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Abstract

Asthma is a common allergic airway disease that has been associated with the development of the human microbiome early in life.
Both the composition and function of the infant gut microbiota have been linked to asthma risk, but functional alterations in the
gut microbiota of older patients with established asthma remain an important knowledge gap. Here, we performed whole metage-
nomic shotgun sequencing of 95 stool samples from a cross-sectional cohort of 59 healthy and 36 subjects with moderate-to-severe
asthma to characterize the metagenomes of gut microbiota in adults and children 6 years and older. Mapping of functional orthologs
revealed that asthma contributes to 2.9% of the variation in metagenomic content even when accounting for other important clinical
demographics. Differential abundance analysis showed an enrichment of long-chain fatty acid (LCFA) metabolism pathways, which
have been previously implicated in airway smooth muscle and immune responses in asthma. We also observed increased richness
of antibiotic resistance genes (ARGs) in people with asthma. Several differentially abundant ARGs in the asthma cohort encode resis-
tance to macrolide antibiotics, which are often prescribed to patients with asthma. Lastly, we found that ARG and virulence factor (VF)
richness in the microbiome were correlated in both cohorts. ARG and VF pairs co-occurred in both cohorts suggesting that virulence
and antibiotic resistance traits are coselected and maintained in the fecal microbiota of people with asthma. Overall, our results show
functional alterations via LCFA biosynthetic genes and increases in antibiotic resistance genes in the gut microbiota of subjects with

moderate-to-severe asthma and could have implications for asthma management and treatment.

Introduction

Asthma is a common respiratory disease characterized by symp-
toms of airway obstruction including wheeze, cough, and short-
ness of breath. In most cases, asthma onsets in early childhood
with the development of sensitization to environmental allergens.
Ongoing environmental exposures lead to airway inflammation
and ultimately result in asthma symptoms manifesting within
the first few years of life. Recent findings support the notion that
asthma develops in association with the human gut microbiome
composition early in life (Arrieta et al. 2015, Hufnagl et al. 2020).
This finding is supported by 16S rRNA sequencing surveys demon-
strating that alterations in the gut microbiota precede asthma de-
velopment within the first few months of life (Arrieta et al. 2015,
Fujimura et al. 2016).

Early childhood gut microbial communities have been pro-
posed to contribute to asthma by several mechanisms. Epoxide
hydrolases encoded by enterococci and other gut bacteria produce
the lipokine 12,13-diHOME that predisposes toward atopic sensi-
tization and asthma (Fujimura et al. 2016, Levan et al. 2019). Simi-
larly, short-chain fatty acids (SCFAs), produced by the metabolism
of dietary fibers by diverse members of the gut microbiota, are
thought to protect from asthma through their effect on the host

G-protein coupled receptor GPR41, shaping immune cell differen-
tiation in the lungs, and ameliorating allergic airway inflamma-
tion (Trompette et al. 2014, Arrieta et al. 2015, Zaiss et al. 2015,
Cait et al. 2018, Roduit et al. 2018).

In addition to microbially encoded metabolic features, carriage
of antibiotic resistance genes (ARGs) within the gut microbiota,
termed the resistome, has been associated with asthma risk. In
infants, microbial signatures associated with the development of
asthma are also associated with increased richness of ARGs in the
gut microbiome (Li et al. 2021). These differences in ARG carriage
were found to be driven primarily by Escherichia coli, which is a
common colonizer in the first days of life (Li et al. 2021). These
findings are important in understanding the origins of asthma
since antibiotic exposure correlates both to the number of ARGs
within the gut microbiome (Ramirez et al. 2020) and the later de-
velopment of asthma and other allergic diseases (McKeever et al.
2002, Kozyrskyj et al. 2007, Hoskin-Parr et al. 2013). This associ-
ation between antibiotic exposure and asthma is supported by
animal models that found antibiotic treatment worsens allergic
airway inflammation (Russell et al. 2013, Yang et al. 2019, Borbet
et al. 2022).
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While there is an abundance of data supporting the idea that
asthma susceptibility is associated with features of the gut mi-
crobiota in early childhood, the potential effect of gut microbial
functions on asthma later in life remains an important knowledge
gap. Since asthma often begins in infancy when the gut micro-
biota composition is highly unstable, disease-causing microbial
functions may not persist into older children and adults. Never-
theless, the gut microbiota in older individuals could underlie the
variable manifestations of asthma (Wenzel 2012) and may hold
valuable prognostic and therapeutic significance.

Asthma-associated differences in later childhood and adult gut
microbial communities have already been noted in several re-
ports. Studies in preschool-aged children have noted distinct tax-
onomic composition of gut microbial communities in subjects
with asthma compared to healthy controls (Hufnagl et al. 2020).
These differences are reported to include reductions in Akkerman-
sia muciniphila (Michalovich et al. 2019), Faecalibacterium prausnitzii
(Wang et al. 2018) as well as Roseburia species (Chiu et al. 2019).
Functional characterization of microbial communities by whole
metagenomic sequencing from an older population of women
with asthma (Wang et al. 2018) has shown that pathways related
to lipid and amino acid metabolism, as well as carbohydrate uti-
lization were enriched compared to healthy controls. In contrast,
microbial pathways involved in the production of SCFAs, like bu-
tyrate, were enriched in the healthy cohort of the same study
(Wang et al. 2018). These findings are supported by a complemen-
tary study designed to test the effect of probiotic supplementation
on asthma that found an association of improved asthma symp-
toms with SCFA biosynthesis as well as tryptophan metabolism
pathways in the adult gut microbiota (Liu et al. 2021).

Here, we describe an analysis of whole metagenomic sequenc-
ing data from a cohort of 36 subjects with physician-diagnosed,
moderate-severe asthma along with a matched cohort of 59
healthy controls. This study tests the hypothesis that the gut
metagenome harbors signatures of asthma after the disease
has been established. Our results identify global differences in
metagenomic functions between the asthma and healthy cohorts
and reveal an enrichment in the asthma cohort for long-chain
fatty acid (LCFA) biosynthesis pathways. We also find increased
richness of ARGs associated with asthma and co-occurrence of
ARGs with known bacterial virulence factors (VFs), suggesting a
potential relationship between antibiotic exposure and pathogen
colonization in people with asthma.

