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Overall and abdominal obesity were significantly associated with insulin resistance and
type 2 diabetes mellitus (T2DM) risk in observational studies, though these associations
cannot avoid the bias induced by confounding effects and reverse causation. This
study aimed to test whether these associations are causal, and it compared the
causal effects of overall and abdominal obesity on T2DM risk and glycemic traits by
using a two-sample Mendelian randomization (MR) design. Based on summary-level
statistics from genome-wide association studies, the instrumental variables for body
mass index (BMI), waist-to-hip ratio (WHR), and WHR adjusted for BMI (WHRadjBMI)
were extracted, and the horizontal pleiotropy was analyzed using MR–Egger regression
and the MR–pleiotropy residual sum and outlier (PRESSO) method. Thereafter, by using
the conventional MR method, the inverse-variance weighted method was applied to
assess the causal effect of BMI, WHR, and WHRadjBMI on T2DM risk, Homeostatic
model assessment of insulin resistance (HOMA-IR), fasting insulin, fasting glucose, and
Hemoglobin A1c (HbA1c). A series of sensitivity analyses, including the multivariable MR
(diastolic blood pressure, systolic blood pressure, high-density lipoprotein cholesterol,
and low-density lipoprotein cholesterol as covariates), MR–Egger regression, weighted
median, MR–PRESSO, and leave-one-out method, were conducted to test the
robustness of the results from the conventional MR. Despite the existence of horizontal
pleiotropy, consistent results were found in the conventional MR results and sensitivity
analyses, except for the association between BMI and fasting glucose, and WHRadjBMI
and fasting glucose. Each one standard deviation higher BMI was associated with an
increased T2DM risk [odds ratio (OR): 2.741; 95% confidence interval (CI): 2.421–3.104],
higher HbA1c [1.054; 1.04–1.068], fasting insulin [1.202; 1.173–1.231], and HOMA-IR
[1.221; 1.187–1.255], similar to findings for causal effect of WHRadjBMI on T2DM risk
[1.993; 1.704–2.33], HbA1c [1.061; 1.042–1.08], fasting insulin [1.102; 1.068–1.136],
and HOMA-IR [1.127; 1.088–1.167]. Both BMI (P = 0.546) and WHRadjBMI (P = 0.443)
were unassociated with fasting glucose in the multivariable MR analysis. In conclusion,
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overall and abdominal obesity have causal effects on T2DM risk and insulin resistance
but no causal effect on fasting glucose. Individuals can substantially reduce their insulin
resistance and T2DM risk through reduction of body fat mass and modification of body
fat distribution.

Keywords: type 2 diabetes mellitus, insulin resistance, abdominal obesity, body fat mass, body fat mass
distribution, Mendelian randomization

INTRODUCTION

Type 2 diabetes mellitus (T2DM) is a chronic metabolic
disease characterized by hyperglycemia secondary to insulin
resistance and pancreatic β-cell failure (Alejandro et al., 2015).
The findings of human epidemiologic studies indicate that
the global prevalence of T2DM is increasing rapidly, and this
increase parallels the increase in the prevalence of obesity
(Sampath Kumar et al., 2019). The body mass index (BMI)
is routinely used to quantify the overall obesity although
body fat distribution of individuals can vary substantially.
The waist-to-hip ratio (WHR) and WHR adjusted for BMI
(WHRadjBMI) are frequently used surrogate measures of
abdominal obesity. Many observational epidemiologic studies,
including case–control and cohort studies, have demonstrated
that higher WHR and BMI are two important risk factors
for developing T2DM (Vazquez et al., 2007; Lv et al., 2017).
Moreover, cohort and cross-sectional studies (Wang et al., 2018;
Benites-Zapata et al., 2019) demonstrated that BMI and WHR
were associated with glycemic traits, including fasting insulin,
Hemoglobin A1c (HbA1c), and insulin resistance [measured by
Homeostatic model assessment of insulin resistance (HOMA-
IR)]. Longitudinal and cross-sectional studies have found an
association between increased risk of T2DM and higher genetic
predisposition to both BMI and WHRadjBMI in European and
East Asian populations (Robiou-du-Pont et al., 2013; Zhu et al.,
2014; Huang et al., 2015).

