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Abstract. In this study, ���������������������������������gene expression data of osteosar-
coma  (OSA) were analyzed to identify metastasis-related 
biological pathways. Four gene expression data sets (GSE21257, 
GSE9508, GSE49003 and GSE66673) were downloaded from 
Gene Expression Omnibus (GEO). An analysis of differentially 
expressed genes (DEGs) was performed using the Significance 
Analysis of Microarray (SAM) method. Gene expression levels 
were converted into scores of pathways by the Functional 
Analysis of Individual Microarray Expression  (FAIME) 
algorithm and the differentially expressed pathways (DEPs) 
were then disclosed by a t-test. The distinguishing and predic-
tion ability of the DEPs for metastatic and non-metastatic 
OSA was further confirmed using the principal component 
analysis  (PCA) method and 3 ge ne expression data sets 
(GSE9508, GSE49003 and GSE66673) based on the support 
vector machines  (SVM) model. A total of 616 downregu-
lated and 681 upregulated genes were identified in the data 
set, GSE21257. The DEGs could not be used to distinguish 
metastatic OSA from non-metastatic OSA, as shown by PCA. 
Thus, an analysis of DEPs was further performed, resulting in 
14 DEPs, such as NRAS signaling, Toll-like receptor (TLR) 
signaling, matrix metalloproteinase  (MMP) regulation of 
cytokines and tumor necrosis factor receptor-associated 
factor (TRAF)-mediated interferon regulatory factor 7 (IRF7) 
activation. Cluster analysis indicated that these pathways 
could be used to distinguish between metastatic OSA from 
non-metastatic OSA. The prediction accuracy was  91, 
66.7 and 87.5% for the data sets, GSE9508, GSE49003 and 
GSE66673, respectively. The results of PCA further validated 
that the DEPs could be used to distinguish metastatic OSA 
from non-metastatic OSA. On the whole, several DEPs were 
identified in metastatic OSA compared with non-metastatic 

OSA. Further studies on these pathways and relevant genes 
may help to enhance our understanding of the molecular 
mechanisms underlying metastasis and may thus aid in the 
development of novel therapies.

Introduction

Osteosarcoma (OSA) is the most common primary bone tumor 
in children and young adults, with 7,104 cases identified during 
1999-2008 in the US (1). Although there are a variety of chemo-
therapeutic and radiation treatments, the survival rate has not 
greatly improved over the past two decades. Approximately 
50% of patients undergo fatal lung metastasis at the late stage 
of the disease (2,3). The early detection of metastasis is rather 
critical considering there is a great difference in the survival 
rate between patients with metastatic OSA (10-20%) and non-
metastatic OSA (50-78%) (4,5).

Some achievements have been made in unveiling the molec-
ular mechanisms underlying metastasis. For example, ezrin, an 
actin-cytoskeleton linker protein, is regarded as a metastatic 
determinant (6); a high expression of ezrin is associated with 
a poor outcome in patients with OSA (7). Further studies indi-
cated that ezrin may be involved in metastasis by linking F-actin 
to the cell membrane following phosphorylation at T567 by 
protein kinase C) (PKC) (8,9). In addition, heparanase (10), 
phosphatase and tensin homolog  (PTEN)  (11) and neuro-
pilin2 (12) have also been implicated in the metastasis of OSA. 
Furthermore, microarray technology has also been widely used 
for the screening a serial of metastasis-related genes in OSA 
simultaneously by differential analysis (13,14). However, gene 
expression signatures show a high variability from different 
data sets and different literatures, which make them difficult to 
be used to distinguish metastatic from non-metastatic OSA in 
the clinic.

Considering that proteins cooperate to exert certain biolog-
ical functions (15), functional term-based analysis may better 
distinguish metastatic from non-metastatic OSA. In the present 
study, gene expression levels were converted into scores of 
biological pathways. Differentially expressed pathways (DEPs) 
were identified between metastatic and non-metastatic OSA. 
The ability of the DEPs to distinguish metastatic OSA from 
non-metastatic OSA was examined using different gene expres-
sion data sets.
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Data collection methods

Gene expression data. Gene expression data of OSA 
were downloaded from Gene Expression Omnibus  (GEO, 
http://www.ncbi.nlm.nih.gov/geo) (16). The following criteria 
were applied to screen out appropriate gene expression data: 
i)  both metastatic and non-metastatic OSA samples were 
included; ii) >10 samples were included; iii) human samples.

