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Abstract

Influenza A virus infections are widespread in swine herds across the world. Influenza negatively affects swine health and
production, and represents a significant threat to public health due to the risk of zoonotic infections. Swine herds can act as
reservoirs for potentially pandemic influenza strains. In this study, we develop mathematical models based on experimental
data, representing typical breeding and wean-to-finish swine farms. These models are used to explore and describe the
dynamics of influenza infection at the farm level, which are at present not well understood. In addition, we use the models
to assess the effectiveness of vaccination strategies currently employed by swine producers, testing both homologous and
heterologous vaccines. An important finding is that following an influenza outbreak in a breeding herd, our model predicts
a persistently high level of infectious piglets. Sensitivity analysis indicates that this finding is robust to changes in both
transmission rates and farm size. Vaccination does not eliminate influenza throughout the breeding farm population. In the
wean-to-finish herd, influenza infection may persist in the population only if recovered individuals become susceptible to
infection again. A homologous vaccine administered to the entire wean-to-finish population after the loss of maternal
antibodies eliminates influenza, but a vaccine that only induces partial protection (heterologous vaccine) has little effect on
influenza infection levels. Our results have important implications for the control of influenza in swine herds, which is crucial
in order to reduce both losses for swine producers and the risk to public health.
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Introduction

Influenza infections are some of the most costly and deadly

zoonoses because of the virus’s pathogenicity and ability to rapidly

spread and evolve. Influenza A virus is notable for its complex

ecology involving multiple avian and mammalian hosts. Specifi-

cally, all human influenzas in recent history have involved viruses

of avian or swine origin [1]. Pigs pose a particular threat as

‘‘mixing vessels’’ for generating new viral strains through

reassortment of human, swine, and avian viruses [2]; swine farms

can act as reservoirs for influenza strains with pandemic potential

[3]. Influenza A virus is ubiquitous in global pig populations [4,5],

causing acute respiratory disease in pigs [6] and negatively

affecting swine production [7]. It is therefore timely and critical to

understand influenza dynamics and the mechanisms of influenza

persistence in swine farms, not only to reduce losses for producers,

but also to reduce the risk of emerging zoonotic strains.

Understanding the on-farm epidemiological dynamics of influenza

can result in improved methods of control and the prevention of

outbreaks.

Influenza A virus is highly contagious, with transmission

between pigs occurring via several different routes [5]. Transmis-

sion routes include direct contact with infected pigs [6,8], aerosols

[9], and exposure to contaminated fomites [10]. Influenza

transmission depends on multiple factors, including swine age,

immunity, vaccination status and the presence of maternal

antibodies. Vaccination is commonly used as a control measure

for influenza in swine farms [11]. Approximately 70% of large

producers in the U.S. reported that they vaccinated breeding

females for influenza in 2006 [12], and approximately 20%

reported that they vaccinated weaned pigs [12]. Vaccination has

been shown to reduce influenza A virus transmission in pigs in

experimental settings [13,14], but the effects of vaccination at the

farm level remain unclear. Maternally-derived immunity, passed

from immune sows to their offspring by means of colostrum, can

also reduce transmission of influenza virus [13,15]. This maternal

immunity in piglets wanes over time [16]. Due to these multiple

factors, influenza A virus transmission is complex, and there is an

overall lack of understanding of transmission dynamics at the

population level. In addition, the thorough empirical assessment of

infection levels on a herd level through time is impractical and

costly, and consequently empirical data on influenza dynamics at

the farm-scale is lacking.

Mathematical modeling is a practical and useful tool for

understanding disease dynamics, explaining observed patterns

based on mechanistic hypotheses, and testing possible control

measures [17]. Although several mathematical modeling studies

have focused on infectious diseases in swine (e.g. Nipah virus [18],
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pseudorabies [19,20], porcine reproductive and respiratory

syndrome virus [21], and Salmonella [22,23]), there is a lack of

modeling studies on influenza in swine herds. Indeed, a recent

review of the literature carried out by Dorjee et al. [24] found no

manuscripts reporting the modeling of influenza in swine, despite

the importance of influenza and its global ubiquity in swine

populations.

In order to provide insights into influenza dynamics at the herd

level, we build mathematical models for two types of swine farm: a

breeding farm and a wean-to-finish facility. These models are

based on, and parameterized by, recent experimental data on

influenza. In particular, new studies on influenza transmission in

experimental settings have provided values for transmission rates

[10,13,14], often a difficult parameter to estimate [25]. For the

breeding farm, we include the typical components of a standard

U.S. commercial farm, including the spatial separation of swine

into different subpopulations. These spatial subpopulations are

represented by a metapopulation model, which is further

structured by swine class; a class is defined as a weekly stage in

the swine production process, where each week swine progress to

the next appropriate class. Each swine class in all spatial locations

(e.g. gilt development units, farrowing rooms and gestation areas)

is thus explicitly modeled. This model framework allows for

incorporation of heterogeneities in the influenza transmission rate

across the population as seen in experimental studies, specifically

differences in transmission imposed by the farm spatial structure

and also in respect to the swine class. For the wean-to-finish farm,

we also use a class-structured model; however, spatial separation of

the animals is not required since all animals are housed in the

same building.