However, these observational studies cannot avoid the bias
induced by the confounding effect and reverse causation and,
therefore, are incapable of confirming whether these associations
are causal (Smith and Ebrahim, 2003). Mendelian randomization
(MR) is an approach that is used to unbiasedly test or
estimate the causal relationship between an exposure and an
associated outcome by using data on inherited genetic variants
that influence exposure status in the presence of unmeasured
confounding (Didelez and Sheehan, 2007; Lawlor et al., 2008). In
the past few years, MR has been extensively used in epidemiology
and other related areas of population science (Smit et al., 2019;
Wainberg et al., 2019; Yang et al., 2019).

Previous MR analyses have demonstrated that per 1 standard
deviation (SD) higher WHRadjBMI and BMI were causally
associated with T2DM risk in European populations (Dale
et al., 2017; Emdin et al., 2017). Wang et al. (2018) conducted
an MR to further investigate the causal effect of both BMI
and WHR on glycemic traits, and they found that BMI
had a causal relevance for insulin secretion, whereas neither
WHR and BMI was causally associated with HOMA-IR in
a conventional MR in a Chinese Han population. However,

there is a dearth of MR studies for testing and comparing
the causal effect of both overall and abdominal obesity on
glycemic in the European population. Epidemiologic studies
have found differences in T2DM epidemiologic characteristics
between the Asian and European population wherein, in
comparison with South Asians, Europeans have a lower T2DM
risk, typically develop T2DM 5–10 years later, and have
a slower disease progression (Gujral et al., 2013; Admiraal
et al., 2014; Gupta and Misra, 2016; Meeks et al., 2016;
Banerjee and Shah, 2018). Moreover, Europeans developed many
metabolic abnormalities, including hyperglycemia and elevated
triacylglycerol and low high-density lipoprotein cholesterol
(HDL-C), at a higher BMI and age (Raji et al., 2001;
Razak et al., 2007). Therefore, the estimation and comparison
of the causal effects of overall and abdominal obesity on
glycemic traits could provide insights into the obesity-related
mechanism of T2DM.

In this study, a two-sample Mendelian randomization
(TSMR) with a large sample size was conducted to determine
whether a genetic predisposition to increased BMI, WHR, and
WHRadjBMI was causally associated with T2DM and glycemic
traits, including HOMA-IR, fasting insulin, fasting glucose, and
HbA1c. The causal effects were further compared to identify
differences in the effect of overall and abdominal obesity on
T2DM development and glycemic traits.

MATERIALS AND METHODS

Data Source
This study aimed to explore the causal effect of WHR, BMI,
and WHRadjBMI on the risk of T2DM and glycemic traits
(HOMA-IR, fasting insulin, fasting glucose, and HbA1c) in
an European population, and used diastolic blood pressure
(DBP), systolic blood pressure (SBP), HDL-C, and low-density
lipoprotein cholesterol (LDL-C) as the covariates. The genome-
wide association study summary statistics datasets used in this
study were obtained from Zenodo1 for WHR (Censin et al.,
2019), BMI (Censin et al., 2019), and WHRadjBMI (Censin et al.,
2019); the Program in Complex Trait Genomics2 for T2DM
(Xue et al., 2018); MAGIC Consortium3 for HOMA-IR (Dupuis
et al., 2010), fasting glucose (Manning et al., 2012), fasting insulin
(Manning et al., 2012), and HbA1c (Wheeler et al., 2017); the

1https://zenodo.org
2https://cnsgenomics.com
3http://www.magicinvestigators.org/
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MRBase platform4 for HDL-C (Kettunen et al., 2016) and LDL-
C (Kettunen et al., 2016); and the MRC-IEU Consortium5 for
SBP and DBP. Detailed information of the summary statistics
datasets are displayed in Table 1. We obtained the β-coefficients
and standard errors for the per allele association of each single-
nucleotide polymorphism (SNP) as well as all exposures and
outcomes from these data sources.

Selection of Genetic Instrumental
Variables
In the TSMR analysis conducted in this study, the genetic
variants for exposures (BMI, WHR, and WHRadjBMI) were
used as instrumental variables (IVs) and were obtained by two
steps. Firstly, SNPs that are strongly associated with exposures
(P < 5.0 × 10−8) were extracted. Secondly, we pruned these
extracted SNPs by linkage disequilibrium (LD; r2 = 0.001,
clumping distance = 10,000 kb) to ensure that each IV was
independent of the others. To test the strength of the IVs,
the F-statistics were calculated as previously described (Xu and
Hao, 2017). F-statistics >10 are considered adequately strong to
mitigate against any bias of the causal IV estimate.