Materials and methods

MARS study population

The Microbiome and Asthma Research Study (MARS) consisted
of 104 subjects from the St Louis, MO United States area that
are either healthy or had physician-diagnosed moderate-to-severe
asthma. This study included an adult cohort (ages 18-40 years)
and pediatric cohort (ages 6-10 years). As described in previous
manuscripts (Jaeger et al. 2020, Wilson et al. 2023), nine patients
were disqualified or did not donate stool samples. The remain-
ing 95 patients donated stool samples either at home or at the
recruitment visit and were evaluated with a clinical question-
naire to gather relevant metadata. Stool samples were kept at
—20°C and delivered within 24 hours to the study site, Kau Lab
at Washington University School of Medicine, where they were
stored at —80°C for no more than 3 years until processing for
DNA isolation. All recruitment, follow up, and sample acquisi-
tion occurred between November 2015 and December 2017. This

study was approved by the Washington University Institutional
Review Board (IRB# 201412035). Identifying information was ac-
cessible only to the study principal investigator (A.L.K.) and study
coordinators while the study was ongoing, but was not accessible
to other members of the study team. Written informed consent
documents were obtained from all MARS subjects or their legal
guardians.

Fecal DNA isolation

Frozen human stool samples were pulverized in liquid nitrogen
using a pestle and mortar. We then homogenized the stool in a
mixture of phenol, chloroform, and isoamyl alcohol with a bead
beater using sterilized zirconium and steel beads as previously
described (Kau et al. 2015) to extract crude DNA. We purified the
fecal DNA with a 96-well QIAGEN PCR Clean up kit and quanti-
tated by measuring the absorbance at 260/280 nm. Sample DNA
concentrations were normalized to 0.5 ng/ml. Neither depletion
of human DNA sequence nor enrichment of microbial or viral
DNA was performed. No experimental quantification like a spike-
in were used.

Whole metagenomic sequencing of fecal
communities

To generate fecal metagenomic sequencing data, we adapter-
ligated libraries by tagmentation using an adaptation of the Nex-
tera Library Prep kit (Illumina, catalog number FC-121-1030/1031)
(Baym et al. 2015). Individual libraries were then purified with AM-
Pure XP SPRI beads, quantitated using Quant-iT (Invitrogen, cat-
alog number Q33130), and then combined in an equimolar ratio.
We confirmed that each library was adequately represented in the
combined library by preliminary sequencing on a MiSeq instru-
ment at the Washington University in St. Louis Center for Genome
Sciences to assess the evenness of the library. Once the quality of
the library was assured, we sequenced the combined library on a
NovaSeq 6000 S4 with 2 x 150 bp chemistry to achieve an average
of 3.4 Giga-base-pairs (Gb) per sample. NovaSeq services and data
demultiplexing were performed by the Genome Technology Ac-
cess Center at the McDonnell Genome Institute (St Louis, MO). All
samples were tagmented simultaneously and sequenced on the
same run to avoid batch effects.

Processing of sequencing data

Metagenomic raw demultiplexed reads were then processed to (1)
remove spurious human sequences (human reference database
was hg37dec_v0.1.1), (2) remove low quality sequences, and (3)
trim remaining adapter content using Kneaddata v. 0.10.0 (hutten-
hower.sph.harvard.edu/kneaddata) bypassing the tandem repeat
finder step (“- -bypass-trf"). FastQC (fastqc v0.11.7) and MultiQC
(multigc v1.2) with default settings were used to create quality re-
ports and visualize processing steps. See Figure S1(A) and Table S1
(Supporting Information) for number of reads dropped per pro-
cessing step. After trimming and filtering, no samples had adap-
tor content, overrepresented sequences, or an average sequence
quality score below Phred 24. Estimated metagenome coverage
was calculated with Nonpareil (Rodriguez-R and Konstantinidis
2014, Rodriguez-R et al. 2018) (version 3.4.1) via the online query-
ing tool at http://enve-omics.ce.gatech.edu/nonpareil/submit.

Read-based metagenome profiling

To obtain functional information about the metagenomic con-
tents of fecal samples, we processed samples using HUMANN
(Beghini et al. 2021) v3.0.0 on filtered reads with default param-
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eters. The marker gene database used by HUMANN to identify
taxonomic identities was ChocoPhlAn v201901b and the protein
database used by HUMANN to identify functions was the UniRef90
full database v201901b. Alpha diversity analysis of Uniref90 genes
and two-sample tests of KEGG orthologs were performed on re-
spective genes that were present (> O copies per million) in at
least 16 out of 95 samples, which was the lowest prevalence cut-
off that would allow for Bonferroni corrected Wilcoxon P-values
below .0001. HUMANN was used to determine the abundance of
metagenomic pathways by mapping UniRef90 genes to the Meta-
Cyc database. We performed differential abundance analysis us-
ing the Wilcoxon 2-sample tests on pathways that had a mini-
mum of 10% prevalence.

To identify ARGs present in the fecal metagenomes of MARS
stools, we used ShortBRED-identify (Kaminski et al. 2012) (v0.9.4)
with the Comprehensive Antibiotic Resistance Database (CARD;
Alcock et al. 2019) (downloaded 2021-07-05 16:10:04.04555)
and Virulence Factor Database (Chen et al. 2005) (downloaded
Friday July 16 10:06:01 2021). ShortBRED-Quantify was run on
the filtered reads with default parameters. ARGs or VFs that
had an abundance greater than zero in less than 7 out of 95
samples were excluded from downstream analyses. This preva-
lence cutoff was determined using the binomial distribution
to maintain a 95% confidence that enrichment was not due to
random chance (using stats:: binom in R). In the analyses that
compared VF profiles to ARG profiles, any gene with the same
name was excluded from the list of antibiotic resistance and
considered a VF only, to prevent spurious results due to cocorre-
lations. Only one gene matched this criterion: ugd (UDP-glucose
6-dehydrogenase).

Microbial composition was determined with MetaPhlAn 3.0
(Beghini et al. 2021), which is included in the HUMANN pipeline
described (Beghini et al. 2021). MaasLin (Mallick et al. 2021)
(Maaslin2_1.5.1) was used in R to find taxa of any taxonomic level
that correlated with asthma by setting asthma as a fixed effect
and setting age group and race as random effects.

For PERMANOVA analyses, BMI class refers to two strat-
ifications: Nonobese (underweight, healthy, or overweight)
and obese determined for adults by BMI cutoffs and for pe-
diatric patients by BMI-for-age percentile as defined by the
Centers for Disease Control and Prevention (see cdc.gov/healthy

weight/assessing/bmi/childrens_bmi/ about_childrens_bmi.html).