For influenza in pigs, once a susceptible animal becomes

infected, there is an exposed or latent period of approximately 2

days [24], when the animal is infected but not yet infectious. This

is followed by an infectious period lasting an average of 5 days

[3,14,24,26], after which the animal recovers. The models

presented here therefore comprise series of SEIR (susceptible,

exposed, infectious, recovered) ordinary differential equations,

made specific to the swine – influenza system. Such deterministic

differential equation models have been used to gain insights into

the dynamics of other swine diseases within farms [18–20,22].

Modified versions of the SEIR approach have also been used to

model influenza in human populations (e.g. [27–29]). Our models

are designed to capture the infection dynamics for the large

population numbers of swine on the farms, and are intended to

investigate general trends (for instance, infection peaks and

endemicity) as opposed to precise quantitative predictions.

In this study, we develop new models designed to represent the

essential features of swine farms and the epidemiology of influenza.

Our goal is to predict typical infection dynamics at the population

scale, offering important clarification of this complex system.

Based on a recent experimental study that estimated that piglets

have the highest infection levels of influenza in one swine herd

[30], we hypothesize that piglets might be the subpopulation of

swine with the highest infection levels on swine farms in general. In

particular, we aim to (a) describe typical infection dynamics, as

these are as yet unknown for influenza in swine farms; (b) explore

the possibility of reinfection and the maintenance of influenza

virus in swine populations through time; (c) identify the class(es) of

pigs most likely to have high infection levels; and (d) evaluate the

effectiveness of common vaccination strategies in reducing the

level of influenza infection.

Methods

Construction of Breeding Farm Model
The model is structured to represent the management of a

standard commercial swine breeding farm. We have incorporated

typical swine demographic rates and structural features of the

farm, which are illustrated in Figure 1. The model farm houses

gilts, sows and piglets and includes an on-site gilt development unit

(GDU) as well as separate buildings for the breeding/gestation and

farrowing areas. The model captures both the physical structure of

the farm and the movement of swine through the farm. The

movement of swine through the farm is not continuous because

animals are moved together in groups at regular intervals. Due to

the spatial partitioning of the farm, we use a metapopulation model.
This type of model enables the incorporation of spatial structure in

a population, and thus the incorporation of differences in

transmission rates (for instance, transmission within a spatial unit

can be different to transmission between units) [31,32]. Further-

more, the swine farm population comprises animals of different

age or reproductive status; these animals can be housed together in

the same room, for instance, sows with piglets in the farrowing

rooms, and weaned sows with pregnant sows in the breeding/

gestation area. To represent this organizational structure, and

because transmission rates can vary between different types of

animal, we group individuals into classes, and model each class

explicitly. Specifically, we define a class to be a weekly stage in the

swine production process.

In line with experimental evidence, our model includes both

direct transmission between pigs in the same room [14], and

indirect transmission between pigs in separate rooms [10].

Infection can also spread in the model by the physical movement

of swine through the farm.

Our breeding farm model couples a continuous-time epidemi-

ological model and a discrete-time (discontinuous) population

model. For the epidemiological model, we define separate series of

SEIR differential equations for each class of swine. Firstly, for sows

and gilts:

dSi

dt
~{bdIdi

Si{bindIindi
Si{mSi ð1Þ

dEi

dt
~bdIdi

SizbindIindi
Si{ mzsð ÞEi ð2Þ

dIi

dt
~sEi{ mzcð ÞIi ð3Þ

dRi

dt
~cIi{mRi: ð4Þ

Here Si represents the number of susceptible animals in class i,
Ei the number of exposed animals (i.e. infected but not yet

infectious), Ii the number of infectious animals, and Ri the number

of animals that have recovered from infection (and are therefore

immune). All animals are characterized as belonging to one of

these disease states (S,E,I ,R). The class of pigs corresponding to

each index i is given in Table 1. The variable Idi
is defined as the

total number of infectious animals in the same room as class i
(including infectious piglets); the variable Iindi

is defined as the total

number of infectious animals in all other rooms on the farm
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(including infectious piglets). For instance, for gilt class 1, the

variable Id1
would be the total number of infectious gilts in the

GDU (i.e. those in classes 1 to 10), and Iind1
would be the total

number of infectious animals in all locations of the farm excluding

the GDU. Parameter bd is the direct transmission rate, and bind

the indirect transmission rate. We assume density-dependent

transmission [33], because influenza transmission likely increases

with swine population density. The parameters involved in these

equations are defined in Table 2. This model does not include

additional mortality due to influenza infection, as this rate is

generally very low in practice (,1%) [11,34].

Secondly, for piglets, we separate the population into two

groups: those that have maternally-derived immunity and those

that do not. We assume that the decay of maternal immunity starts

at 3 weeks of age [16]. As piglets in the breeding farm are younger

than this threshold, we keep the transmission rate for piglets with

maternal immunity the same through time in this model. (We

include the waning immunity demonstrated for older animals in

our wean-to-finish model.) The equations for piglets without

maternal immunity are:

dS
p
j

dt
~bj Si~27zEi~27zIi~27ð Þ{b

p
d Idj

S
p
j {b

p
indIindj

S
p
j {mpS

p
j ð5Þ

dE
p
j

dt
~b

p
d Idj

S
p
j zb

p
indIindj

S
p
j { mpzsð ÞEp

j ð6Þ

dI
p
j

dt
~sE

p
j { mpzcð ÞIp

j ð7Þ

Figure 1. Schematic of a standard commercial swine breeding farm showing the demographic and spatial structure assumed in our
mathematical model. This farm houses gilts (female pigs that have not yet been mated), sows (female pigs) and piglets (young pigs). There are
three separate buildings (indicated by the shaded boxes), and the farrowing building is subdivided into four rooms. Farrowing means the production
of a litter of piglets, and weaning is the separation of a sow and her piglets. New gilts enter the gilt development unit (building 1) at a replacement
sow rate of 50% year21. From here, animals are moved to building 2 and inseminated. Typically, swine farmers rely primarily on artificial insemination
for breeding and house only a small number of boars, thus we have excluded boars from the model. After 112 days, pregnant sows are moved to
building 3, where 2–7 days later they give birth to an average of 12 piglets per sow. Sows remain in building 3 for 28 days, and then are moved back
to building 2. After one week, insemination takes place again, and this cycle continues. Weaning occurs twice a week. After weaning, piglets are
removed from the breeding farm. The overall death/removal rate for sows is 50% year21, with 80% of this occurring after weaning at the cull of
unproductive sows. The natural death rate for piglets is 10% from birth to weaning. Class indices i (gilts and sows) and j (piglets) (see Table 1) are
indicated.
doi:10.1371/journal.pone.0106177.g001

Table 1. The class of pigs (type and farm location) corresponding to each index value for the breeding farm model.

Class index Animal type Farm location (see Figure 1)

i[ 1,2, . . . 10f g Gilts Gilt Development Unit

i[ 11,12, . . . 26f g Pregnant sows Breeding/Gestation Area

i[ 27,28,29,30f g Farrowing and lactating sows Farrowing Area

i[ 31f g Weaned sows Breeding/Gestation Area

j[ 1,2,3,4f g Piglets Farrowing Area

For example, i~12 corresponds to sows in their second week of pregnancy, housed in the breeding/gestation area.
doi:10.1371/journal.pone.0106177.t001
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Table 2. Parameters involved in the swine breeding farm model, with definitions, values and the sources of the values.

Model parameter Meaning Value Experimental source of value

DISEASE PARAMETERS

bd Direct transmission rate
for sows and gilts

0.285 day21 * (95% confidence
interval: 0.091–0.9)

Experimental data from Romagosa et al. [14]
(mean of transmission values from non-vaccinated
treatment group)

bind Indirect transmission
rate for sows and gilts

0.0016 day21 * ~bd=178ð Þ Calculated from experimental data from Allerson
et al. [10]

bp
d

Direct transmission
rate for piglets

0.218 day21 * (95% confidence
interval: 0.147–0.310)

Experimental data from Allerson et al. [13]
(transmission rate for non-vaccinated treatment
group)

b
p
ind

Indirect transmission
rate for piglets

0.001 day21 * Extrapolation from experimental data from
Allerson et al. [10]; we assume

bind~bd=178[bp
ind~bp

d=178

b
pm
d

Direct transmission
rate for piglets with
maternal immunity

0.014 day21 * (95% confidence
interval: 0.001–0.061)

Experimental data from Allerson et al. [13]

bpm
ind

Indirect transmission
rate for piglets with
maternal immunity

0.00008 day21 * Extrapolation from experimental data from
Allerson et al. [10]

s Reciprocal of average
duration of latent/
exposed period

1/2 day21 Survey of swine influenza literature [24]

c Reciprocal of average
duration of infectious
period (or recovery rate)

1/5 day21 Survey of swine influenza literature [3,14,24,26]

VACCINATION PARAMETERS

bd HEvacc Direct transmission rate
for pigs vaccinated with
heterologous vaccine

0.0275 day21 ** (95% confidence
interval: 0.001–0.115)

Experimental data from Romagosa et al. [14]
(mean of transmission values from heterologously
vaccinated treatment group)

bd HOvacc Direct transmission rate
for pigs vaccinated with
homologous vaccine

0 day21 ** (95% confidence
interval: 0–0.052)

Experimental data from Romagosa et al. [14] (no
transmission occurred to pigs in homologously
vaccinated treatment group)

b
p
d HEvacc

Direct transmission rate
for piglets when mother
vaccinated with
heterologous vaccine

0.174 day21 ** (95% confidence
interval: 0.118–0.246)

Experimental data from Allerson et al. [13]
(transmission rate from heterologously vaccinated
treatment group)

bp
d HOvacc

Direct transmission rate
for piglets when mother
vaccinated with
homologous vaccine

0.014 day21 ** (95% confidence
interval: 0.001–0.061)

Experimental data from Allerson et al. [13]
(transmission rate for homologously vaccinated
treatment group)

Indirect transmission rates for each vaccine type are extrapolated from experimental data from
Allerson et al. [10].

SWINE FARM PRODUCTION PARAMETERS

b Birth rate 12 live births per litter per sow
(between days 2 and 7 each week)

From expert knowledge of swine farm and
PigCHAMP website (www.pigchamp.com/
LinkClick.aspx?fileticket
= NMdM5F73gKE%3d&tabid = 115)

m Natural death rate for
sows and gilts (i.e. death
rate not including culled
animals)

0.0004 day21 When combined with the cull, this value gives a
total death rate of 50% per year (from expert
knowledge of swine farm and PigCHAMP website)

Natural death rate for
piglets

0.005 day21 Corresponds to a death rate of 10% from birth to
weaning (from expert knowledge of swine farm
and PigCHAMP website)

