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Abstract
Interleukin–23 (IL–23) is a conventional proinflammatory cytokine that plays a role in tumor

progression by inducing inflammation in the tumor microenvironment. However, the role of

IL–23 in thyroid cancer migration and invasion remains unclear. In the present study, we

observed that the treatment with IL–23, induced migration and invasion in human thyroid

cancer cells. Additional data demonstrate that SOCS4 negatively regulates IL-23-mediated

migration and invasion. On investigating the mechanisms involved in IL–23 mediated migra-

tion and invasion, we observed that miR–25 promotes the migration and invasion of thyroid

cancer cells by directly binding to the 30-UTR of SOCS4 that leads to the inhibition of

SOCS4. In addition, we also demonstrated that IL–23 increases miR–25 expression levels,

and overexpressed miR–25 is involved in IL-23-associated SOCS4 inhibition and cell migra-

tion and invasion. Together, our data suggest that IL–23 induces migration and invasion in

thyroid cancer cells by mediating the miR–25/SOCS4 signaling pathway.

Introduction
Thyroid cancer is a common type of endocrine malignancy that has shown a rapid increase in
worldwide incidence during the past few decades [1]. Despite improvements in therapeutic
strategies, some patients are difficult to treat and develop invasion and metastasis [2]. There-
fore, it is essential to identify the molecular mechanisms underlying thyroid cancer invasion
and metastasis. Recent reports demonstrated that inflammation is a strong promoter of carci-
nogenesis and malignancy in many forms of cancer [3,4]. Inflammation seems to be an impor-
tant mediator for the development of cancer and provides the cancer cells a hospitable
microenvironment [5]. Interleukin–23 (IL–23), a heterodimeric type 1 cytokine composed of
the IL–12/p40 subunit and the specific p19 subunit, belongs to the interleukin–6 superfamily
[6]. Previous studies have shown that IL–23 is associated with carcinogenesis as well as inflam-
mation. High levels of IL–23 were found in human hepatocellular carcinoma, colorectal
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carcinoma, squamous carcinoma, and esophageal carcinoma [7–10]. Evidence suggests that
IL–23 overexpression can induce metastasis in colorectal, lung, and oral cancer [7–10].

The suppressors of cytokine signaling (SOCS) are important negative feedback regulators of
cytokine signaling [11]. The SOCS proteins are a family of 8 proteins (SOCS1-7 and a cyto-
kine-inducible SH2-containing protein or CIS). Each SOCS protein contains a central SH2
domain that interacts with phosphorylated tyrosines [12]. SOCS proteins have been recently
investigated for their role in the development of different cancers [13–18]. However, little is
known about the role of SOCS4 in carcinoma, and their possible influence on tumor growth
and malignancy.

MicroRNAs (miRNAs) are a species of small noncoding single stranded RNAs that play an
important role in the development of different cancers by binding the 30-untranslated region
(30-UTR) of targeted genes [19]. Aberrant miRNA expression has also been frequently reported
in numerous tumors [20]. In recent years, multiple evidence point to a role for miRNAs in
tumor cell biological processes, including cell proliferation, differentiation, migration, and
invasion [21]. MicroRNA–25 belongs to the miR-106b-25 cluster that includes miR-106b,
miR–93, and miR–25. MicroRNA–25 has been reported to be aberrantly overexpressed in sev-
eral tumors, such as ovarian cancer, lung cancer, gastric cancer, and colorectal cancer [22–26].
Although the expression of miR–25 in different tumors has been described, a clear role for
miR–25 in thyroid carcinoma remains unclear.

In this study, we demonstrate that IL–23 promotes thyroid cancer cell migration and inva-
sion. We further demonstrate that IL–23 regulates the migration and invasion of thyroid can-
cer cells via a miR–25/SOCS4 signaling pathway.

Materials and Methods

Ethics statement
All participants gave written informed consent to participate in the study. The study was con-
ducted according to the principles of the Declaration of Helsinki and approved by the Institu-
tional Review Board of the Remin Hospital of Wuhan University, in accordance with its
guidelines for the protection of human subjects.

Samples and cases
Thyroid tissues were collected at the Remin Hospital of Wuhan University from February 2010
to February 2014. Tissue samples were cut into two parts, one was reviewed by two expert
pathologists to verify the histologic diagnosis, the other immediately snap-frozen in liquid
nitrogen, and stored in liquid nitrogen until RNA extraction. None of the patients had received
any preoperative treatment. Tumors were staged according to the American Joint Committee
on Cancer (AJCC) pathologic tumor-node-metastasis (TNM) classiication. The characteristics
of patients are described in S1 and S2 Tables.