Self-reported race was used as a covariate in our PERMANOVAS
since precise variables that would better describe the many facets
of racism and health disparities were absent (see the section
“Study limitations”). Subject-reported race was represented in
our models as a dichotomous variable of either “Caucasian”
or “Non-Caucasian”, with 92% of the latter population having
reported as “Black or African-American” and the remaining 8%
as “Other”. We chose to combine self-reported “Black or African—
American” and “Other” populations into a single category of
“Non-Caucasian” because there were insufficient numbers of
reported “Other” to power a robust analysis of this group but we
still wanted to account for potential health disparities associated
with non-Caucasian races (Generate Health 2017).

Metagenome assemblies

Filtered reads were assembled into contigs using spades (Banke-
vich et al. 2012) (v3.14.0) with the “meta” flag and k-mers lengths
as follows: -k 21,33,55,77. The resulting scaffolds achieved an av-
erage N50 of 3525 +/— 178 bp, an average L50 of 7192 +/— 372,
and an average total length of 136.8 +/— 4.5 Mbp as measured by

Wilsonetal. | 3

QUAST (v 4.5) (Gurevich et al. 2013, Mikheenko et al. 2016) (see
Table S1, Supporting Information). Determination of ermF loca-
tion was performed by aligning the 801-bp coding sequence of
ermF from CARD (Alcock et al. 2019) to all scaffolds. Scaffolds con-
taining BLAST hits with 98% identity or higher to the full-length
CARD ermF sequence were further annotated by Prokka (v1.14.5)
to find open reading frames and annotate them. Manual BLAST
was used to annotate “hypothetical protein” open reading frames
for the contexts of ermF hits.

Statistics and reproducibility

R version 3.6.3 was used for all analyses downstream of HU-
MANN and ShortBRED, and for data visualization. Wilcoxon tests
with false discovery rate multiple testing correction or Type II
ANOVAs were used to determine statistically significant differ-
ences with the car:: Anova package in R. PERMANOVAS were per-
formed in R using the vegan:: adonis package with default set-
tings and 100000 iterations. The following symbols were used to
designate significance: * P < .05, ** P < .01, and ** P < .001 and
the following for g-values (FDR-adjusted P-values): * q < 0.2 and
** ¢ < 0.05.

Results

Whole metagenomic shotgun sequencing of fecal
samples from adults and children with asthma
and healthy controls

We performed whole metagenomic sequencing on fecal samples
from subjects with allergic asthma and healthy controls taking
partin the MARS, which we have previously described (Jaeger et al.
2020, Wilson et al. 2023). MARS participants were recruited from
the St. Louis, Missouri area and included pediatric (6-10 years) and
adult (18-40 years) age groups. All asthma cohort patients had
a physician diagnosis of moderate-to-severe asthma, and history
of allergic sensitization as evidenced by positive skin testing or
serum specific-IgE to one or more common aeroallergens. In to-
tal, we analyzed 95 patient stool samples including 17 adults and
19 school-aged participants with asthma, and 40 adults and 19
school-aged participants without asthma.

NovaSeq S4 sequencing of our libraries yielded 1.69 billion
paired-end reads translating to a total of approximately 500 Gb.
After filtering for read quality, dropping host contaminants, and
trimming adaptor content, we achieved 1.23 billion paired-end
reads and an average 3.4 Gb per stool sample with a range of 0.4—
9.9 Gb/sample (Figure S1A, Supporting Information). Neither host
contamination nor sequencing depth differed between asthma
and healthy cohorts (t-test P = .2 and 0.7; Table S1, Supporting
Information). All samples achieved an estimated average metage-
nomic coverage of at 89% (range of 61%-98%) with the annotation-
free redundancy-based metagenome coverage estimator, Non-
pareil (Rodriguez-R and Konstantinidis 2014) (Figure S1B, Sup-
porting Information). Further, estimated metagenome coverage
was not different between the asthma and healthy cohorts, al-
though we noted coverage was slightly reduced in the pediatric
cohort (Figure S1B and Table S1, Supporting Information). We em-
ployed the read-based annotation pipeline, HUMANN (Beghini et
al. 2021) to determine the abundance of genes and functional
pathways in the stool metagenomes. We found that the most
abundant functional pathways (Figure S1C, Supporting Informa-
tion) across all MARS participants are involved in essential pro-
cesses of gut microbes such as starch degradation and glycolysis,
demonstrating that our sequencing captured core functions of the
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gut metagenome, as expected. Taken together, we concluded that
our sequencing is of sufficient depth and quality to be used for
further analyses.

Gut taxonomic composition differs between
people with and without asthma

We first leveraged the clade marker annotation tool, MetaPhlAn
(Beghini et al. 2021), to analyze the taxonomic composition of the
study participants. We found dominate genera typical in gut mi-
crobiota communities including Bacteroides (phylum Bacteroidota)
and Faecalibacterium (phylum Bacillota) (Figure S1D, Supporting In-
formation). Simpson alpha diversity was slightly higher in the
asthma cohort even when taking read depth and age group into
account (Figure S1E, Supporting Information). Bray—Curtis dissim-
ilarity (Figure S1F, Supporting Information) was shifted between
the asthma and healthy cohorts (P < .0004, R? = 0.029) even when
accounting for other covariates including age (P < .001, R? = 0.032),
race (P = .0006, R? = 0.026), recent antibiotic usage (P = .9, R? =
0.006), read depth (P = .2, R? = 0.013), obesity (P = .7, R? = 0.008),
sex (P = .4, R? = 0.011), and tobacco exposure (P = .2, R> = 0.012)
by sequential PERMANOVA (Figure S1G, Supporting Information).
There was also no significant interaction between asthma status
and age group (P = .8, R? = 0.007), or between asthma status and
recent antibiotic usage (P = .6, R? = 0.009) (Figure S1G, Support-
ing Information). To determine differentially abundant taxa, we
tested the fixed effect of asthma along with the random effects of
age group and race in a general linear model (Mallick et al. 2021)
and found Eubacterium rectale and Prevotella copri were enriched in
the healthy cohort (Figure S1H and Table S2, Supporting Informa-
tion). All of these findings are consistent with 16S rRNA sequenc-
ing performed in a previous study (Wilson et al. 2023), which lent
us further confidence that our sequencing data was suitable for
functional profiling.