The point/exact transmission values are used for the main simulations presented in this paper. ‘‘*’’ indicate transmission values that are varied across the range of their
95% confidence intervals for the model with variability in transmission. ‘‘**’’ similarly indicate the vaccination parameters that are varied for a sensitivity analysis.
doi:10.1371/journal.pone.0106177.t002
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dR
p
j

dt
~cI

p
j {mpR

p
j ð8Þ

and those for piglets with maternal immunity are:

dS
pm
j

dt
~bj Ri~27ð Þ{bpm

d Idj
S

pm
j {bpm

indIindj
S

pm
j {mpS

pm
j ð9Þ

dE
pm
j

dt
~bpm

d Idj
S

pm
j zbpm

indIindj
S

pm
j { mpzsð ÞEpm

j ð10Þ

dI
pm
j

dt
~sE

pm
j { mpzcð ÞIpm

j ð11Þ

dR
pm
j

dt
~cI

pm
j {mpR

pm
j ð12Þ

for j~1,2,3,4, where each indexed class of piglets is located in a

different room in the farrowing area. Superscripts p and pm are

used to identify piglets without maternal immunity and piglets with

maternal immunity, respectively. Here, S27, E27, I27 and R27 are

the numbers of susceptible, exposed, infectious and recovered

animals in class i~27, i.e. sows due to farrow. Parameter bj is the

birth rate, defined so that sows give birth to an average number of

12 piglets between days 2 and 7 each week, into piglet class j~1.

Thus bj~ 12/5 for j~1, 2ƒtƒ7 and bj~ 0 otherwise. This

yields an average number of 30 piglets born per sow per year. See

Table 2 for descriptions of all model parameters.

Other population processes occurring on the breeding farm are

modeled discretely. We assume that physical movement of pigs

through the farm occurs weekly. The continuous breeding farm

model equations ((1)–(12)) run for one week, and then initial

conditions are reset in agreement with the progression of animals

through the farm according to Figure 1, i.e. swine progress to the

next weekly class. In addition, at the start of every week, new gilts

enter the GDU into class i~1, and sows are culled after weaning.

For piglet class j~1, at the start of each week, initial conditions are

set to S
p
1 ,E

p
1 ,I

p
1 ,R

p
1

� �
~ S

pm
1 ,E

pm
1 ,I

pm
1 ,R

pm
1

� �
~ 0,0,0,0ð Þ. For the

oldest piglet class (class j~4), weaning occurs twice weekly; half of

the piglets are removed midweek, and the remainder removed at

the start of each new week.

For this study, we assume there are approximately 2500 sows

and gilts on the breeding farm (and test the sensitivity of our

findings to this number; see ‘Varying Farm Size’ section), out of

which approximately 320 are gilts. This yields approximately 1100

weaned piglets each week and a total of approximately 3300 to

4100 piglets on the farm. The model was coded and run in

MATLAB (2012; www.mathworks.com), using differential equa-

tion solver ode45. If the total number of exposed and infectious

pigs falls below one, the infection was considered to have gone

extinct. For the purposes of this paper, we assume that

introduction of the virus into the breeding farm is by the entry

of one infected gilt into the GDU, and that all other animals are

susceptible. We assume there is a single influenza strain in the

farm; therefore we limit our timescales (to 40 days) to capture the

infection dynamics of a single strain.

The use of this ‘class-structured’ metapopulation model allows

us to obtain a complete picture of influenza transmission through

the swine breeding farm. The separation of the total swine

population into multiple classes also allows us to model the

implementation of vaccination strategies involving vaccination of a

specific group of swine (see ‘Vaccination’ subsection). Our model

captures the essential dynamical features of the swine – influenza

system, i.e. influenza transmission is continuous while the

movement of swine is discontinuous.

Model with variability in transmission. In order to

evaluate the robustness of our findings to variation in influenza

transmission rates, we examined the effects of changing the direct

and indirect transmission rates (those marked with a * in Table 2)

within their 95% confidence interval ranges. For each transmission

rate, we randomly sampled from a uniform distribution spanning

its 95% confidence interval. This sampling was performed for all

transmission rates simultaneously for each run of the model and

we ran this sensitivity model 15,000 times.

Vaccination. We used our swine breeding farm model to test

the effectiveness of the two most common vaccination protocols

used at swine breeding farms. The first is mass vaccination, where

all sows and gilts are vaccinated at one time, or within a very short

time period. The second is pre-farrow vaccination, where all

pregnant sows are vaccinated 5 and 3 weeks prior to farrow, to

target the transfer of maternal immunity to piglets. The pre-farrow

vaccination is therefore an ongoing procedure, as opposed to the

mass vaccination. For each protocol, vaccines can be either

homologous or heterologous. Homologous here refers to an

autogenous vaccine prepared with the isolate recovered from the

specific population in which it will be used. In contrast,

heterologous vaccines refer to vaccines prepared with isolates

distinct from the specific strain in the population. Isolates in

heterologous vaccines may induce variable degrees of cross-

protection against circulating strains.

The transmission parameter (b) values used to model these

vaccination strategies originate from experimental studies where

influenza transmission is measured from an infected pig to

vaccinated pigs [14] or to piglets born from vaccinated sows

[13]. Transmission values were calculated for both homologous

and heterologous vaccines, and are given in Table 2. Our model

(equations (1)–(12)) is adapted for each vaccination type, by

replacing the appropriate transmission (b) values for the appro-

priate classes of swine.

We model two different scenarios with regards to the timing of

vaccination, both of which could occur in the field. Firstly, we test

the effects of vaccination occurring prior to the introduction of

the virus. We make the assumption that influenza infection occurs

prior to the decay of vaccine efficacy. Secondly, we model the

effects of vaccination after an outbreak, i.e. when influenza is

endemic and circulating and some of the population is immune

(after the infection peak, when the system is at equilibrium).