Cell culture
Human thyroid cancer cell lines K1 (papillary) and WRO (follicular) were cultured in Dulbec-
co’s modified Eagle’s medium (DMEM) (Gibco BRL, Grand Island, NY) supplemented with
10% fetal bovine serum (Gibco BRL), 100 units/ml penicillin, and 100 μg/ml streptomycin sul-
fate. Cells were maintained at 37°C in a 5% CO2 incubator. All these cell lines were original
purchased from cell bank of the Chinese Academy of Science, Shanghai.
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Reagents
Recombinant human IL–23 (rhIL–23) was purchased from R&D Systems (Minneapolis, MN).
Monoclonal antibodies (Abs) against human SOCS4 and GAPDH were purchased from Sigma
(St Louis, MO). Chemically synthesized miRNA mimics and miRNA inhibitors were pur-
chased from Ambion (Austin, TX, USA). TRIzol, Lipfectamine–2000, Enzyme MIX were pur-
chased from Invitrogen (Basel, Switzerland).

Quantitative real time PCR
Quantitative real time PCR analysis was performed to determine mature miRNA and mRNA
levels. For quantitative mature microRNAs detection, Total miRNAs were isolated using a mir-
Vana miRNA isolation kit (Ambion), according to the manufacturer’s instructions. Total RNA
(2 μg) was reversetranscribed with Bulge-Loop mature miRNA-specific reverse transcription
primers (Ambion) and Moloney murine leukemia virus reverse transcriptase (Promega).
Quantitative Real-time PCR-based quantification of miRNAs was performed using the miRNA
analysis kits (Ambion), according to the manufacturer’s instructions. The levels of miRNAs
were normalized to those of the internal control U6 snRNA. To detect cellular mRNAs, total
RNA was isolated using TRIzol (Invitrogen, Basel, Switzerland). Cellular RNA samples were
reverse-transcribed using random primers. Real-time PCR was performed using a LightCycler
480 (Roche) and the SYBR Green system (Applied Biosystems). GAPDH was amplified as an
internal control. Primers used this study are listed in S3 Table and the SYBR green products
verified by sequencing.

Transwell assay
Cell migration and invasion assay were performed as described previously [27]. Briefly, cells
were treated either with 50 ng/mL rhIL–23 or BSA buffer control for described time and dose
and observed accordingly. The mean number of migrating and invading cells was expressed as
a percentage relative to the control, which was designated as 100%.

Wound closure assay
A wound was introduced on the confluent monolayer cells using a micropipette tip. Photo-
graphs were taken at 40 X magnification using phase-contrast microscopy immediately after
wound incision and at selected timepoints. Wound closure was measured by calculating pixel
densities in the wound area by Cella software (Olympus Biosystem Gmb, Hamburg, Germany)
and expressed as percentage of wound closure of triplicate areas ± SD.

MTT assay
The 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used in
the evaluation of cells proliferation. Cells were seeded into 96-well plates at 5×103 cells/well.
Twenty-four hours later, MTT assay was conducted. Finally, the optical density was deter-
mined at 570nm using the ELISA plate reader (Model 550; Bio-Rad). At least three indepen-
dent experiments were ensured.

Transfection and luciferase reporter assay
Cells were seeded on 24-well or 6-well dishes, depending on the experiment, and were grown
to the confluence reaching approximately 80–90% at the time of transfection. Cells were trans-
fected using Lipofectamine 2000 (Invitrogen, Carlsbad, CA) according to the protocol provided
by the manufacturer. A Renilla luciferase reporter vector pRL-TK was used as internal control.
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Luciferase assays were performed with a dual-specific luciferse assay kit (Promega, Madison,
WI). Firefly luciferase activities were normalized on the basis of Renilla luciferase activities. All
reporter assays were repeated for at least three times. Data shown were average values ± SD
from one representative experiment.

RNA interference
SOCS4 shRNA and irrelevant shRNA control (shRNA-control) were purchased from Gene-
Pharma (GenePharma, Shanghai) and prepared by ligation of the corresponding pairs of oligo-
nucleotides to PGPU6/GFP/Neo. The target sequence can be found in S4 Table.