Fatty acid metabolism pathways are enriched in
the gut metagenomes of people with asthma

Given that our samples had adequate coverage to capture ex-
pected taxonomic shifts, we started interrogating the differences
in metagenomic functions of the gut microbiota attributable to
asthma status. The alpha diversity of genes (UniRef90 clusters)
was neither different between the asthma and healthy cohorts
nor between the pediatric and adult cohorts, suggesting that our
gene profiling reached a similar total number of genes in both co-
horts (Fig. 1A). Using PERMANOVA, we noted that, even while ac-
counting for significant covariates of age (P < .001, R? = 0.029),
race (P < .001, R? = 0.024), and read depth (P = .03, R? = 0.015),
asthma status also significantly impacted gut microbiome func-
tional composition (P = .008, R? = 0.017; Fig. 1B and C). We note
that age group’s interaction term with asthma did not signifi-
cantly contribute to the variance in beta diversity, suggesting that
the influence of asthma and age on beta diversity is nonoverlap-
ping. These findings support the idea that the gut metagenomic
content of people with asthma is different than that of healthy
individuals, even when accounting for other clinical sources of in-
terpersonal gut microbiome variation.

We next considered which metagenomic functions and
metabolic pathways may be involved in the differences between
asthma and healthy cohorts. We first examined a list of spe-
cific metagenomic functions previously implicated in asthma,
including genes related to histamine production, 12-13 diHOME
biosynthesis, and tryptophan metabolism, but we were unable
to identify a difference between cohorts (Figure S2A, Supporting

Information). To identify pathways that differed between asthma
and healthy subjects, we performed a Wilcoxon rank-sum test
with a false discovery rate q < 0.2 on the relative abundance of all
pathways annotated by the MetaCyc database that were above
10% prevalence within the population. Using these criteria, we
found seven pathways that were enriched in asthma and one
that was enriched in the healthy cohort out of 312 total pathways
(Fig. 1D). To determine if these findings were robust to other anal-
ysis methods, we performed additional differential abundance
approaches on the 312 MetaCyc pathways, including a Wilcoxon
test on centered log-transformed counts and ALDEX2, both
of which demonstrated that these pathways differed between
healthy and asthma cohorts (see Table S3, Supporting Informa-
tion). All differentially abundant pathways enriched in patients
with asthma were involved in fatty acid synthesis, and included
the production of oleate, palmitoleate, (5Z)-dodecenoate, 8-
amino-7/-oxononanoate, biotin, and octanoyl acyl-carrier protein,
as well as saturated fatty acid elongation. In the healthy cohort,
only a single L-lysine biosynthesis pathway was enriched.

Using taxonomically tiered functional mapping, we determined
which taxa were driving the observed differences in asthma-
associated pathways. For the L-lysine biosynthesis III pathway,
which was more abundant in healthy subject, we found that it
primarily originated from Blautia obeum; Figure S2B, Supporting
Information). In the case of the asthma-enriched pathways, we
found that Bacteroides vulgatus and Alistipes finegoldii account for
the largest fraction of complete fatty acid biosynthesis pathways
(Fig. 1E; Figure S3C, Supporting Information). However, the differ-
ential abundance of these asthma-associated pathways was prob-
ably not due solely to an enrichment of B. vulgatus or A. finegoldii
in asthma stool since neither species was differentially abundant
(maaslin2 g-value = 0.58 and 0.25, respectively; see Table S2, Sup-
porting Information). Further, the majority of mapped pathways
were not attributable to any single species and these unmapped
pathway counts made up more of the overall pathway richness
than B. vulgatus (Wilcoxon g-values < 0.05 for all seven pathways;
see “Community” stratification in Figure S2C, Supporting Informa-
tion). Taken together, these findings indicate that the differences
may be either driven by community-level effort (i.e. distinct steps
of the pathway are encoded across more than one species), or that
current databases are insufficiently granular to identify the key
taxa responsible for these differences.

We reviewed the enzymatic steps of each of the eight path-
ways represented in Fig. 1(D) and found that, of the 78 total
reactions in these pathways, only 11 reactions were shared
between two pathways (Figure S3, Supporting Information). The
8-amino-7/-oxononanoate biosynthesis I pathway consists of the
first 11 reactions of the larger biotin biosynthesis pathway and
the latter only has four additional reaction steps past synthe-
sizing 8-amino-7-oxonanoate to produce biotin. Additionally,
the (5Z)-dodecenoate pathway can feed directly into the palmi-
toleate biosynthesis pathway, and that the octanoyl acyl carrier
protein pathway shares an upstream substrate (acetoacetyl-acyl
carrier protein) with the saturated fatty acid elongation path-
way (Figure S3, Supporting Information). Together, our findings
indicate that long chain fatty acid biosynthesis is differentially
abundant in the asthma gut metagenome via related but largely
nonredundant pathways.

Given the association between obesity with fatty acid
metabolism (Brayner et al. 2021) as well as asthma (Scott et
al. 2011, Wendell et al. 2014, Mizuta et al. 2019), we next wanted
to determine whether obesity (which we define here as a BMI
greater than 30 in adults or a BMI-for-age percentile of greater
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Figure 1. Gut metagenomes from individuals with asthma show increased genes encoding fatty acid metabolism. (A) Stacked violin plots of Uniref90
cluster richness (unique Uniref90 cluster with CPM > 0) grouped by either healthy and asthma cohort (background) or age (foreground). (B) Nonmetric
multidimensional scaling plot of Bray-Curtis Dissimilarity distance between Uniref90 (copies per million) profiles. Axis 1 and 2 of five total are shown
of an NMDS with stress value 0.09. (C) Sequential PERMANOVA of Bray—Curtis dissimilarities between Uniref90 profiles. Input order of terms to the test
is identical to the order of the barplot from top to bottom. (D) Relative abundance of MetaCyc pathways that were differentially abundant given a
Wilcoxon g-value below 0.2 (P-value after FDR correction). (E) Stacked bar plot of differentially abundant fatty acid metabolism pathways mapped to
respective taxa by MetaPhlAn3.0/HUMANNS3.0, averaged within asthma or healthy cohorts. (F) Heatmap of MetaCyc pathway abundance ratios
between groups in important clinical demographics: Asthma vs. Healthy, Adult vs. Pediatric, Obese vs. Non-Obese, and Well-Controlled Asthma vs.
Poorly Controlled Asthma. Asterisk denotes a significant differential abundance (xq < 0.2) according to Wilcoxon tests controlled for multiple
comparison testing within each demographic category. (G) Differentially abundant MetaCyc pathways plotted as four cohorts: asthma by age with
respective Two-Way ANOVAs. Only statistically significant P-values shown.

