyrA [60], which
have been implicated in pathogenicity and antimicrobial resistance, are necessary.

Despite the significant findings, our study has several limitations. First, UPEC was
evaluated at a single institution, resulting in a limited number of cases (such as LVFX-
susceptible/ESBL-producing strains). Second, individual urinary tract infections, such
as cystitis and pyelonephritis, were analyzed within the same group as symptomatic
UTIs. Third, bacterial pathogenicity is often multifactorial and may depend on specific
combinations or patterns of virulence genes rather than isolated factors. Finally, our analysis
did not consider other elements of virulence in UPEC, such as toxins, iron acquisition
systems, and immune evasion strategies.
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4. Materials and Methods
4.1. Study Design and Bacterial Strains

We analyzed a total of 120 UPEC strains isolated from urine cultures and preserved
at Okayama University Hospital from 2019 to 2023. All strains collected during the study
period were included, and no exclusion criteria were applied. We collected medical records
and clinical data from medical records, classified UPEC strains into the asymptomatic
bacteriuria (ABU) group and the symptomatic UTI group, and then analyzed the fimbrial
genes. In addition, we analyzed the genes by classifying the strains into the use of uri-
nary devices, LVFX-susceptible or -resistant, and ESBL-producing or non-ESBL-producing
strains. We defined ABU as the detection of bacteria in urine culture at a concentration
of ≥105 colony-forming units (CFUs)/mL without the symptoms of a UTI. The symp-
tomatic UTI group includes acute pyelonephritis, acute cystitis, and acute prostatitis. Acute
pyelonephritis was clinically defined as a disease accompanied by fever (armpit temper-
ature > 37.5 ◦C), lumbar tenderness, and pyuria. Acute cystitis is defined as a disease
accompanied by significant bacteriuria, which is associated with inflammation of the blad-
der mucosa without fever. The urinary device group includes urinary catheters, ureteral
stents, and nephrostomy catheters.

4.2. Culture Conditions

Isolated UPEC strains were labeled with batch numbers, cultured on Casitone agar
and stored at room temperature. When used for analysis, the strains were transferred to
standard agar plates for further cultivation. After being cultivated on slant agar prepared
in test tubes, UPEC was preserved under refrigeration and shipped to Gunma University.
After arriving at Gunma University, UPEC was cultured overnight at 37 ◦C in Luria–Bertani
medium without shaking.

4.3. Detection of Fimbrial Genes

The genes of 14 known fimbriae of UPEC were detected by the polymerase chain
reaction (PCR), including the fimH (type 1 fimbriae), papEF (P fimbriae), papG class I to
III alleles (PapG adhesins of P fimbriae), sfaS (S fimbriae), focG (F1C fimbriae), afa/draBC
(Afa/Dr fimbriae), bmaE (M fimbriae), gafD (G fimbriae), c2395 (Putative type IV pili), ppdD
(Putative type IV pili), yadN (Yad fimbriae), and YgiL (Ygi fimbriae). The PCR primers for
the genes are presented in Table 8. The primers used in this study were validated based on
previous literature [7,31,46,61–63].

4.4. DNA Extraction and Real-Time PCR Analysis

We harvested bacterial cells from 0.4 mL of an overnight culture pellet, and the boiling
method (98 ◦C, 10 min) extracted the DNA from the isolates. Amplification was done in
a 25 µL reaction mixture containing template DNA (2 µL of boiled lysate). We attempted
PCR analysis with Quick TaqTM HS DyeMix (Toyobo, Osaka, Japan). The following PCR
conditions were used: For papG class I to III alleles, initial denaturation at 94 ◦C for 5 min,
followed by 25 cycles of denaturation at 94 ◦C for 30 s, annealing at 55 ◦C for 30 s, and
extension at 68 ◦C for 3 min, with a final extension at 72 ◦C for 10 min. For the other
fimbrial genes, initial denaturation at 94 ◦C for 5 min, followed by 25 cycles of denaturation
at 94 ◦C for 30 s, annealing at 63 ◦C for 30 s, and extension at 68 ◦C for 3 min, with a final
extension at 72 ◦C for 10 min. Finally, all the PCR products were electrophoresed on a 3%
agarose gel and stained with ethidium bromide, then visualized under UV light.