Sensitivity analysis. To analyze the sensitivity of our results

to variation in transmission rates of vaccinated animals, we ran the

model with the implementation of vaccination for direct trans-

mission parameters (those marked ** in Table 2) across the range

of their 95% confidence intervals.

Construction of Wean-To-Finish Farm Model
The wean-to-finish farm is populated with weaned pigs (i.e.

piglets that have been moved from a breeding farm after weaning)

following all-in/all-out procedures. These animals are kept at the

wean-to-finish facility to grow for 6 months until they are sold to

slaughter. In contrast to the breeding farm, in the wean-to-finish

farm all animals are considered well-mixed due to the lack of
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spatial separation; all animals are housed together in large pens in

one building. Direct transmission of influenza can occur between

all pigs in the wean-to-finish farm. Here we have assumed that the

total number of animals in this farm is 2000, and later test the

sensitivity of our findings to this number. The natural death rate

for these pigs is 5% per 6 months.

For the purposes of our model, weaned pigs populate the wean-

to-finish farm over a 3-week period. We make the assumption that

3 equally-sized batches of pigs enter the farm, one per week during

this period. We use three series of SEIR differential equations, one

for each of these batches of weaned pigs:

dSk

dt
~{b I1zI2zI3ð ÞSk{mwSk ð13Þ

dEk

dt
~b(I1zI2zI3)Sk{ mwzsð ÞEk ð14Þ

dIk

dt
~sEk{ mwzcð ÞIk ð15Þ

dRk

dt
~cIk{mwRk ð16Þ

for k~1,2,3. Pigs are at weaning age (21 days) when they enter the

wean-to-finish farm. When the farm is fully populated, each of the

three batches of pigs will be of a different age. Because maternal

immunity begins to wane at 21 days [16], the three batches of pigs

will have different levels of maternal immunity. We therefore

model the three classes (indexed by k) separately. To represent the

waning of maternal immunity, we use a time-dependent trans-

mission rate, b~bm Tð Þ, for pigs that have maternal immunity (see

Table 3). Here, time T is defined as the time since the pig entered

the wean-to-finish farm (i.e. T~age ofpig – 21 days) and the rate

is quantified by experimental evidence from Markowska-Daniel et

al. [16]. The parameters featured in this wean-to-finish model are

explained in Table 3.

As with the breeding farm model, these model equations were

coded and run in MATLAB. We assume that one infectious

weaned pig enters the wean-to-finish farm with the third group

(i.e. once the farm is fully populated), and that the rest of the farm

population is susceptible. We chose to introduce one pig to

represent the minimum infection prevalence at weaning. The time

that the infectious pig enters the farm is set as time t~0.

Reinfection. We modeled two scenarios involving the possi-

bility of pig reinfection with influenza. Firstly, there is evidence

that pigs with maternal antibodies that get infected with influenza

do not develop full immunity once recovered, and are thus able to

be reinfected [35]. We model this scenario by allowing animals

that are infected early in life (specifically, in the two weeks after the

introduction of influenza virus), to be able to reenter the

susceptible pool once recovered.

Secondly, the influenza virus strain could potentially change via

mutation over time, so that recovered individuals become

susceptible to infection once more. Or, recovered individuals

may reenter the susceptible class due to the decay of antibodies.

We test a modification of model equations (13)–(16), involving the

introduction of a new parameter, v, the average rate at which

recovered animals become susceptible. Specifically, a zvRk term

is added to equation 13, and a {vRk term added to equation 16.

Vaccination. Maternal immunity can interfere with vaccina-

tion, and block its efficacy [36], thus vaccination in wean-to-finish

pigs typically takes place after the decay of maternal antibodies

[12]. We implemented vaccination in our wean-to-finish model by

replacing the transmission rates (b) with the transmission rates for

vaccinated pigs (bd HEvacc or bd HOvacc; shown in Table 3), 10

weeks after the farm becomes fully populated. At this time, all pigs

will be at least 13 weeks old, and maternal antibodies will have

decayed [16]. We tested both heterologous and homologous

vaccines.

Varying Farm Size
The sizes of breeding and wean-to-finish farms can vary, and

this may affect disease dynamics [20]. We therefore use our

models to predict influenza dynamics across a wide range of

different farm sizes. For the breeding farm, we experiment with a

range of sizes from 250 to 5000 sows and gilts. For the wean-to-

finish farm, we use group sizes ranging from 250 to 3500 weaned

pigs. When the farm size is varied, the number of classes is

assumed to stay the same, and the number of animals in each class

scaled accordingly. To determine if our influenza dynamics results

were sensitive to commercial farm size, two measures of influenza

infection dynamics were calculated: maximum proportion of

infectious piglets at equilibrium on a breeding farm, and

proportion of infectious pigs at the infection peak on a wean-to-

finish farm. Equilibrium here refers to the number of pigs in each

of the S,E,I ,R infection states after the infection peak, where

dynamics remain steady through time.