than 95% in children) confounds the association of microbial
fatty acid metabolism with asthma. We compared the abundance
of the differentially abundant fatty acid pathways between all
nonobese and obese patients and found no significant differ-
ence (Fig. 1F). Within the asthma cohort, there was similarly

no statistically significant
and without obesity, sugge

difference between the patients with
sting that obesity is not a confounder

for the difference we observed in fatty acid metabolism. To
determine whether fatty acid metabolism is related to the in-
tensity of asthma symptoms and their effect on everyday life
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activities, we utilized a validated survey of asthma control (The
Asthma Control Test; ACT) (Schatz et al. 2006). None of the fatty
acid pathways were differentially abundant between patients
with well-controlled and poorly controlled asthma (Fig. 1F). We
tested if age group affects the differentially abundant metabolic
pathways and found that these pathways were not differentially
abundant between age groups alone (Fig. 1F). We also tested the
impact of asthma and age as independent variables to differen-
tially abundant metabolic pathways using a Two-way ANOVA. We
found that, even while taking age into account, these pathways
are differentially abundant between asthma and healthy cohorts,
but are not different by age or an interaction between asthma
and age (Fig. 1G; 2-Way ANOVA). Given that the effect of asthma
status on differentially abundant metagenomic functions was
distinct from that of age, we primarily focused our subsequent
analyses on the asthma and healthy cohorts overall, combining
age groups.

Richness of ARGs is increased in the gut
metagenomes of people with asthma

Since people with asthma tend to be prescribed antibiotics fre-
quently (Snyder et al. 2021) and oral antibiotic exposure is a risk
factor for the acquisition of ARGs in the gut (Ramirez et al. 2020),
we wanted to determine if the members of our asthma cohort
were more likely to have received antibiotics. To test this, we
counted how many subjects had taken a course of antibiotics
within 1 year of their participation in the study. As part of the
study design, participants could not take antibiotics in the month
prior to fecal donation. The median time since antibiotic expo-
sure for those who took antibiotics in the past 1-12 months was 6
months. We found that a greater proportion of the asthma cohort
received antibiotics in the past year compared to that of healthy
participants (42% of asthma cohort versus 15% of the healthy co-
hort, Fisher’s test, P = .011; Fig. 2A). This finding represents ev-
idence of increased antibiotic exposure amongst subjects with
asthma in our study.

We next sought to characterize the gut antibiotic resistome in
the asthma and healthy cohorts. To test if the increased antibi-
otic exposure in the asthma cohort was reflected in the gut resis-
tome, we utilized the ShortBRED pipeline (Kaminski et al. 2012)
to detect reads mapped to the CARD (Alcock et al. 2019). We first
asked whether there were more ARGs in our asthma cohort by
summarizing our dataset into richness (total number of unique
ARGs detected per sample) and load (total sum of ARG RPKM per
sample). We found that ARG richness was higher in people with
asthma even when accounting for differences due to age (P = .03)
and sequencing depth (P = .09), while ARG load was not different
between asthma and healthy cohorts (P = .4) when accounting for
age (P < .001) and read depth (0.002) (Fig. 2B). We note that E. coli
was not differentially abundant between asthma and healthy co-
horts (P = .52; Table S2, Supporting Information), so the richness
increase we observe in the asthma cohort is not due solely to an
increase in E. coli relative abundance. These results suggest that
there are a higher number of unique ARGs, or a higher diversity,
in asthma compared to healthy controls.

From our 95 stool samples, we detected 71 unique ARGs, com-
prising 32 antimicrobial resistance families, 29 drug classes, and
seven mechanisms of resistance, with 26 ARGs (37% of the total)
conferring multidrug resistance (Fig. 2C). Similar to previous stud-
ies of gut resistomes, we found that tetracycline resistance mark-
ers were the most commonly detected ARGs and inactivation is
the most common mechanism of resistance followed by efflux

pumps (Li et al. 2021) (Fig. 2C). Using the abundance data of each
detected ARG, we determined that asthma (P = .005, R? = .028) and
age (P < .001, R? = 0.053) were the strongest factors contributing to
the variance in ARG beta diversity even when accounting for im-
portant technical and demographic covariates (Fig. 3A and B). We
next wanted to ascertain to what degree the resistome profile was
determined by microbial composition. We used a Procrustes anal-
ysis (Mardia et al. 1979) to compare compositional data generated
from MetaPhlAn (Beghini et al. 2021) to the antibiotic resistome
profile derived from ShortBRED and found that the microbiome
composition correlated to the resistome profile (Fig. 3C, PROTEST
corr = 0.627, P-value < .0001), indicating that ARG profiles are di-
rectly related to bacterial species composition.

Macrolide resistance markers are differentially
abundant in asthma

To determine gut-associated ARGs that are differentially abun-
dant between patients with and without asthma, we applied neg-
ative binomial tests to the abundance of all ARGs detected in at
least seven samples. This prevalence cutoff was chosen because
it is the minimum number of samples needed to detect a differ-
ence using a negative binomial distribution. We found that genes
encoding resistance to macrolides (ermF, ermB, and ermA), van-
comycin (vanRO), tetracycline (tet(45)), as well as multidrug efflux
pumps (smeB, mdtO, and oqxA) were enriched in the asthma cohort
(Fig. 4A; Table S4, Supporting Information). Prominent amongst
these was the 23S rRNA methyltransferase ermF, which is typ-
ically encoded by Bacteroides species and confers resistance to
macrolides.

Next, we explored the genomic context of ermF by assembling
metagenomic sequencing reads into contigs with metaSPAdes
(Bankevich et al. 2012) and annotating open reading frames with
Prokka (Seemann 2014) and BLAST. We detected full-length ermF
with 98% or higher identity in 53 out of 95 samples. Out of 53
contigs, the vast majority originated from members of the Bac-
teroidota, 75.4% originated from the Bacteroides genus and 60.3% of
them were likely from B. fragilis based on the top BLAST homology.
Of the contigs that encoded ermF, 68% occurred on scaffolds with
at least one other open reading frame within 10 kilobases (Fig. 4B).
We found that many ermF genes are colocated with genes associ-
ated with mobile genetic elements such as transposases, mobi-
lization genes, and toxin/antitoxin systems, as well as with other
ARGs like btgA, which encodes clindamycin resistance (Fig. 4B and
C). This indicates that ermF occurs in multiple different genomic
contexts within our cohort and suggests that its presence is not
strictly due to propagation of a single B. fragilis strain.