Antibiotics 2025, 14, 468 9 of 13

Table 8. List of primers, expected amplicon size, and reference.

Gene Primer (5′→3′) Length (bp) Reference

fimH F: TGCAGAACGGATAAGCCGTGG
508 [7]R: GCAGTCACCTGCCCTCCGGTA

papEF F: GCAACAGCAACGCTGGTTGCATCAT
336 [61]R: AGAGAGAGCCACTCTTATACGGACA

papG1 F: TCGTGCTCAGGTCCGGAATTT
461 [46]R: TGGCATCCCCCAACATTATCG

papG2 F: GGGATGAGCGGGCCTTTGAT
190 [46,62]R: CGGGCCCCCAAGTAACTCG

papG3 F: GGCCTGCAATGGATTTACCTGG
258 [46,62]R: CCACCAAATGACCATGCCAGAC

sfaS F: GTGGATACGACGATTACTGTG
240 [63]R: CCGCCAGCATTCCCTGTATTC

focG F: CAGCACAGGCAGTGGATACGA
360 [63]R: GAATGTCGCCTGCCCATTGCT

afa/draBC F: GGCAGAGGGCCGGCAACAGGC
559 [63]R: CCCGTAACGCGCCAGCATCTC

bmaE
F: ATGGCGCTAACTTGCCATGCTG

507 [63]R: AGGGGGACATATAGCCCCCTTC

gafD F: TGTTGGACCGTCTCAGGGCTC
952 [63]R: CTCCCGGAACTCGCTGTTACT

c2395
F: CAAAGAGCGCAGGCAGAATCC

295 [31]R: CCGCTGTCGCAATCTTCACAC

ppdD F: AAGCGCCATTGGTATTCCCGC
260 [31]R: GAGTCATGACGACGCTTAGCC

yadN F: TGGCAATGGCTGCTGGTACTG
423 [31]R: TTTTGCTGTAAACATCACCCGG

ygiL F: AAGGTGAAGTTATCGATGCACC
432 [31]R: TAGCCTGTGCCTGCACGTTACC

4.5. Antimicrobial Susceptibility Testing

Antimicrobial susceptibility testing was conducted using the standard disc diffu-
sion technique according to the Clinical and Laboratory Standards Institute (CLSI) guide-
lines [64]. The samples were cultured on bromothymol blue (BTB) agar medium. After
16–20 h of aerobic incubation at 35 ◦C, the susceptibility results were interpreted based
on the MIC breakpoints of LVFX: susceptible at MIC ≤ 0.5, intermediate at MIC of 1, and
resistance at MIC ≥ 2 µg/mL for E. coli according to CLSI VET01S [65]. For analysis,
LVFX-intermediate was included in LVFX-resistance as insusceptibility. ESBL production
was investigated using ceftazidime/clavulanic acid and cefotaxime/clavulanic acid discs
(30/10 µg) alongside cefpodoxime/clavulanic discs (10/10 µg).

4.6. Statistical Analysis

For statistical analysis, Fisher’s exact test was performed to evaluate differences be-
tween the ABU group and symptomatic UTI groups. Multivariable logistic regression was
performed to estimate the odds of being in the symptomatic UTI group (vs. ABU group),
based on the presence of five virulence genes: papEF, papG2, papG3, sfaS, and afa/draBC. We
compared the use of urinary devices or antimicrobial-resistant bacteria between the two
groups using Fisher’s exact test, with p < 0.05 indicating statistical significance. All analyses
were conducted using EZR software at Saitama Medical Center, Jichi Medical University.
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5. Conclusions
The present study showed that the papG2 gene was a virulence factor. It was suggested

that the papG2 gene has an excellent ability to ascend the urinary tract, regardless of the
presence or absence of a urinary device. Our findings associated with the c2395 gene
suggested that UPEC may be potentially pathogenic, because the urinary tract device
allows bacteria with limited motility to ascend the urinary tract. In addition, the number
of fimbrial genes was significantly lower in LVFX-resistant strains, which may lead to the
early detection of antimicrobial-resistant bacteria. These findings not only improve our
understanding of the virulence of UPEC but may also assist in the management of UTI.
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