Four data sets were finally included. Data set GSE21257 (17) 
contained 34 metastatic OSA tissue samples (from 34 patients, 
18.1±12.5 years, 9 females and 25 males) and 19 non-metastatic 
OSA tissue samples (from 19 pa tients, 19.4±12.2  years, 
10 fe males and 9 males) that were collected with Illumina 
Human-6 v2.0 Expression BeadChip (Illumina Inc., San Diego, 
CA, USA). Data set GSE9508 (18) included 21 metastatic OSA 
tissue samples (from 11 metastatic patients, 10 of which are 
analyzed in duplicate, 26.2±19.6 years, 8 females and 3 males), 
13 non-metastatic OSA tissue samples (from 7 non-metastatic 
patients, 6 of which are analyzed in duplicate, 16.6±1.9 years, 
2 females and 4 males) and 5 normal controls (66.0±12.9 years, 
2 females and 3 males) that were collected with Agilent-Whole 
Human Genome Oligo Microarray G4112A condensed (Agilent 
Technologies Inc., Santa Clara, CA, USA). Data set GSE49003 
contained 6 metastatic OSA cell samples (KHOS and KRIB, 
each 3) and 6 non-metastatic OSA cell samples (HOS and U2OS, 
each 3) that were collected by Illumina Human HT-12 V3.0 
Expression BeadChip (Illumina  Inc.). Data set GSE66673 
contained 12 metastatic OSA cell samples [LM5 cells and 
Ki-ras transformed HOS cells (143B), each 6] and 12 non-meta-
static OSA cell samples(SAOS-2 and HOS, each 6) that were 
collected by Agilent-028004 SurePrint G3 Human GE 8x60K 
(Agilent Technologies Inc.).

Data pre-processing and differential analysis of GSE21257. 
According to annotation files, probes were mapped into genes. 
Probes mapping to the same gene were averaged as the final 
expression level of the gene (19). Genes with >20% missing 
values were excluded and others were filled with the average 
value, as previously described (20).

Following normalization and log2 transformation, differ-
ential analysis was performed using the significance analysis 
of microarray (SAM) method based on the t-test, as previously 
described (21). This method can reduce the false-positive by 
adjusting the p-value to the false discovery rate  (FDR) by 
multiple testing. The relative difference d was calculated as 
follows:
		x  '1-x'2	 d =	 -----------	 (Equation 1)
		  s-s0

where d is the relative difference, x1' and x2' are average gene 
expression levels at two different statuses, and s is the vari-
ance. Genes with a fold change in expression of >2 and a 
FDR of <0.05 were considered as the differentially expressed 
genes (DEGs).

Functional profile establishment. Pathway information 
was downloaded from MsigDB  (www.broad.mit.edu/gsea/
msigdb/) (22). Gene expression levels were converted into scores 
of functional terms (such as pathways) using the Functional 
Analysis of Individual Microarray Expression  (FAIME) 

algorithm (23). First, gene expression levels were converted 
into rank-related weights. High expression levels meant high 
weights:

	 rg,s		 - -------
	 Wg,s = (rg,s)•(e	 |G| )	 (Equation 2)

where g and s represent gene g and sample s, respectively; rg,s 
represents the rank of gene g in sample s in ascending order, 
and |G| represents the total number of genes.

Normalized centroid (NC) is defined as the average weight 
of a gene set. For a certain functional term Gene Ontology (GO), 
it has a gene set GOi. For a certain gene g,g∈GOi. G/GOi 
represents the complementary set of GOi. The NCs for GOi and 
G/GOi were calculated as follows:
		  1
	 NC (GOi,s) = 	----------	 Σg∈GOi

 (Wg,s)	 (Equation 3a)
		  |GOi|
		  1
	 NC (G/GOi,s) = 	-------------	Σg∈G/GOi

 (Wg,s)	 (Equation 3b)
		  |G/GOi|

Where G/GOi = {g:g∉GOi∩g∈G}

The score of the functional term GO in sample  s was 
defined as the difference between the two NCs as follows:

	 FGOi,s
 = F(GOi,s) = NC(GOi,s) - NC(G/GOi,s) (Equation 4)

	 FPs = {FGO1,s
, ... , FGOi,s

, ... , FGOn,s
}     (Equation 5)

where |GOi| represents the total number of genes in the func-
tional term i. G/GOi is the complementary set of GOi. FGOi,s 
is the score of functional term i in sample s. FPs represents 
the scores of all functional terms in sample s. All samples 
(FP1, FP2... FPn) constitute the functional expression matrix 
FP.

After the calculation of the functional expression matrix, 
the t-test was used to screen the DEPs between metastatic 
and non-metastatic OSA. The p-value was corrected by the 
Bonferroni method and the adjusted p<0.05 was set as the 
threshold value.