People with asthma have a distinct set of
coexisting pairs of ARGs and VFs in the gut
metagenome

In our prior work on this same cohort of patients, we found that,
compared to healthy subjects, a greater portion of asthma sub-
jects were colonized with B. fragilis strains harboring the VF B.
fragilis toxin (bft), which we showed has the potential to shape
inflammation in the lung (Wilson et al. 2023). Given that our re-
sistome analysis pointed to an enrichment of a B. fragilis ARG, we
wanted to test whether the ermF gene is associated with bft in the
asthma cohort. We found that metagenomes harboring both ermF
and bft were more prevalent in individuals with asthma compared
to those without (Fig. 4D). In our MARS samples, we did not find
any instances where bft and ermF occurred on the same scaffold,
soit remains unclear whether these two genes are encoded within
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Figure 2. Gut metagenomes from individuals with asthma harbor an increased richness of ARGs. (A) Table describing short-term antibiotic usage in
the MARS cohorts. (B) Overlapping violin plots of ARG richness and load by grouped by either healthy and asthma cohort (background) or age
(foreground). (C) Stacked bar plots of average ARG richness painted by antimicrobial family (AMR), drug class to which the ARG confers resistance, and

ARG resistance mechanism.

the same B. fragilis strain or within two separate strains. Neverthe-
less, the enrichment of ermF and bft in adults and older children
with asthma could suggest that the intestinal habitat of individ-
uals with asthma presents opportunities or niches for macrolide
ARGs and VFs such as bft.

To explore the possibility that virulence traits and ARGs are
linked in the gut microbiota, we characterized VF content of all
samples using the Virulence Factor Database (Chen et al. 2005)
and compared these data to the antibiotic resistome profiles. We
did not find the same overall shift in the VF beta diversity be-
tween asthma and healthy that we observed with the resistomes
(Figure S4A-C, Supporting Information), but we did find differen-
tially abundant VFs belonging to capsule and peritrichous flagella
VF families (Table S5, Supporting Information; g-values < 0.2). Fur-
ther, we found that microbiota composition is highly correlated

with VF profile (Figure S4D, Supporting Information; Protest corre-
lation coefficient = 0.61, P < .0001). Given that microbiota compo-
sition strongly affects both VF and ARG content, we used a partial
correlation between VF and ARG richness to test our hypothesis
while removing the effect of total metagenomic content. We found
a positive partial correlation between VF and ARG richness in both
the asthma and healthy cohorts (Fig. 5A). Similarly, VF and resis-
tome beta diversity profiles were also positively correlated (Fig. 5B,
Protest correlation coefficient = 0.574, P = le-4). Together, our re-
sults suggest that these two microbial features, virulence and an-
tibiotic resistance, are closely linked within the gut metagenome.

We next performed a co-occurrence analysis to uncover co-
occurring VFs and antibiotic resistance traits that could be im-
portant in gut ecology. We found numerous co-occurring VF-ARG
pairs in MARS gut metagenomes (Fig. 5C, P < .05). Several of these


https://academic.oup.com/femsmc/article-lookup/doi/10.1093/femsmc/xtae010#supplementary-data
https://academic.oup.com/femsmc/article-lookup/doi/10.1093/femsmc/xtae010#supplementary-data
https://academic.oup.com/femsmc/article-lookup/doi/10.1093/femsmc/xtae010#supplementary-data

8 | FEMS Microbes, 2024, Vol. 5

(A) Bray-Curtis Dissimilarity of ARG relative abundance

[ Healthy Pediatric
[J Healthy Aduit

@ Asthmatic Pediatric
@ Asthmatic Adult

NMDS2
ug
]
*

NMDS1

(C) Species Composition v. ARG

PROTEST Corr: 0.627
p-value = 1e-04

(B) PERMANOVA summary
Read Depth 1
Asthma -
Age -
Asthma:Age 1
o Recent |
2 Antibiotics |
& Asthma:Recent 1 R-Squared
T Antibiotics |
Race | 0:05
0.04
Obesity | 0.03
Sex - 1 0.02
I 0.01
Tobacco Use I 0.00
0o 1 2 3 4 5
- log(p)

PCoA2

OHealthy
@ Asthmatic

PCoA1

Figure 3. The gut antibiotic resistome is altered in asthma patients. (A) Nonmetric multidimensional scaling (NMDS) plot of antibiotic resistome with
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points belonging to identical samples.

positively co-occurring pairs were shared between the two cohorts
(vellow), suggesting that these relationships are not dependent
on asthma status. In contrast, many pairs specifically co-occur
in one cohort and may indicate microbial interactions important
in asthma but not healthy gut metagenomes (Fig. 5C). In sum-
mary, we found that VF and ARG presence is linked in the gut
metagenome and that people with asthma have a distinct set of
co-occurring functions compared to healthy people.

While our co-occurrence analysis between VFs and ARGs
demonstrated multiple examples of virulence and antibiotic re-
sistance traits found in the same gut metagenome, this analysis
does not indicate if these genes are present in a single organism.
To obtain a more granular view of VF-ARG co-occurrence, we lim-
ited our analysis to look for VF-ARG pairs that could be encoded
by the same species. This analysis showed that the asthma co-
hort had a greater number of ARGs (P = .007 and .01) and VFs (P =
.005 and .09) annotated as coming from Klebsiella pneumoniae and
E. coli, respectively (Figure S5A, Supproting Information). Individ-
ual co-occurrences attributable to each of these species are sum-
marized in Figure S5(B) (Supproting Information) and show that
cepA, encoding a beta-lactamase, and chuU, a VF involved in iron

acquisition, are both putatively encoded by E. coli and co-occur in
patients with asthma, suggesting that the metagenome-wide co-
occurrence of CepA and Chu families observed in Fig. 5(C) may
be due to enrichment within one or more E. coli strains harboring
these VF/ARG pairs. Together, our co-occurrence analyses show
that there appear to be multiple co-occurring VFs and ARGs in the
gut metagenome and within putative individual species that are
unique to the asthma cohort. The cohort-specific co-occurring VE-
ARG pairs found here could serve as candidates for future studies
of asthma gut microbiome ecology.