Heterogeneity and Horizontal Pleiotropic
Analysis
In MR, heterogeneity in the causal estimate may indicate that
a variant has an effect on the outcome outside of its effect on
the exposure (known as horizontal pleiotropy), and this can
cause severe bias (Davey Smith and Hemani, 2014). Mendelian
randomization–Egger (MR–Egger) regression was undertaken to
assess the horizontal pleiotropy of the IVs, where a regression
intercept that significantly differed from zero (P< 0.05) indicated
the presence of horizontal pleiotropy exists or that the InSIDE
(INstrument Strength Independent of Direct Effect) assumption
was violated (Bowden et al., 2015). Heterogeneity between IVs
in the conventional MR, with the inverse-variance weighted
(IVW) method, was estimated by Cochran’s Q statistic. The MR
pleiotropy residual sum and outlier (MR–PRESSO) method can
be used to test horizontal pleiotropic outliers and can obtain
the corrected causal effect after removal of these outliers in
MR (Verbanck et al., 2018). In the present study, both MR–
Egger regression and MR–PRESSO tests were conducted using
the TwoSampleMR and MRPRESSO R package in R (version
3.6.1), respectively.

Mendelian Randomization
Mendelian randomization can test and estimate the causal effect
of an exposure on an outcome by using genetic variants as the
IVs (Zheng et al., 2017). Firstly, Wald ratios were calculated for
each IV by dividing the per-allele log-odds ratio (or beta) of that
variant in the outcome data by the log-odds ratio (or beta) of
the same variant in the exposure data. Then, the random-effects
IVW method was applied to estimate the association between
exposures and outcomes. In IVW, the Wald ratio for each SNP

4http://www.mrbase.org
5http://www.bristol.ac.uk/integrative-epidemiology/

was weighted by its inverse variance, and the effect estimates were
meta-analyzed using random effects.

Sensitivity Analysis
Sensitivity analysis was used to test the disproportionate effects
of variants and the pleiotropy in the MR analysis (Mokry et al.,
2016). A series of sensitivity analyses were conducted to test the
robustness of the conventional MR results.

Multivariable IVW, which included the DBP, SBP, HDL-C,
and LDL-C as covariates, was carried out in accordance with the
method proposed by Rees et al. (2017) that was used to account
for possible horizontal pleiotropy arising from the association of
the instrument with these variables.

The MR–Egger regression and weighted median method are
two pleiotropy-robust MR methods that are used to estimate
consistent causal effects against unknown directional pleiotropy
under the InSIDE assumptions (Bowden et al., 2015). In the MR–
Egger regression method, the regression line fitted to the data
is not constrained to pass through the origin, and the intercept
represents the horizontal pleiotropic effect that may bias the
IVW estimate, whereas the slope represents pleiotropy-corrected
causal estimates. The weighted median method has considerable
robustness to individual genetics with strongly outlying causal
estimates and could provide a consistent causal estimate when
the valid IVs exceed 50%.

The MR–PRESSO method was used to identify potential
outliers in the conventional MR testing, and provided a
robust estimate with outlier correction. Moreover, testing of
significant distortion in the IVW causal estimate before and
after MR–PRESSO correction, was undertaken and served as a
sensitivity analysis.

The leave-one-out sensitivity analysis was conducted to
ascertain whether the association was being disproportionately
influenced by a single SNP. In this analysis, the random-effects
IVW was repeated by leaving out each SNP in turn, and the
overall analysis including all SNPs was used for the comparison.
The variation of the results from before and after the removal of
each SNP reflects the sensitivity of this SNP.

RESULTS

Genetic IVs
A total of 546, 356, and 330 IVs were identified for BMI,
WHR, and WHRadjBMI, respectively. Some IVs were absent
in the outcome data; however, the F statistics for BMI-IVs
(86.250–89.078), WHR-IVs (67.502–67.991), and WHRadjBMI-
IVs (90.758–96.860) that were used for MR were more than 10,
which indicated that the weak instrument bias was negligible.
Detailed information of IVs used in this study are shown in
Supplementary Table S1.