Western blot analysis
Whole-cell lysates were prepared by lysing cells with PBS pH 7.4 containing 0.01% Triton X–
100, 0.01% EDTA, and 10% protease inhibitor cocktail (Roche, Applied Science). Protein con-
centration was determined by the Bradford assay (Bio-Rad). The polypeptides from cell lysates
were separated on SDS 12% polyacrylamide gels cross-linked with N,N -methylenebisacylamide,
and transferred electrically to nitrocellulose membranes (Millipore, Billerica, MA). Nonspecific
binding was blocked with 5%milk in PBST before adding primary antibodies used in this study.
Horseradish peroxidase–linked anti-rabbit and anti-mouse antibodies (Sigma, St Louis, MO)
were used as secondary antibodies. Protein levels were quantified by scanning blots on a Gel Doc
EZ imager (Bio-Rad) and analysis with Quantity One 1D image analysis software 4.4.0 (Bio-Rad)

Statistical analysis
Statistical analyses were performed using the GraphPad Prism 5 software (GraphPad Software,
La Jolla, CA, USA). Parametric and nonparametric data were analyzed using a two-tailed t-test
and the Mann–Whitney U test respectively. A value of P< 0.05 was considered statistically sig-
nificant. Data are presented as mean±S.D. or mean±S.E.M.

Results

IL–23 promotes the migration and invasion of thyroid cancer cells
We wanted to test the effect of IL–23 on the cell proliferation of thyroid cancer cells in order to
observe if cell proliferation disturbs the migration and invasion capacity of the cells. The MTT
assay showed that the proliferation of K1 cells and WRO cells were hardly affected by any dose
of IL–23 (S1 Fig). We next investigated whether IL–23 could affect the migration and the inva-
sion of thyroid cancer cells. Enhanced movement and invasion of K1 cells were detected in the
presence of 50 and 100 ng/ml of IL–23 (Fig 1A and 1B). Similarly, increased migration and
invasion were also detected as early as 48 hours (h) following treatment with 50 ng/ml IL–23
protein (Fig 1C and 1D). We also demonstrated that IL–23 increased the migration and inva-
sion of WRO cells in a dose- and time-dependent manner (S2 Fig). In addition, wound healing
assay also show that IL–23 increased the migration of K1 cells (Fig 1E and 1F). Together, these
results confirm the dose- and time-dependent promigratory and proinvasive effect of IL–23.

IL–23 induces the migration and invasion of thyroid cancer cells through
SOCS4
To identify the role of IL–23 in the expression of SOCS4, K1 cells were stimulated with IL–23
protein for 24 h at the concentration of 50 ng/ml. The suppressors of cytokine signaling
(SOCS4) mRNA and protein were detected by real-time PCR and western blot, respectively.
Results showed that IL–23 suppressed SOCS4mRNA and protein expression in K1 cells (Fig
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Fig 1. IL–23 promotes K1 cell migration and invasion. (A) K1 cells were treated with rhIL–23 for 48 h at the indicated concentrations, followed by culturing
in a transwell system for 24 hours. (B) Cell invasion assay experiments were performed with K1 cells that were treated as in (A). (C) K1 cells were treated with
a concentration of 50 ng/ml rhIL–23 for the indicated time points, followed by culturing in a transwell system for 24 h. (D) The experiments were performed as
in (C) for the cell invasion assay. (E) K1 cells were treated with rhIL–23 for 48 h at the indicated concentrations, followed by introducing a wound. Cell
migration into the wound was monitored at 24 hours. (F) K1 cells were treated with a concentration of 50 ng/ml rhIL–23 for the indicated time points, followed
by introducing a wound. Cell migration into the wound was monitored at 24 hours. Wound closure was measured by calculating pixel densities in the wound
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2A). Similar results were also obtained in the WRO cell line (Fig 2B). To determine whether
SOCS4 participates in the IL-23-mediated migration and invasion of thyroid cancer cells, we
constructed 4 human SOCS4-specific short hairpin RNA (shRNA). Real-time PCR results
showed that the #2 shRNA plasmids could markedly inhibit the expression of SOCS4 in K1
cells, whereas the other shRNA plasmids had little effect on the expression of SOCS4 (Fig 2C).
SOCS4 protein levels showed a similar trend as determined by Western blot (Fig 2D). In cell
migration experiments, the overexpression of SOCS4 inhibited IL-23-induced migration in K1
cells (Fig 2E). Conversely, the knockdown of SOCS4 expression enhanced IL-23-induced
migration in K1 cells (Fig 2F). The degrees of induction were correlated with the efficiencies of
SOCS4 knockdown by each shRNA plasmid (Fig 2F). Similar results were obtained with trans-
well invasion experiments (Fig 2G and 2H). Since SOCS4 negatively regulates migration, we
next analyzed the role of SOCS4 in the cell proliferation of thyroid cancer cells. Results from
MTT assay indicated that the proliferation of K1 cells were hardly affected by the expression of
SOCS4. In addition, overexpression or Knockdown of SOCS4 and treatment with IL–23 could
not affect the cell proliferation of thyroid cancer cells (S3 Fig). These results suggest that the
activation of IL-23-regulated migration and invasion may require SOCS4.