Discussion

In this study, we present an exploratory analysis of fecal whole
metagenomic sequencing contrasting subjects with moderate-
to-severe asthma to a group of healthy controls to identify
disease-associated microbial genes with the strongest likelihood
of affecting disease. Our sequencing and subsequent analyses
revealed that the functional content of individuals with asthma
differed significantly from that of healthy controls. We found an
enrichment of functions associated with saturated and mono-
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Figure 4. Resistance gene ermF is differentially abundant in diverse genomic contexts of gut resistomes belonging to individuals with asthma. (A)
Boxplots of ARG abundance by cohort on log-scale. Showing only ARGs present in at least 7 out of 95 samples and have g-values less than 0.2. A
pseudocount of 0.0015 RPKM (designated as the limit of detection “LOD”) was used for the negative binomial tests. Bolded genes are enriched in the
asthma cohort while nonbolded are enriched in the healthy cohort. (B) Summary of ermF contexts on contigs from metagenomic assemblies that had
at least one detectable open reading frame flanking the ermF within 10 kilobases. (C) Three representative ermF context maps generated in GeneSpy. (D)
Count table of fecal metagenomes with codetection of bft+ and ermF+ vs. detection of one or neither of ermF and bft, split by donor asthma status.

Fisher’s Exact two-sided P-value shown.

unsaturated fatty acids, including oleate, palmitoleate, 5(Z)-
dodecenoate, biotin, 8-amino-oxononanoate, saturated fatty acid
elongation, and octanoyl acyl carrier protein pathways. Currently,
the functional significance of gut bacterial synthesis of these LCFA
to asthma has not been well defined. Excess LCFAs, usually stud-
ied in the context of dietary fat intake, have been associated with
metabolic diseases including diabetes, obesity, and atheroscle-
rosis risk (Mizuta et al. 2019) but is also linked to asthma risk
in adults (Nagel and Linseisen 2005, Scott et al. 2011, Wendell et

al. 2014, Mizuta et al. 2019). Increasing recognition that obesity
predisposes to asthma has motivated investigation of the impact
of fatty acids on airway biology and has shown that LCFA signal-
ing through free fatty acid receptor 1 (FFAR1, also called GPR40)
induces airway smooth muscle cell contraction and proliferation,
both of which are important components of asthma pathophys-
iology (Mizuta et al. 2015, 2019). Notably, a study that sequenced
airway microbes in children with cystic fibrosis implicated a
similar list of LCFA production pathways during exacerbations,
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suggesting that microbially produced LCFAs may influence airway
physiology (Felton et al. 2021). To our knowledge, the potential
for gut microbes to contribute to the amount of free fatty acids
available to the lung has not yet been defined, however, LCFAs
are readily absorbed into the circulation (Niot et al. 2009) and
could plausibly reach the airways. Further, previous studies have
shown the effect of SCFA (e.g. acetate, butyrate, and propionate)
produced by gut microbes to directly alter lung inflammation via
GPR41 (FFAR3) (Trompette et al. 2014, Zaiss et al. 2015). While our
study did not find a direct enrichment of SCFA production path-
ways in the healthy cohort as has been previously reported (Wang
et al. 2018), we did observe that lysine biosynthesis was enriched.
Since lysine may serve as a precursor to the SCFA butyrate (Vital
et al. 2014), SCFAs may still be more abundant in our healthy co-
hort but may be subject to transcriptional regulation that would
not be detected by metagenomic DNA sequencing. Together, our
metabolic pathway analyses of the gut metagenome demonstrate
a positive association between LCFAs produced by gut microbes
and asthma, in contrast to the negatively associated SCFAs.

In addition to metabolic alterations, analysis of the gut re-
sistome demonstrated that subjects with asthma had a distinct
ARG composition. In a recently published prospective gut metage-
nomic study of infants, asthma-associated taxonomic signatures
were associated with a higher number of ARGs (Li et al. 2021).
These differences in the resistome were largely driven by a sin-
gle species of bacteria, E. coli, and reveals that acquisition of ARGs
in subjects with asthma may begin in early childhood and could
affect asthma development. In our study of older subjects with
established asthma, we similarly found a higher richness of ARGs
that is associated with asthma in both school-aged children and
adults, supporting the idea that increased ARG carriage may per-
sistin people with asthma throughoutlife. Based on our resistome
annotation, however, ARGs in our cohort were likely from a di-
verse assemblage of bacteria in contrast to what was observed in
infants. This is likely due to differences in gut dynamics between
age groups. The infant microbiome is heavily shaped by limited
available niches in the developing gut, which favor transient, fac-
ultative anaerobes like E. coli (Li et al. 2021), whereas the gut re-
sistome in older subjects reflects selective pressures experienced
over a lifetime. One important consequence of increased richness
of ARGs in people with asthma is that it may promote persistence
of some bacterial strains (Yassour et al. 2016, Schwartz et al. 2020)
and contribute to the taxonomic differences in the gut microbiota
between asthma and healthy people (Hufnagl et al. 2020, Wilson et
al. 2023). However, taxonomic differences observed in our cohort
do not entirely explain the increased ARG prevalence amongst
people with asthma. We found that ermF, a gene primarily found
in B. fragilis, was enriched in patients with asthma even though the
taxonomic abundance of B. fragilis was not significantly increased.
This finding suggests that differences in composition alone do not
explain the enrichment of ARGs within the asthma cohort.

While asthma was among the important factors accounting
for a significant amount of the variance in ARG beta diversity, we
found that recent antibiotic exposure (within the past year) was
not. Notably, no participant in our cohort received a course of an-
tibiotics in the month prior to fecal sampling since this could have
confounded our analyses on asthma-associated microbial com-
munity changes. Previous studies have shown that the gut micro-
biota recovers in approximately a month after perturbation from
antibiotics in healthy adults (Palleja et al. 2018). We interpret these
findings to mean that recent exposure (within 1-12 months) to
antibiotics does not drastically change the resistome, whereas re-
peated exposures over time may be more important for driving
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the population-wide shifts we observed in our cohort (Schwartz
et al. 2020).