Horizontal Pleiotropy and Heterogeneity
Analysis
The MR–Egger regression intercepts obtained in this study
(Table 2) showed that horizontal pleiotropy (P = 0.029) was
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TABLE 1 | Summary statistics of data source.

Traits Consortium Data sources No. of participants No. of Variants Population Units in TSMR

WHR ZENODO Censin; PloS Genet; 2019 697,734 27,381,301 European SD

BMI ZENODO Censin; PloS Genet; 2019 806,834 27,376,273 European SD

WHRadjBMI ZENODO Censin; PloS Genet; 2019 694,649 27,375,636 European SD

HDL-C MRBase Kettunen; Nat Commun; 2016 21,555 11,865,530 European SD

LDL-C MRBase Kettunen; Nat Commun; 2016 21,559 11,871,461 European SD

SBP MRC-IEU Ben Elsworth; 2018 436,419 9,851,867 European SD

DBP MRC-IEU Ben Elsworth; 2018 436,424 9,851,867 European SD

Fasting glucose MAGIC Manning, Nat Genet; 2012 58,074 2,628,880 European mmol/L

Fasting insulin MAGIC Manning, Nat Genet; 2012 51,750 2,627,849 European log pmol/L

HOMA-IR MAGIC Dupuis; Nat Genet; 2010 37,037 2,458,074 European log HOMA

HbA1c MAGIC Wheeler, PloS Med; 2017 123,655 2,586,698 European %

T2DM Program in Complex Trait
Genomics

Xue; Nat Commun; 2018 62,892/596,424 5,053,015 European log odds

WHR, waist-to-hip ratio; BMI, body mass index; WHRadjBMI, waist-to-hip ratio adjusted for body mass index; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-
density lipoprotein cholesterol; SBP, systolic blood pressure; DBP, diastolic blood pressure; T2DM, Type 2 diabetes; TSMR, two-sample Mendelian randomization; SD,
standard deviation; HOMA-IR, Homeostasis model assessment of insulin resistance; HbA1c, Hemoglobin A1c.

only found in the MR with WHRadjBMI as exposure and fasting
insulin as the outcome. Heterogeneity (Table 2) was observed
between IVs; therefore, the random-effect IVW method was
used in the subsequent stages of the research analysis. The MR–
PRESSO test showed that horizontal pleiotropy was found in
all IVW analyses in this study, and the horizontal pleiotropic
outliers were identified and removed (Supplementary Table S2).
After the removal of these outliers, the F-statistics of BMI-IVs
(85.704–89.033), WHR-IVs (62.240–67.991), and WHRadjBMI-
IVs (84.668–96.860) continued to remain well powered to
estimate the causal effect of the exposure on the outcome.

Causal Effect of WHR, BMI, and
WHRadjBMI on T2DM and Glycemic
Traits
Table 3 and Figure 1 show the causal effect estimates of WHR,
BMI, and WHRadjBMI on T2DM and glycemic traits. The TSMR
analysis by the IVW method showed a significant causal effect,
wherein each SD of genetically higher BMI was associated with
an increased T2DM risk [OR: 2.741; 95% confidence interval
(CI): 2.421–3.104], higher fasting glucose [1.073; 1.048–1.099],
higher fasting insulin [1.202; 1.173–1.231], higher HOMA-IR
[1.221; 1.187–1.255], and higher HbA1c [1.054; 1.04–1.068]. Each
SD of genetically higher WHR was associated with increased
T2DM risk [3.12; 2.653–3.668], higher fasting glucose [1.087;
1.054–1.12], higher fasting insulin [1.193; 1.153–1.234], higher
HOMA-IR [1.203; 1.155–1.252], and higher HbA1c [1.075;
1.056–1.095]. Each SD of genetically higher WHRadjBMI was
associated with increased T2DM risk [1.993; 1.704–2.33], higher
fasting glucose [1.039; 1.012–1.067], higher fasting insulin [1.102;
1.068–1.136], higher HOMA-IR [1.127; 1.088–1.167], and higher
HbA1c [1.061; 1.042–1.08].