Prediction of metastasis. A support vector machines (SVM)
model was trained with differentially expressed functional 
terms using function the svm of package e1071 in R (24). 
The functional expression matrices of data sets GSE9508, 
GSE49003 and GSE66673 were calculated and the model 
was then used to predict the metastasis of OSA samples 
in the 3 data sets. The accuracy (ACC) was calculated as 
follows:

	 ACC = TP/(TP + FP)	 (Equation 6)

where ‘TP’ (true-positive) represents right prediction, while 
‘FP’ (false-positive) represents wrong prediction.

Principal component analysis  (PCA) was performed to 
confirm the differential functions of the DEGs and DEPs for 
the metastatic and non-metastatic OSA samples.
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Results

Gene expression data. A total of 24,999 genes was identi-
fied in data set GSE21275, 3,674 genes in data set GSE9508, 
25,159 genes in data set GSE49003 and 18,539 genes in data 
set GSE66673. The box plots of these 4 data sets are presented 
in Fig. 1. A good performance of normalization was achieved.

Identification and biological functions of DEGs. Differential 
analysis was performed between the metastatic and non-meta-
static OSA samples using the SAM method. According to the 
criteria (fold change >2 and FDR <0.05), a total of 616 down-
regulated and 681 upregulated genes were identified in data 
set GSE21257. However, the results of PCA indicated that the 
DEGs could not be used to not distinguish the metastatic from 

Figure 1. Box plots of gene expression data from data sets (A) GSE21257 and (B) GSE9508. A good performance of normalization was achieved.
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non-metastatic OSA samples (Fig. 2), suggesting that other clas-
sification features were required.

Functional expression matrix and identification of DEGs. A 
total of 4,722 pathways (i.e., gene sets) were obtained from 
MsigDB and 4,721 gene sets which had expression level infor-
mation for >3 genes were retained. Scores of pathways were 
calculated for each sample from data set GSE21257 and then a 
functional expression matrix was obtained. As shown in Fig. 3, 
a good normalization of pathway scores was achieved, which 
eliminated the difference in gene expression levels.

After t-test analysis and Bonferroni correction, a total 
of 14 DEPs was revealed (adjusted p-value <0.05) (Table I), 
such as AML1-MTG8 fusion gene, NRAS signaling, Toll-like 
receptor (TLR) signaling, matrix metalloproteinase (MMP) 
regulation of cytokines and tumor necrosis factor receptor-
associated factor  (TRAF)-mediated interferon regulatory 
factor 7 (IRF7) activation.

These DEPs contained 400 genes. Compared with the 
1,297 DEGs, there were 93 overlapping genes. None of the 
14 pathways was significantly over-represented in the 93 DEGs. 
This finding thus suggested that pathway-based differential 

Figure 1. Continued. Box plots of gene expression data from data sets (C) GSE49003 and (D) GSE66673 (D). A good performance of normalization was achieved.
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analysis was more robust than gene-based analysis at unveiling 
the molecular mechanisms underlying the metastasis of OSA. 
As expected, and as shown in Fig. 4, bidirectional hierarchical 
clustering implied that the metastatic OSA samples were well 
separated from the non-metastatic OSA samples by these 
14 DEPs.

Prediction accuracy. An SVM model was trained with the 
14  DEPs. The functional expression matrices of data set 

GSE9508, GSE49003 and GSE66673 were calculated, and the 
model was then used to predict the metastasis of OSA samples 
from these 3 data sets. The accuracy for data set GSE9508 
was 91%, that for data set GSE49003 was 66.7% and the accu-
racy for GSE66673 was 87.5%. The detailed information is 
listed in Table II.

The results of PCA for the 3 data sets are shown in Fig. 5. 
A good prediction was also achieved with the 14 DEPs, further 
suggesting the reliability of the DEPs and our method.

Figure 2. Results of principal component analysis (PCA) based upon the 1,297 differentially expressed genes (DEGs). Red circles represent metastatic osteosar-
coma (OSA) samples, while blue circles represent non-metastatic OSA samples.

Figure 3. Distribution of F score in the 53 samples of the data set GSE21257.
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Table I. Differentially expressed pathways between metastatic and non-metastatic osteosarcoma.
 
Pathway term	p -value	 Adjusted p-value
 
Targets of AML1-MTG8 fusion	 1.18E-06	 0.006
Leishmania infection	 3.09E-06	 0.015
NRAS signaling	 3.46E-06	 0.016
T lymphocyte and NK progenitor	 3.85E-06	 0.018
Endogenous pathway	 4.63E-06	 0.022
Liver cancer metastasis	 4.69E-06	 0.022
Trafficking and processing of endosomal TLR	 5.94E-06	 0.028
Chronic lymphocytic leukemia	 6.18E-06	 0.029
TARF6-mediated IRF7 activation in TLR7/8 or 9 signaling	 7.23E-06	 0.034
Thyroid cancer cluster 4	 7.31E-06	 0.035
Tretinoin response	 8.19E-06	 0.039
NRAS vs. stromal stimulation	 8.61E-06	 0.041
Aging cerebellum	 8.64E-06	 0.041
MMP regulation of cytokines	 1.01E-05	 0.048
 
NK, natural killer; TLR, Toll-like receptor; IRF7, interferon regulatory factor 7; MMP, matrix metalloproteinase.
 