MicroRNA–25 downregulates SOCS4 expression by directly targeting its
30-UTR
To analyze the miRNAs that may target the 30-UTR of SOCS4, we used 3 online databases, Tar-
getScanHuman, miRDB, and miRWalk2.0, to search for potential candidates. Fourteen of the
common potential miRNAs were found in the 3 databases. To determine the effect of the pre-
dicted miRNAs on the expression of SOCS4, the SOCS4 30-UTR was cloned into a firefly lucif-
erase reporter plasmid. The luciferase activity assays indicated that 6 miRNAs inhibited the
SOCS4 luciferase activity below 50% as compared with the miR-Ctrl (S4A Fig). We next inves-
tigated which miRNAs were activated by IL-23-induced migration and invasion. K1 cells were
treated with IL–23 protein at 50 ng/ml for 48 h. Results from real-time PCR demonstrated that
among the miRNAs that could attenuate SOCS4 luciferase activity, the expression of miR–25
was significantly induced (S4B Fig).

From our data we hypothesized that miR–25 may play a role in the IL–23/SOCS4 signaling
pathway. We then investigated whether miR–25 regulates SOCS4 expression by post-transcrip-
tional targeting of its 30-UTR. A distinct mutation was generated in the 30-UTR of SOCS4 at pre-
dicted seed-matching sites to test the interaction between miR–25 and SOCS4 30-UTR (Fig 3A).
Transient transfection of K1 cells with wild type (WT) SOCS4 30-UTR, and the miR–25 mimic,
leads to a significant decrease in the reporter activity compared with that of the miR-control (Fig
3B). This phenomenon was disrupted when the same cell lines were transfected with SOCS4 30-
UTR mutants (Fig 3B). The miR–25 inhibitor (miR-25-Inh) significantly stimulated the lucifer-
ase activity of the WT SOCS4 30-UTR, without any effect on Mut SOCS4 30-UTR in K1 cells (Fig
3C). MicroRNA–25 overexpression in K1 cells significantly suppressed both the mRNA and pro-
tein levels of SOCS4 (Fig 3D). Conversely, miR–25 inhibitor-mediated knockdown of endoge-
nous miR–25 increased SOCS4mRNA and protein expression in K1 cells (Fig 3E). To determine
whether the miR-25-mediated downregulation of SOCS4 expression is a common feature in thy-
roid cancer cells, similar experiments were performed inWRO cells (Fig 3F and 3G). Together,
these results suggest that SOCS4 is a target of miR–25 in K1 cells andWRO cells.

area and expressed as percentage of wound closure of triplicate areas ± standard deviations In the transwell migration, invasion and wound healing assay,
the data are expressed as a percentage of the control. Data represent mean ± SD, n = 3 (**P < 0.01; *P < 0.05).