Sensitivity Analysis
In the leave-one-out sensitivity analysis, no single SNP strongly
or reversely drove the overall effect of exposure on outcome in

the IVW (Supplementary Figure S1). Consistent results were
observed in the IVW after the MR–PRESSO correction, MR–
Egger regression, and the weighted median method, with the
exception of the causal estimates of WHR on HbA1c (P = 0.058)
and fasting glucose (P = 0.098) in the MR–Egger regression. The
MR–Egger regression could obtain pleiotropy-corrected causal
estimates, although this method had less statistical power than an
equivalent IVW method, and the CIs were wider and included
the null value (Bowden, 2017; Weng et al., 2018). Because the
intercept of the MR–Egger regression indicates that there was no
horizontal pleiotropy in the MR–Egger regression between WHR
and both HbA1c (P = 0.695) and fasting glucose (P = 0.935),
the causal estimate was more convincing in the IVW. In the
multivariable IVW (DBP, SBP, HDL-C, and LDL-C as covariates),
BMI (P = 0.546) and WHRadjBMI (P = 0.443) were not causally
associated with fasting glucose, whereas other multivariable IVW
results persisted with that in the univariable IVW.

Taken together, the causal effect estimates of BMI and
WHRadjBMI on fasting glucose in conventional MR might be
biased by the horizontal pleiotropy of SBP, DBP, HDL-C, and
LDL-C, while no significant bias was found in other causal
effect estimates despite the existence of horizontal pleiotropy
and heterogeneity.

DISCUSSION

Numerous observational studies indicated that obesity was
strongly associated with T2DM risk and glycemic traits (Lv
et al., 2017), however, a causal effect cannot be ascertained from
these studies due to residual confounding or reverse causality.
This present study utilized a TSMR design that was applied
to the summary-level data from a large-scale genome-wide
association study to address the potential causal role of overall
obesity (measured by BMI) and abdominal obesity (measure by
WHRadjBMI) on the risk of T2DM and glycemic traits. The
well-powered conventional MR (random-effect IVW method)
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TABLE 2 | Heterogeneity and horizontal pleiotropy analysis.

Exposure Outcome Heterogeneity Horizontal pleiotropy

MR–PRESSO test MR–Egger regression

Q Q df P Global Test RSSobs Global Test P intercepts (95% CI) P

BMI

T2DM 2867.057 445 <0.001 2885.029 <0.001 −0.001 (0.994,1.005) 0.837

HOMA-IR 510.260 446 0.019 512.445 0.023 0 (0.998,1.001) 0.430

HbA1c 654.863 445 <0.001 658.515 <0.001 0 (0.999,1) 0.714

Fasting insulin 624.170 448 <0.001 626.889 <0.001 0 (0.999,1.001) 0.842

Fasting glucose 619.187 448 <0.001 622.082 <0.001 0 (0.999,1.001) 0.838

WHR

T2DM 1718.377 275 <0.001 1739.466 <0.001 0.008 (1,1.017) 0.055

HOMA-IR 368.360 277 <0.001 371.364 <0.001 0 (0.998,1.002) 0.729

HbA1c 413.286 279 <0.001 416.611 <0.001 0 (0.999,1.001) 0.695

Fasting insulin 431.511 280 <0.001 435.262 <0.001 0 (0.998,1.002) 0.853

Fasting glucose 358.324 280 0.001 361.045 0.001 0 (0.998,1.002) 0.935

WHRadjBMI

T2DM 1590.053 236 <0.001 1609.124 <0.001 0.003 (0.995,1.011) 0.455

HOMA-IR 290.496 237 0.010 293.251 0.011 −0.001 (0.997,1.001) 0.175

HbA1c 383.587 238 <0.001 387.452 <0.001 0 (0.999,1) 0.355

Fasting insulin 362.009 239 <0.001 365.491 <0.001 −0.002 (0.997,1) 0.029

Fasting glucose 276.448 239 0.048 278.957 0.047 −0.001 (0.998,1.001) 0.319

WHR, waist-to-hip ratio; BMI, body mass index; WHRadjBMI, waist-to-hip ratio adjusted for body mass index; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-
density lipoprotein cholesterol; SBP, systolic blood pressure; DBP, diastolic blood pressure; T2DM, Type 2 diabetes; SD, standard deviation; HOMA-IR, Homeostasis
model assessment of insulin resistance; HbA1c, Hemoglobin A1c; Q, Cochran’s Q test estimate; df, Cochran’s Q test degrees of freedom; MR–egger, Mendelian
randomization–Egger regression; MR–PRESSO, Mendelian randomization pleiotropy residual sum and outlier method; OR, odds ratio; CI, confidence interval.

confirmed that genetic predisposition to higher BMI, WHR, and
WHRadjBMI are causally associated with higher fasting glucose,
fasting insulin, HOMA-IR, HbA1c, and increased risk of T2DM
in the European population.