Results

Influenza Dynamics in the Breeding Farm
Our model predicts that in a naı̈ve population, influenza

spreads rapidly throughout the breeding farm following the

introduction of an infectious gilt (Figure 2). There is an initial

peak in the number of infectious animals, and a rapid decline in

the number of susceptible ones. At the infection peak for sows and

gilts, approximately half of the animals are infectious. The

majority of the infectious animals are sows, with only 0.1% of

them being gilts. After the initial peak, the population settles to an

equilibrium (Figure 2a); the post-epidemic equilibrium population

comprises mainly recovered animals, with a low persistent level of

infectious animals. Specifically, there are approximately 20–30

infectious animals (,1% of the total population of sows and gilts),

out of which the majority (15–27, or ,70–90%) are gilts. In

contrast, for piglets, the equilibrium behavior is cyclic, with a

relatively high level of infectious animals (between ,660 and 960

piglets, or 18–27% of the total piglet population) (Figure 2b). This

cyclicity is due to the interaction between the dynamical process of

influenza infection and the regular birth of new susceptible

animals.

Model with variability in transmission. When variation in

the direct and indirect transmission rates was incorporated, similar

qualitative patterns in the number of infectious animals were

observed (Figure 3). Although there is little variation in the

number of infectious sows and gilts at equilibrium, there is some

variation in the timing of the initial outbreak (Figure 3a). For

piglets, there is comparatively less variation in the timing of the

initial outbreak and large variation in the number of infectious

piglets after the infection peak (Figure 3b). Despite the large

variation, influenza infection is still maintained in the piglet

population.

Testing vaccination strategies. Figure 4 illustrates the

results when vaccination occurs prior to the introduction of
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influenza. For sows and gilts (Figure 4a), in both mass and pre-

farrow vaccination strategies with heterologous vaccines, there is a

slight delay in the outbreak and a slight reduction in the number of

infectious animals at the infection peak. Mass vaccination with a

homologous vaccine eliminates influenza in sows and gilts, as

would be expected. Pre-farrow vaccination with a homologous

vaccine reduces the number of infectious animals at the peak by

approximately a third, and delays the outbreak. However, it causes

the tail of the outbreak to include more infectious individuals,

resulting in an increased number of infectious sows and gilts after

the infection peak. For piglets (Figure 4b), the homologous pre-

farrow vaccination delays the initial outbreak. No vaccination

strategy significantly reduces the number of infectious piglets at

equilibrium.

When vaccination is implemented when the farm is already

infected, i.e. when influenza is endemic and circulating, the pre-

farrow homologous vaccine no longer causes an increase in the

number of infectious sows and gilts (Figure S1a; see Supporting

Information) and the number of infectious piglets is still not

measurably reduced by vaccination (Figure S1b).

We tested how robust these vaccination results are to

uncertainties in transmission estimates, and found that varying

direct transmission rates did not change the qualitative trends of

the number of infectious animals in the vaccination predictions,

except in the homologous mass vaccination case, where influenza

was no longer eliminated in sows and gilts for direct transmission

rate values in the upper part of the 95% confidence interval. All

other conclusions made are not sensitive to variation in

transmission.

Influenza Dynamics in the Wean-To-Finish Farm
Our model predicts that influenza infection spreads rapidly

throughout the entire population of the wean-to-finish farm

following the introduction of an infectious pig, and this is followed

by disease extinction (Figure 5). For the results presented in

Figure 5, we have assumed all pigs have maternal immunity. In

this instance, the infection lasts for approximately 41 days in the

population before disease extinction. In other scenarios, when the

population has less maternal immunity (including the case when

no pigs have maternal immunity), influenza spreads at a quicker

rate, but the same shaped curves are observed (results not shown).
Reinfection. When the possibility of reinfection is incorpo-

rated into our wean-to-finish farm model, the influenza dynamics

can change dramatically (Figure 6). For the first reinfection

scenario, we assumed that animals that are infected early

(specifically, in the two weeks after the introduction of influenza

virus) are able to reenter the susceptible pool once recovered.

Modeling this yields the results shown in Figure 6a, with a ‘double

peak’ in the number of infectious animals. The second scenario

involved recovered animals becoming susceptible to infection at an

Table 3. Parameters involved in the wean-to-finish farm model, with definitions, values and the sources of the values.

Model parameter Meaning Value
Experimental source of
value

DISEASE PARAMETERS

bm Tð Þ Transmission rate for pigs with maternal
immunity from immune mothers
(time-dependent due to the decay of
maternal antibodies)

{0:273e{0:06T z0:287 day21 Extrapolation from data from
Markowska-Daniel et al. [16]
(fitting to the control data from
H1N1 strain decay of
antibodies); T = time elapsed
since pig entered farm

b Transmission rate for pigs without
maternal immunity

0.285 day21 Experimental data from
Romagosa et al. [14] (mean of
transmission values from non-
vaccinated treatment group)

s Reciprocal of average duration of
latent/exposed period

1/2 day21 Survey of swine influenza
literature [24]

c Reciprocal of average duration of
infectious period (or recovery rate)

1/5 day21 Survey of swine influenza
literature [3,14,24,26]

v Average rate at which recovered animals
become susceptible (for modeling reinfection)

VACCINATION PARAMETERS

bd HEvacc Transmission rate for pigs vaccinated with
heterologous vaccine

0.0275 day21 Experimental data from
Romagosa et al. [14] (mean of
transmission values from
heterologously vaccinated
treatment group)

bd HOvacc Transmission rate for pigs vaccinated with
homologous vaccine

0 day-1 Experimental data from
Romagosa et al. [14] (no
transmission occurred to pigs
in homologously vaccinated
treatment group)

PRODUCTION PARAMETERS

mw Natural death rate of pigs 0.00028 day21 Corresponds to a death rate of
5% (from expert knowledge of
swine farm; MT, personal
comm.)

doi:10.1371/journal.pone.0106177.t003
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average rate v. As v increases, the cumulative number of

infectious animals increases. The long-term maintenance of

influenza infection in the wean-to-finish population is possible

with a sufficiently high v value. Figure 6b without vaccination (red

line) shows an example of the infection dynamics that could result

in such a case; after the initial infection peak, there is a persistent

level of infectious pigs.