doi:10.1371/journal.pone.0139456.g001
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Fig 2. Analysis of the role of So4 in the regulation of thyroid cancer cell migration and invasion
mediated by IL–23. (A) K1 cells were treated with 50 ng/ml rhIL–23 for 48 h. SOCS4RNA levels were
quantified by qRT-PCR (left panel) and the protein levels of SOCS4 were detected by western blot (right
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MicroRNA–25 promotes the motility of thyroid cancer cells by targeting
SOCS4
Since miR–25 can suppress SOCS4 expression by sequence-specific binding to its 30-UTR, we
hypothesized that miR–25 may affect the migration and invasion of thyroid cancer via SOCS4.
To test the hypothesis, K1 cells were co-transfected with the SOCS4 expression vector (or
empty vector) and the miR–25 mimics (or miR-Ctrl). Transwell migration assays demonstrate
that miR–25 promotes the migration of K1 cells and cell migration induced by miR–25 is
reversed by SOCS4 overexpression (Fig 4A). In addition, we observed that the knockdown of
SOCS4may significantly enhance the effect of miR–25 on cell migration (Fig 4B). Similar
results were obtained in the invasion assays and wound healing assay (Fig 4C-4F). The effect of
the miR–25/SOCS4 signaling pathway on the migration of thyroid cancer cells was further
evaluated using the miR–25 inhibitor. As shown in Fig 4G, miR–25 inhibitor significantly
inhibits the migration of K1 cells. In addition, the miR–25 inhibitor and the SOCS4 expression
vector synergistically inhibit the migration of K1 cells (Fig 4G). Conversely, high levels of
migration were present in K1 cells when SOCS4 was knocked down by shRNA-SOCS4#2 (Fig
4H). Similar results were also obtained in invasion assays and wound healing assay (Fig 4I-4L).
These results suggest that the inhibition of SOCS4 expression is responsible for the ability of
miR–25 to promote cell invasion and migration.

IL–23 stimulates miR–25 expression in thyroid cancer cells
To identify the role of IL–23 in the expression of miR–25, K1 cells were stimulated with human
IL–23 protein at different concentrations for 48 h. MicroRNA–25 levels were detected by real-
time PCR. Results show that miR–25 levels are upregulated by the IL–23 protein in a dose-
dependent manner (Fig 5A). Consistently, K1 cells were treated with IL–23 protein at different
time points, at a concentration of 50 ng/ml. Results from real-time PCR analyses demonstrate
that miR–25 levels increase as the time increases (Fig 5B). The role of IL–23 on miR–25 expres-
sion was confirmed by repeating the experiments using WRO cells (Fig 5C and 5D). These
results suggest that IL–23 activates miR–25 expression.

MicroRNA–25 plays an important role in IL-23-mediated SOCS4
inhibition and cell migration and invasion
To define the role of miR–25 in the downregulation of IL-23-mediated SOCS4 expression, K1
cells were transfected with either miR–25 mimics or miR-Ctrl and treated with or without IL–
23 protein for 48 h. Results from real-time PCR and western blot analyses show that transfec-
tion with miR–25 mimics increases IL-23-mediated inhibition of SOCS4mRNA and protein
expression (Fig 6A). In contrast, high levels of SOCS4mRNA and protein are present in K1
cells, when the expression of miR–25 is inhibited by the miR–25 inhibitor (Fig 6B). We also
examined whether miR–25 is involved in IL-23-mediated thyroid cancer cell line motility.

panel). (B) Experiments with WRO cells were performed as in A. (C, D) K1 cells were transfected with
different SOCS4 shRNA (shRNA#1, shRNA#2, shRNA#3 and shRNA#4) or shCtrl as mock. After 48 h,
SOCS4mRNA levels were measured by qRT-PCR (C) and western blot (D). (E) K1 cells were transfected
with the indicated plasmid, then treated with rhIL–23 (50 ng/ml) for 48 h and allowed to migrate towards
serum for 24 h (upper panel). Protein levels of SOCS4 were detected by western blot (lower panel). (F) The
cells were transfected with indicated shRNA-SOCS4 and the experiments were performed as in (E). (G, H)
The cell invasion assay experiments were performed under similar conditions as described in (E) and (F). In
the real-time RT-PCR experiments, the control was designated as 1. All the experiments were repeated at
least 3 times with similar results. Bar graphs represent mean ± SD, n = 3 (**P < 0.01; *P < 0.05).

doi:10.1371/journal.pone.0139456.g002
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Fig 3. MicroRNA–25 downregulates SOCS4 expression by directly targeting its 30UTR. (A) The sequences of miR–25 binding sites within the human
SOCS4 30UTRs and the schematic reporter constructs. In this panel, WT represents the reporter constructs containing the entire 30UTR sequences of
SOCS4. SOCS4-MUT represents the reporter constructs containing mutated nucleotides. (B, C) K1 cells were co-transfected with either WT or MUT SOCS4
30UTR reporter plasmids and either miR–25 mimic (B) or miR–25 inhibitor (C). Luciferase activities were measured after 48 h using a dual-luciferase assay kit
and normalized to Renilla luciferase. (D) K1 cells were transfected with miR–25 mimic or controls for 48 h. SOCS4mRNA (left panel) and protein (right panel)
were detected by qRT-PCR and western blot, respectively. (E) Cells were transfected with miR–25 inhibitor or control and the experiments were performed
as in D. (F, G) WRO cells were utilized and experiments were performed as in D and E. All the experiments were repeated at least 3 times with similar results.
Bar graphs represent mean ± SD, n = 3 (**P < 0.01; *P < 0.05).