However, heterogeneity and horizontal pleiotropy was found
in the conventional MR analysis, a series of sensitivity analyses
that included the multivariable MR (DBP, SBP, HDL-C, and
LDL-C as covariates), MR–Egger regression, weighted median
method, MR–PRESSO method, and leave-one-out analysis to test
the robustness of the conventional MR results. The causal effect
of BMI and WHRadjBMI on T2DM risk, HbA1c, fasting insulin,
and HOMA-IR in the conventional MR were consistent with that
in all the sensitivity analyses, which suggested that the causal
estimate was robust and unbiased.

Each SD of genetically higher BMI [2.741; 2.421–3.104] and
WHRadjBMI [1.993; 1.704–2.33] was associated with increased
T2DM risk. Human epidemiologic studies have considered
obesity to be a major risk factor of T2DM, and the substantial
increase in the incidence of obesity contributes to the current
T2DM epidemic (Sampath Kumar et al., 2019). Using the MR
method in the European descendants, Emdin et al. confirmed
that a 1 SD genetic increase in WHRadjBMI was associated
with a higher risk of T2DM [1.77; 1.57–2.00] (Emdin et al.,
2017), and Dale et al. revealed that each SD higher BMI
was associated with increased T2DM risk [1.98; 1.41–2.78]
(Dale et al., 2017). The results of this study are in agreement
with those of previous observational studies (Lv et al., 2017;

Sampath Kumar et al., 2019) and MR studies (Dale et al.,
2017; Emdin et al., 2017) which suggested that both overall
and abdominal obesity play a causal role on T2DM risk in the
European population. In addition, our MR studies suggested
that the causal effect of overall obesity on T2DM risk was
greater than that of abdominal obesity. Moreover, both BMI
[1.054; 1.04–1.068] and WHRadjBMI [1.061; 1.042–1.08] were
found to have a causal effect on HbA1c, which suggested that
overall and abdominal obesity have a similar but small causal
effect on the HbA1c.

Insulin resistance refers to a decreased physiological response
of peripheral tissues to insulin action, which implies an impaired
effect of insulin in lowering the blood glucose (Gelaye et al.,
2010). This serves as the key mechanism and a major global
driver of the T2DM condition (Roglic, 2016; Czech, 2017).
The accumulation of body fat and abdominal body fat are
risk factors for increased insulin resistance (Kohrt et al., 1993;
Gobato et al., 2014), and high BMI and WHR were found to
be positively correlated with insulin resistance in observational
epidemiological studies (Gobato et al., 2014; Benites-Zapata
et al., 2019; Lin et al., 2019). Wang et al. reported that higher
BMI was causally correlated with increased Stumvoll first- and
second-phase insulin secretion and HOMA-IR, whereas no
causal relationship between WHR and HOMA-IR was found
in a conventional MR study in the Chinese Han population
(Wang et al., 2018). In Europeans, a previous MR study found
that higher WHRadjBMI was causally associated with higher
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TABLE 3 | Mendelian randomization results.

BMI WHR WHRadjBMI

Outcome Method nSNP OR (95% CI) P nSNP OR (95% CI) P nSNP OR (95% CI) P

T2DM

IVW 446 2.741 (2.421, 3.104) 6.12E-57 276 3.12 (2.653, 3.668) 3.87E-43 237 1.993 (1.704, 2.33) 5.59E-18

MR–PRESSO (Outlier-corrected) 433 3.064 (2.871, 3.271) 9.15E-123 254 3.543 (3.164, 3.968) 2.67E-60 211 2.117 (1.908, 2.35) 3.06E-32

Multivariable MR 842 3.338 (2.625, 4.246) 1.47E-20 672 2.887 (2.54, 3.281) 3.66E-50 633 2.105 (1.755, 2.524) 8.57E-15

Weighted median 446 2.835 (2.576, 3.12) 6.18E-101 276 2.769 (2.43, 3.156) 1.02E-52 237 1.983 (1.764, 2.229) 1.74E-30

MR–Egger 446 2.829 (2.042, 3.918) 9.28E-10 276 1.894 (1.109, 3.234) 0.020 237 1.699 (1.087, 2.656) 0.0201