Note that to fully understand these possible long-term dynam-

ical behaviors, evolutionary information is required in order to

predict and quantify the rate at which influenza virus changes.

Figure 2. Influenza dynamics as predicted by the breeding farm model, for (a) sows and gilts and (b) piglets, in a naı̈ve (non-
vaccinated) population. At time 0, one infectious gilt enters the breeding farm. Note that in panel (b) the piglets include both those with no
maternal immunity and those with a reduced susceptibility due to maternal immunity. The discontinuities in the curves in these figures (and in
subsequent figures) are caused by the weekly movement of swine through the farm or the removal of weaned piglets from the farm (as described in
the Methods). The equilibrium dynamics are those after the initial peak in the number of infectious animals; these continue beyond the 40 days
shown here.
doi:10.1371/journal.pone.0106177.g002

Figure 3. Influenza infection dynamics as predicted by the breeding farm model with variability in transmission rates, for (a) sows
and gilts and (b) piglets. The population of swine is naı̈ve (non-vaccinated). At time 0, one infectious gilt enters the farm. These panels show the
results of 15,000 runs, where for each run, all transmission rates are taken from random sampling from a uniform distribution spanning their 95%
confidence intervals (Table 2).
doi:10.1371/journal.pone.0106177.g003
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Further experimental verification is needed in order to determine

the plausibility of the speculative dynamics illustrated in Figure 6.

Testing vaccination strategies. The results of vaccinating

the entire population, after the loss of maternal immunity, are

shown in Figure 6b. The homologous vaccine eliminates infection,

whereas the heterologous vaccine has little effect on the number of

infectious pigs. In Figures 5 and 6a, the infection has died out

before pigs have lost their maternal immunity.

Effects Of Farm Size on Influenza Dynamics
The maximum proportion of infectious piglets at equilibrium on

the breeding farm varied from 0.31 to 0.38 across the range of

farm sizes investigated (Figure 7). In addition, influenza spread at

a quicker rate as the farm size increased. The proportion of

infectious pigs at the infection peak on the wean-to-finish farm

remained relatively constant as farm size changed, varying only

from 0.53 to 0.54 (Figure 8).

Discussion

In this study, we developed a modeling framework to represent

influenza transmission in breeding and wean-to-finish swine farms,

informed by experimental data. This model provides the first

theoretical description of influenza dynamics in swine at the

population level. A key finding is that an influenza outbreak results

in the maintenance through time of a high level of infectious

piglets in breeding farms. The virus can be maintained in the

piglet population because even when protected with maternal

antibodies from immune sows, piglets are still susceptible to

infection (albeit a reduced susceptibility), and new piglets are

consistently born at regular intervals, providing a regular supply of

susceptible piglets. The infection also persists in gilts, although at a

lower level. Thus our model predicts that the introduction of

influenza virus into a breeding farm results in endemicity. In the

wean-to-finish facility, because there are no new susceptible

animals entering the population once the farm is populated to

sustain the infection through time, and as general theory predicts,

influenza infection may persist in the closed population only if

recovered individuals become susceptible to infection again.

Our theoretical predictions are similar to the limited field

observations of influenza in swine farms. Inspired by the results of

a recent empirical study [30], we tested whether piglets were the

subpopulation of swine likely responsible for viral maintenance

across a range of farm sizes and transmissibility rates. We found

that our modeling results supported this hypothesis; we confirmed

the finding that piglets had the highest infection levels on the

breeding farm and that the infection levels were persistently high.

In addition, Easterday and Hinshaw [37] reported that an

influenza outbreak progresses through an entire herd within 2–3

weeks; our findings are consistent with this observation.

Our model results indicate that even the best current

vaccination strategies are not sufficient to eliminate influenza

throughout the entire breeding farm population. In particular,

Figure 4. Summary of the effects of vaccination strategies on the number of infectious animals in the breeding farm, for (a) sows
and gilts and (b) piglets. In (a), note that the ‘Mass vaccination – homologous’ curve lies along the x axis (as infection is eliminated). In (b), the
‘Mass vaccination – heterologous’ curve is mainly obscured by the ‘Pre-farrow vaccination – heterologous’ curve, which is very similar. For these
results, vaccination occurs prior to the introduction of influenza.
doi:10.1371/journal.pone.0106177.g004

Figure 5. Results from the wean-to-finish farm model, when all
pigs have maternal immunity (from immune mothers). At time 0,
the farm becomes fully populated and one infectious pig enters.
doi:10.1371/journal.pone.0106177.g005
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vaccination alone does not significantly reduce the level of

infectious piglets, calling into question the profitability of current

vaccination efforts, and suggesting that piglets should be targeted

for further intervention in order to prevent the long-term

persistence of influenza infection within a farm. However, if

piglets themselves are vaccinated, maternal immunity inhibits the

induction of active immunity and can reduce vaccine efficacy [36].