doi:10.1371/journal.pone.0139456.g003
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Using transwell migration and invasion assays, we showed that miR–25 overexpression stimu-
lates IL-23-mediated activation of migration and invasion (Fig 6C and 6D), and knockdown of
miR–25 expression inhibits IL-23-mediated activation of migration and invasion (Fig 6E and
6F). Similar results were also obtained in wound healing assay (Fig 6G and 6H).Taken together,
these data suggest that miR–25 is the key component involved in IL-23-mediated thyroid can-
cer cell migration and invasion through the inhibition of SOCS4 expression.

Fig 4. Determination of the effect of miR–25 on the regulation of SOCS4-suppressed thyroid cancer cell migration and invasion. (A, B) K1 cells were
co-transfected with indicated miR-RNAmimic and plasmid (A) or shRNA (B) for 48 h and allowed to migrate towards serum for 24 h. (C, D) Cell invasion
assay experiments were performed with the same conditions as in A and B. (E, F) Wound healing assay experiments were performed with the same
conditions as in A and B. (G, H) Cells were transfected with miR–25 inhibitor or control and the experiments were performed as in A and B. (I, J) Cell invasion
assay experiments were performed with the same conditions as in G and H. (K, L) Wound healing assay experiments were performed with the same
conditions as in G and H. Bar graphs represent mean ± SD, n = 3 (**P < 0.01; *P < 0.05).

doi:10.1371/journal.pone.0139456.g004
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The expression of IL–23, miR–25 and SOCS4 in thyroid cancer tissues
To validate the role of IL–23, miR–25 and SOCS4 in thyroid cancer, the expression of IL–23,
miR–25 and SOCS4 were analyzed in 35 pairs of clinical PTC, 26 pairs of clinical FTC, and 22
normal thyroid samples. As shown in S5A-S5C Fig, the expression of SOCS4 was lower and the
expression level of IL–23 and miR–25 was higher in PTC and FTC specimens than normal thy-
roid samples. In addition, high levels of IL–23 were correlated with high levels of miR–25 (S5D
Fig). Interestingly, low levels of SOCS4 expression were correlated with high levels of IL–23
and miR–25 expression in PTC and FTC specimens (S5E and S5F Fig). These observations
strongly suggest that alterations of IL–23, miR–25 and SOCS4 expression could be involved in
thyroid cancer progression.

Fig 5. IL–23 stimulates miR–25 expression.MicroRNA–25 levels were quantified by real-time PCR and the experiments were performed as described in
Fig 1. The expression levels were normalized to U6 snRNA. Data represent mean ± SD, n = 3 (**P < 0.01; *P < 0.05).

doi:10.1371/journal.pone.0139456.g005
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Discussion
In this study, we defined a novel signaling pathway implicated in the control of thyroid cancer
cell migration and invasion. First, we demonstrated that IL–23 upregulated miR–25 expression
as well as downregulated SOCS4 expression in thyroid cancer cell migration and invasion. Fur-
ther, we also showed that miR–25 promotes thyroid cancer cell migration and invasion by tar-
geting SOCS4. Finally, our data suggest that miR–25 is involved in IL-23-associated SOCS4
expression and cell migration and invasion.

Tumor cell migration and invasion is a very complicated process in which cancer cells
spread from the primary tumor, survive in the circulation, and grow in distant locations in the
body [28]. Each process is determined by the migration and invasion ability of the tumor cells
and the local tumor microenvironment that provide a favorable environment for tumor cells to
survive and metastasize [29]. Recent investigations have demonstrated that high expression of