HOMA-IR

IVW 447 1.221 (1.187, 1.255) 6.69E-44 278 1.203 (1.155, 1.252) 4.03E-19 238 1.127 (1.088, 1.167) 3.69E-11

MR–PRESSO (Outlier-corrected) 446 1.223 (1.19, 1.258) 5.15E-38 278 NA NA 238 NA NA

Multivariable MR 723 1.294 (1.187, 1.411) 1.29E-08 554 1.192 (1.148, 1.237) 1.28E-18 529 1.197 (1.134, 1.262) 1.61E-10

Weighted median 447 1.214 (1.161, 1.27) 2.79E-17 278 1.18 (1.114, 1.251) 2.25E-08 238 1.128 (1.07, 1.188) 6.90E-06

MR–Egger 447 1.255 (1.165, 1.352) 4.41E-09 278 1.175 (1.024, 1.348) 0.022 238 1.199 (1.089, 1.32) 2.72E-3

HbA1c

IVW 446 1.054 (1.04, 1.068) 4.99E-14 280 1.075 (1.056, 1.095) 1.13E-14 239 1.061 (1.042, 1.08) 3.85E-11

MR–PRESSO (Outlier-corrected) 441 1.05 (1.036, 1.064) 9.67E-13 278 1.075 (1.056, 1.094) 4.41E-14 235 1.054 (1.037, 1.072) 1.61E-09

Multivariable MR 735 1.076 (1.031, 1.123) 8.11E-3 569 1.074 (1.055, 1.093) 5.04E-14 543 1.065 (1.038, 1.094) 3.79E-06

Weighted median 446 1.06 (1.04, 1.081) 3.83E-09 280 1.07 (1.044, 1.096) 4.60E-08 239 1.059 (1.034, 1.085) 2.08E-06

MR–Egger 446 1.06 (1.024, 1.099) 0.001 280 1.062 (0.998, 1.131) 0.058 239 1.084 (1.033, 1.137) 0.001

Fasting
insulin

IVW 449 1.202 (1.173, 1.231) 4.73E-50 281 1.193 (1.153, 1.234) 2.28E-24 240 1.102 (1.068, 1.136) 6.37E-10

MR–PRESSO (Outlier-corrected) 446 1.198 (1.17, 1.226) 4.55E-42 280 1.201 (1.162, 1.241) 3.45E-23 237 1.108 (1.077, 1.141) 2.80E-11

Multivariable MR 742 1.298 (1.204, 1.4) 6.62E-11 574 1.184 (1.147, 1.223) 5.81E-23 548 1.179 (1.125, 1.235) 2.18E-11

Weighted median 449 1.213 (1.168, 1.26) 1.54E-23 281 1.187 (1.136, 1.24) 1.41E-14 240 1.129 (1.083, 1.177) 1.03E-08

MR–Egger 449 1.209 (1.134, 1.289) 1.06E-08 281 1.18 (1.052, 1.324) 0.005 240 1.2 (1.105, 1.304) 2.29E-05

Fasting
glucose

IVW 449 1.073 (1.048, 1.099) 4.53E-09 281 1.087 (1.054, 1.12) 8.78E-08 240 1.039 (1.012, 1.067) 0.004

MR–PRESSO (Outlier-corrected) 446 1.083 (1.059, 1.107) 7.61E-12 278 1.098 (1.067, 1.13) 7.19E-10 239 1.044 (1.017, 1.072) 0.001

Multivariable MR 742 1.025 (0.947, 1.109) 0.546 574 1.067 (1.034, 1.102) 8.18E-05 548 1.019 (0.971, 1.069) 0.443

Weighted median 449 1.077 (1.041, 1.114) 1.88E-05 281 1.092 (1.048, 1.138) 2.60E-05 240 1.058 (1.017, 1.101) 0.005

MR–Egger 449 1.067 (1.002, 1.136) 0.043 281 1.091 (0.984, 1.209) 0.098 240 1.075 (1.001, 1.155) 0.049