One potential solution is to vaccinate sows prior to insemination,

so that they are protected themselves but do not pass down as

much immunity to their offspring, followed with the subsequent

vaccination of the piglets. Experimental quantification of influenza

transmission for vaccinated unweaned piglets would be highly

informative, and would allow us to test the effectiveness of this

proposed strategy using our model.

Our model highlights the rapid spread of influenza within a

population and the difficulty in limiting transmission once

infection enters the farm. Perhaps swine producers should focus

on eliminating sources of infection through increased biosecurity

measures. This could involve multiple testing (and quarantining if

necessary) of all gilts before they enter the breeding farm, and

testing weaned pigs before entering the wean-to-finish facility.

Because influenza can also be transmitted from humans to swine

[38], also involved would be the prevention of influenza

transmission from infected farm personnel, through measures

such as vaccinating personnel, using masks, and avoiding work

when showing flu symptoms. The high level of infectious piglets in

the breeding farm indicates that the transport of weaned pigs to a

wean-to-finish farm represents a risk of influenza transmission

between these farms. Consistent with this prediction, transport of

weaned pigs has been shown to disseminate influenza virus under

field conditions [30,39].

We use transmission parameter values derived from experi-

mental studies on swine influenza, which quantify the varying

degrees of susceptibility among different groups of swine.

However, there may also be differences in the infectiousness of

different groups of swine, i.e. differences in the amount of shedding

or the length of the infectious period, which affect the number of

new animals becoming infected. For example, piglets with

maternal immunity may differ in their infectiousness compared

to those without maternal immunity [15]. Such heterogeneities in

the levels of infectiousness have not been incorporated in the

models presented here, and would be a valuable addition once

variation in infectiousness has been experimentally demonstrated

and quantified.

We have limited our focus to a single influenza strain in this

study, and consequently limited our timescales. Over time, if

influenza persists in the population, antigenic drift is possible [7].

The incorporation of mutation rates and evolutionary timescales,

likely to be highly stochastic, would be a useful extension of our

model framework. Then the longer-term dynamics of influenza

may be explored. The inclusion of multiple influenza viral strains

would also be an important addition, with different degrees of

cross-immunity. Due to the stochastic nature of influenza

infection, and also the differences depending on strain type,

dynamics may vary from those predicted here. The intention of

this study was to predict the dynamical trends of influenza

infection; our interest resides in the qualitative patterns as opposed

to exact quantitative predictions. In practice, the actual numbers

of infectious pigs would be affected by a plethora of factors. For

example, our assumption that the swine populations are naı̈ve

prior to the introduction of influenza has likely led to an

overestimation of the numbers of infectious animals. Previous

exposure to influenza is likely under field conditions given the

ubiquitous nature of influenza infections in pigs.

Sensitivity analysis was performed to test the robustness of our

findings to both uncertainties in transmission estimates and also

variation in farm size. Our main conclusions were robust to

changes in transmission rates within their 95% confidence

intervals. Although decreasing the breeding farm size below

1500 sows and gilts caused a minor decrease in the maximum

proportion of infectious piglets at equilibrium, there was still

endemicity; even for the smallest of farm sizes suitable for U.S.

commercial operations, there was a high proportion of infectious

piglets that persisted through time. Changing the wean-to-finish

Figure 6. Model results for the wean-to-finish farm under two different reinfection assumptions. In (a), we show the number of
infectious pigs in a population without vaccination and assume that pigs that are infected early can reenter the susceptible pool once recovered. In
(b), we assume that recovered individuals can become susceptible again, due to either a change in the influenza virus, or through the loss of
immunity. The average rate at which recovered animals move into the susceptible pool (v) is 1=50 in this example. Panel (b) also shows the number
of infectious pigs when the population is vaccinated at t = 70 (after maternal immunity has been lost). The heterologous vaccination at 70 days
produces little effect on the number of infectious pigs.
doi:10.1371/journal.pone.0106177.g006
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farm size had very little effect on the proportion of infectious pigs

at the infection peak.

The maintenance of influenza infection predicted by our model,

especially in 18–27% of piglets on the breeding farm, confirms that

pig populations represent a potential threat to public health. The

longer a strain is maintained in a population, and the greater the

number of infectious animals, the greater the probability of

transmission to humans and the greater the chance of virus

evolution and reassortment, thus enabling species jumps. Although

swine farmers have access to an extensive set of intervention

strategies that can reduce or eliminate other pathogens [40],

successful interventions have yet to be devised for influenza. Our

model predicts that the most common influenza vaccination

strategies are ineffective in eliminating, or even reducing, influenza

infection in a breeding herd, as the virus can still be found in

piglets regardless of target population or vaccine type. Our study

suggests that control strategies should focus on increasing

biosecurity to prevent new introductions of influenza as well as

mitigating infection in piglets. There is an untapped opportunity to

use mathematical modeling combined with experimental studies to

devise successful control strategies for influenza, and more

broadly, to integrate public health concerns into animal produc-

tion decisions.

Supporting Information

Figure S1 Summary of the effects of vaccination
strategies on the number of infectious animals in the

breeding farm, with vaccination occurring when influ-
enza is endemic and circulating in the population (i.e.
after an outbreak). In (a), note that the ‘Mass vaccination –

homologous’ curve lies along the x axis (as infection is eliminated).

In addition, both pre-farrow curves are obscured by the ‘No

vaccination’ curve, which is very similar in both cases. In (b), all

curves are very similar to the ‘No vaccination’ curve; vaccination

does not measurably affect the number of infectious piglets.
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