Table II. Detailed information of the prediction results.
 
	 Metastatic	 Non-metastatic	 TP/FP for	 TP/FP for 	 Accuracy
Data set	 samples	 samples	 metastatic samples	 non-metastatic samples	 (%)
 
GSE9508	 21	 13	 21/0	 10/3	 91
GSE49003	 6	 6	 4/2	 4/2	 66.7
GSE66673	 12	 12	 10/2	 11/1	 87.5
 
TP, true-positive; FP, false-positive.
 

Figure 4. Results of cluster analysis with the 14 differentially expressed functional terms.
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Figure 5. Results of principal component analysis (PCA) based upon the 14 differentially expressed functional terms. (A) GSE9508, (B) GSE49003 and 
(C) GSE66673. Metastatic osteosarcoma samples are shown in red while non-metastatic osteosarcoma samples are shown in blue.
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Discussion

Gene-based differential analysis of gene expression data is 
a useful method to identify disease-related genes. However, 
numerous genes are identified in a study and it takes time to 
further screen out critical genes. Proteins interact with each 
other to fulfill certain biological functions. Therefore, pathway-
based differential analysis could disclose pathways disturbed in 
disease. In present study, gene expression levels were converted 
into pathway scores and 14 DEPs were identified in metastatic 
OSA, such as NRAS signaling, TLR signaling, MMP regula-
tion of cytokines and TRAF-mediated IRF7 activation. Their 
ability to distinguish metastatic OSA from non-metastatic OSA 
was proven with 3 different gene expression data sets.

The expression of most TLRs is heterogeneous in OSA cell 
lines, apart from TLR-2 and TLR-4 (25). The expression levels 
of TLRs are differentially influenced by p53 and DNA stresses in 
cancers (26). That is why a pathway-based differential analysis is 
more robust. A previous study indicated that the expression levels 
of TLR3, TLR4 and TLR9 have clinical interest as indicators of 
tumor aggressiveness in breast cancer (27). TLRs also mediate 
metastasis induced by pancreatic adenocarcinoma upregulated 
factor (28). The functional expression of TLR9 is related to the 
metastatic potential of human lung cancer cells (29). Therefore, 
we speculated that TLR signaling plays a similar role in OSA 
metastasis and some members of TLRs (such as TLR-7, -8 
and -9) may play critical roles in the metastasis.

Several members of TRAFs have been shown to be 
involved in the growth and invasion of OSA. TRAF6 regulates 
the proliferation, apoptosis and invasion of OSA cells (30). The 
knockdown of TRAF4 expression suppresses OSA cell growth 
in vitro and in vivo (31). The study by Yao et al indicated that 
TRAF4 can also enhance OSA cell invasion through the AKT 
signaling pathway (32). IRF7 pathways have also been shown 
to be involved in metastasis. Bidwell et al reported that the 
silencing of IRF7 in breast cancer cells promoted bone metas-
tasis through immune escape (33).

MMPs also participate in OSA invasion (34). The effect 
of S100A4 on metastasis is mediated by MMPs (35). Previous 
studies have confirmed that MMP-2 and MMP-9 play critical 
roles in the modulation of metastasis in OSA  (36,37). The 
neuroblastoma RAS viral oncogene homolog (NRAS) mutation 
status is an independent prognostic factor in metastatic mela-
noma (38). The loss of NRAS induces the metastatic conversion 
of Rb1-deficient neuroendocrine thyroid tumors (39). We hypoth-
esized that NRAS signaling plays a similar role in the metastasis 
of OSA.

Furthermore, immune-related pathways were also differen-
tially expressed in metastatic OSA, including the T lymphocyte 
and natural killer (NK) progenitor and IRF7 pathway. Immune 
cells regulate metastatic progression in solid tumors  (40). 
T cell based immune surveillance plays an important role in 
preventing OSA metastasis (41). NK cells are also involved in 
metastasis (42,43). The modulation of NK cells may be a method 
for treating OSA (44).

In conclusion, several DEPs were identified in metastatic 
OSA. Limited to the disclosed gene expression data sets of 
OSA, these results warrant further experimental confirmation. 
However, the accuracy for the prediction of metastasis suggested 
that the identified pathways are valuable clues. Further studies 

on these pathways would enhance our understanding of the 
mechanisms underlying the metastasis of OSA. Potential 
biomarkers and therapeutic targets may also be identified from 
these pathways.
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