WHR, waist-to-hip ratio; BMI, body mass index; WHRadjBMI, waist-to-hip ratio adjusted for body mass index; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; SBP, systolic
blood pressure; DBP, diastolic blood pressure; T2DM, type 2 diabetes; SD, standard deviation; HOMA-IR, homeostasis model assessment of insulin resistance; HbA1c, hemoglobin A1c; nSNP, numbers of the SNPs
(instrumental variable) used in Mendelian randomization; IVW, inverse-variance weighted; MR–egger, Mendelian randomization–Egger regression; MR–PRESSO, Mendelian randomization pleiotropy residual sum and
outlier method; OR, odds ratio; CI, confidence interval.
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FIGURE 1 | Scatterplot and causal effect of body mass index (BMI), waist-to-hip ratio (WHR), and WHR adjusted for BMI (WHRadjBMI) on type 2 diabetes mellitus
(T2DM) and glycemic traits including HOMA-IR, fasting insulin, fasting glucose and glycate hemoglobin (HbA1c). (A) Causal effect of WHRadjBMI on T2DM,
(B) Causal effect of WHRadjBMI on HOMA-IR, (C) Causal effect of WHRadjBMI on fasting glucose, (D) Causal effect of WHRadjBMI on fasting insulin, (E) Causal
effect of WHRadjBMI on HbA1c, (F) Causal effect of WHR on T2DM, (G) Causal effect of WHR on HOMA-IR, (H) Causal effect of WHR on fasting glucose, (I) Causal
effect of WHR on fasting insulin, (J) Causal effect of WHR on HbA1c, (K) Causal effect of BMI on T2DM, (L) Causal effect of BMI on HOMA-IR, (M) Causal effect of
BMI on fasting glucose, (N) Causal effect of BMI on fasting insulin, and (O) Causal effect of BMI on HbA1c. The x-axis presents the single nucleotide polymorphism
(SNP) effect on exposure, and the y-axis presents the SNP effect on outcome. The light blue, dark blue and green regression line represents the inverse-variance
weighted (IVW), Mendelian randomization (MR)–Egger, and weighted median estimate, respectively.

fasting insulin levels (Emdin et al., 2017). The present MR
study provides a similar conclusion with regard to the European
population, each SD of genetically higher WHRadjBMI [1.102;
1.068–1.136] and BMI [1.202; 1.173–1.231] was found to play
a positive causal effect on higher fasting insulin. Furthermore,
each SD of genetically higher BMI [1.221; 1.187–1.255] and
WHRadjBMI [1.127; 1.088–1.167] was causally associated with
the HOMA-IR. These results suggested that higher overall
and abdominal obesity serve as causal risk factors of fasting
insulin and insulin resistance in the European population. The
findings of the present study are supported by experimental
studies as well. Obesity could stimulate the formation of lipid
metabolites, hormones, and cytokines, which involves changes
in the insulin signaling pathway and the accelerated progression
of insulin resistance (Patel and Abate, 2013; Balsan et al.,
2015). Moreover, the causal effect of overall obesity on fasting
insulin and insulin resistance is slightly greater than that
of abdominal obesity. Thus, we highlighted that both mass
and distribution of body fat play a causal role on insulin
resistance and T2DM risk. This indicates that the development
of therapies to modify the mass and distribution of body fat
to reduce overall and abdominal obesity might contribute to

the prevention and alleviation of T2DM and insulin resistance-
related diseases.

Furthermore, although higher BMI and WHRadjBMI was
found to be causally associated with higher fasting glucose
in our conventional MR in the European population, no
statistical significance was found between BMI and fasting
glucose (P = 0.546) or with WHRadjBMI and fasting glucose
(P = 0.443) in the multivariable MR (DBP, SBP, HDL-C, and LDL-
C as covariates). The casual estimates of BMI and WHRadjBMI
on fasting glucose in conventional MR might be biased by the
horizontal pleiotropy of DBP, SBP, HDL-C, and LDL-C. These
negative results warrant further investigation.

Through a comparison of the causal estimates of BMI and
WHRadjBMI on glycemic traits (fasting glucose, fasting insulin,
HOMA-IR, and HbA1c), this study further emphasizes that
overall and abdominal obesity might increase the T2DM risk
mainly via elevation of insulin resistance.

In conclusion, overall and abdominal obesity have a causal
effect on the T2DM risk and insulin resistance, and overall obesity
may have stronger effects, whereas they may have no causal effect
on the fasting glucose. These results suggest that individuals
can substantially reduce their insulin resistance and T2DM risk
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through reduction of body fat mass and modification of body
fat distribution.
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