Of the ARGs found to be enriched within asthma resistomes,
the ARG ermF, as well as other markers encoding resistance to
macrolide antibiotics, were especially prominent amongst the
asthma cohort. While we did not collect data on the antibiotic
drug classes, number of courses and their duration, or the rea-
son for prescription of antibiotics, our subjects received, it is likely
that our asthma population has been exposed to macrolides.
Macrolide antibiotics, including clarithromycin and azithromycin,
are commonly prescribed for upper and lower airway infections
which disproportionately affect people with asthma (Juhn 2014).
This class of antibiotics, particularly azithromycin, have been a fo-
cus of special concern for driving antibiotic resistance due to their
frequent usage and pharmacological properties (Doan et al. 2019a,
b, Malhotra-Kumar et al. 2007). Nevertheless, azithromycin has
been noted to have beneficial effects in asthma, and some (Gibson
et al. 2017), but not all (Brusselle et al. 2013), studies suggest that
azithromycin may prevent exacerbations in patients with asthma.
Given the interest in azithromycin as a treatment modality in
asthma, there will be an urgent need for additional studies to de-
termine the robustness of the association between asthma and
macrolide ARG differential abundance in the gut to inform pa-
rameters for antibiotic selection and prescription in people with
asthma.

Additional exploration of the gut metagenomes revealed po-
tential coselection in people with asthma for ARGs and VFs. Un-
targeted analysis of gut resistomes revealed multiple examples
of VF and ARG co-occurrence as well as positive correlations be-
tween ARG and VF richness in people with and without asthma.
Our findings are consistent with previous reports that found cor-
relations between VF richness and ARG richness, as well as VF-
ARG cooccurrence relationships in both gut metagenomes (Escud-
eiro et al. 2019) and human-associated bacterial genomes (Pan et
al. 2020). Our findings also add to these studies by demonstrating
that, while the correlation between VF and ARG richness does not
appear to be any stronger in the asthma cohort compared to the
healthy cohort after taking gene richness into account, the two
MARS cohorts do not have identical sets of statistically significant
co-occurring VF-ARG pairs. These data suggest that people with
asthma may be experiencing different selection pressures from
that of healthy people, leading to accumulation of a distinct set
of virulence and antibiotic determinants. Given that antibiotics
induce gut inflammation through the disruption of the gut micro-
biota (Strati et al. 2021), and strains encoding VFs such as bft are
known to thrive in an inflammatory environment (Casterline et
al. 2017), one plausible model for the apparent accumulation of
distinct VF-ARG pairs is that antibiotic treatment not only selects
for ARGs (Ramirez et al. 2020, Schwartz et al. 2020), but simul-
taneously selects for VFs. Together with evidence that virulence
determinants, such as bft, are associated with airway inflamma-
tion (Wilson et al. 2023), our model implies that heightened antibi-
otic treatment may contribute to the manifestations of asthma
via coselection for VFs and ARGs. Considering that prenatal and
early life antibiotic exposure is linked to asthma risk (McKeever et
al. 2002, Strati et al. 2021), this model could be used to test whether
the initial events driving VF and ARG co-occurrence start with the
first vertical transmission events in very early life.

Study limitations

Our study has several limitations that constrain the scope of our
claims. First, MARS is an exploratory, cross-sectional study with
only a moderate number of subjects recruited from a single site,
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which is less ideal for identifying disease-associated microbiome
differences (Walter et al. 2020). As a result, our study had limited
statistical power to detect less prevalent or abundant functions.
Second, our study focused on school-aged and older subjects
with moderate-to-severe asthma, and thus our findings may not
be applicable to other younger populations or those with less
severe disease. These population differences may explain why
we were unable to identify statistically significant differences
in microbial metabolic pathways identified from other studies
including bile acid metabolism (Arrieta et al. 2015), epoxide
hydrolases (Levan et al. 2019), histamine metabolism (Barcik et
al. 2016, 2019), or tryptophan metabolism (Van der Leek et al.
2017, Licari et al. 2019) (Figure S2A, Supproting Information).
Third, the factors driving the shift in gut bacterial metabolism
to LCFA biosynthesis and whether gut microbiome enrichment
of this pathway is sufficient to change the hosts’ LCFA profile is
not known. Collecting blood to interrogate host metabolism as
well as dietary information at the time of fecal sample collection
would have helped to disentangle the effects of diet on host and
gut microbiota metabolism. Fourth, we lacked relevant subject
information, such as diet, environment, infrastructure, stress
level, and social relationships, needed to precisely disentangle
the effects of social, environmental, and health disparities on
the gut microbiome (De Wolfe et al. 2021). We recognize that
our finding of subject-reported race as a statistically significant
covariate in our analyses of the gut metagenome likely does not
reflect a direct effect of race on biology (Cooper 2013). Rather, we
interpret this finding as a proxy for the biological consequences of
active systemic disparities associated with race (Cooper 2013). We
included race in our models to account, albeit imperfectly, for the
impact that multifaceted ecosocial factors underlying race are
known to have on asthma and the microbiome (Findley et al. 2016,
Fitzpatrick et al. 2019). Fifth, a record of the frequency and class of
antibiotics administered to our participants would have allowed
us to confirm whether macrolide administration associates with
the enrichment of ermF in our asthma cohort and whether a
higher diversity of antibiotic usage correlates with ARG richness.
It is likely that antibiotic exposures accumulated throughout life
contribute to the resistome, and a complete catalog of exposures
is critical to determine patterns of antibiotic prescription most
likely to account for the ARG associations to asthma found in
this study. Lastly, as with all metagenomic sequencing studies,
we are limited by annotation bias in existing databases. This is a
concern for our VF and antibiotic resistance profiling especially,
where we rely on the database to predict source species for
ARGs and VFs. We also recognize that the databases we used
for these two analyses are biased towards well-studied human
pathogens rather than commensals or opportunistic pathogens.
However, we note that other investigators have reported simi-
lar co-occurrence of ARGs and VFs (Escudeiro et al. 2019, Pan
et al. 2020), and coselection of these features is biologically
plausible.

Despite these constraints on the scope of our study, we pro-
vide evidence that there is an increased production of LCFA and
an increased richness of ARGs encoded by the gut microbiota in
people with asthma. These findings could have applications in
the care of patients with asthma. If LCFA pathways are shown
to play a causal role in airway inflammation in future studies,
microbiota-directed therapeutics in the form of dietary interven-
tions or probiotics, could be developed to modify gut microbial
metabolism to protect against asthma. Additionally, our resistome
findings add to the growing concern over antibiotic resistance in

patients with asthma by suggesting that antibiotic administration
may also contribute to gut carriage of VFs that can alter airway
inflammation. Ultimately, our study shows that the gut micro-
biota of school-aged and older subjects with moderate-to-severe
asthma harbor important functional alterations that could serve
as a foundation for future studies investigating how gut microbial
functions affect pulmonary diseases.
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