Fig 6. Analysis of the role of miR–25 in the regulation of SOCS4 expression and IL-23-mediated thyroid cancer cell migration and invasion. (A) K1
cells were transfected with the indicated plasmid, then treated with rhIL–23 (50 ng/ml) for 48 h. SOCS4mRNA (left panel) and protein (right panel) were
detected by qRT-PCR and western blot, respectively. (B) Cells were transfected with miR–25 inhibitor or control, and the experiments were performed as in
A. (C, D) K1 cells were transfected with miR–25 mimic (C) or inhibitor (D) and controls, then treated with rhIL–23 (50 ng/ml) for 48 h and allowed to migrate
towards serum for 24 h. (E, F) Cell invasion assay experiments were performed with the same conditions as in C and D. (G, H) Wound healing assay
experiments were performed with the same conditions as in C and D. All the experiments were repeated at least 3 times with similar results. Bar graphs
represent mean ± SD, n = 3 (**P < 0.01; *P < 0.05).

doi:10.1371/journal.pone.0139456.g006
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levels of IL–23, which can be detected in the microenvironment, could help to facilitate tumor
metastasis. For example, IL–23 promotes hepatocellular carcinoma metastasis by NF-κB-upre-
gulated MMP9 expression [9]. IL–23 is highly expressed in metastases-associated astrocytes,
and IL–23 induces the progression of melanoma brain metastasis [8]. IL–23 plays a pivotal role
in the development of esophageal cancer via an epithelial-mesenchymal transition [7]. IL–23
can enhance the proliferation and invasion of colorectal carcinoma cells [10]. However, the
role of IL–23 in thyroid cancer cell migration and invasion is still unknown. To our knowledge,
this is the first study to demonstrate the direct effects of IL–23 on the migration and invasion
of thyroid cancer cells. Interestingly, a recent study demonstrated that IL–23 regulates the pro-
liferation of lung cancer cells [30]. Nonetheless, unlike lung cancer cells, we did not find evi-
dence to support that IL–23 induces the proliferation of thyroid cancer cells (S1 Fig). We
speculate that there may be some intrinsic differences between thyroid cancer and lung cancer.
On the other hand, IL–23 promotes the migration and invasion of thyroid cancer cells.

Currently, two reports have implied the potential role of SOCS4 in cancer. One study used a
double combination array analysis to prove that SOCS4 is a novel gastric cancer suppressor
gene [31]. The other study compared the expression differences of SOCS1-7 between breast
cancer tissue and background breast tissue [32]. High expression of SOCS4 is significantly asso-
ciated with an earlier tumor stage and a better clinical outcome in human breast cancer [32]. In
this study, we observed that the levels of SOCS4 are decreased in IL-23-induced migration and
invasion of thyroid cancer cells (Fig 2). Treatment with IL–23 resulted in reduced expression
levels of SOCS4 in thyroid cancer cells (Fig 2). Through overexpression and knockdown experi-
ments, we demonstrate that SOCS4 negatively regulates IL-23-induced migration and invasion
(Fig 2). Recently, several studies have shown evidence that the SOCS family has a strong tumor
suppressing role in several types of solid and hematological tumors [32,33]. When considering
the next step, exploring the relationship between the SOCS family and IL–23 could be of great
help in further clarifying the role that is played by the SOCS family in the development of thy-
roid tumors.

The role of miR–25 in cancer is not consistent and is occasionally controversial. In some
studies, miR–25 may suppress the proliferation and the migration of colon cancer cells as a
tumor suppressor gene in vitro and in vivo [24,26], whereas in others, miR–25 could remark-
ably promote cell proliferation and suppress apoptosis in gastric cancer [26]. In this study, we
found that miR–25 promotes the migration and invasion of thyroid cancer cells by targeting
SOCS4 (Figs 3 and 4). Additional data reveal that miR–25 is involved in IL-23-regulated cell
migration and invasion (Fig 6). These results are consistent with the above studies showing
that miR–25 promotes tumor cell migration and invasion. Besides, we also analyzed the role of
miR–25 in proliferation, apoptosis, and cell cycle in thyroid cancer cell lines. However, there
was no association between miR–25 and cell proliferation, apoptosis, and cell cycle in thyroid
cancer cells (data not shown). These results indicate that deregulated miR–25 expression plays
different roles in different types of cancers.

In summary, our present study provides a novel evidence indicating that miR–25 and
SOCS4 play a functional role in regulating IL-23-mediated migration and invasion in thyroid
cancer cells. Although additional studies are required to understand the intricate regulatory
mechanisms of thyroid cancer cell migration and invasion, the results obtained may shed new
light in understanding cancer resistance to therapy.
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