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Estrogen receptor α (ERα) is a successful target for ER-positive breast cancer and also reported to be relevant in many other
diseases. Selective estrogen receptor modulators (SERMs) make a good therapeutic effect in clinic. Because of the drug resistance
and side effects of current SERMs, the discovery of new SERMs is given more and more attention. Virtual screening is a
validated method to high effectively to identify novel bioactive small molecules. Ligand-based machine learning methods and
structure-based molecular docking were first performed for identification of ERα antagonist from in-house natural product
library. Naive Bayesian and recursive partitioning models with two kinds of descriptors were built and validated based on
training set, test set, and external test set and then were utilized for distinction of active and inactive compounds. Totally, 162
compounds were predicted as ER antagonists and were further evaluated by molecular docking. According to docking score, we
selected 8 representative compounds for both ERα competitor assay and luciferase reporter gene assay. Genistein, daidzein,
phloretin, ellagic acid, ursolic acid, (−)-epigallocatechin-3-gallate, kaempferol, and naringenin exhibited different levels for
antagonistic activity against ERα. These studies validated the feasibility of machine learning methods for predicting bioactivities
of ligands and provided better insight into the natural products acting as estrogen receptor modulator, which are important lead
compounds for future new drug design.

1. Introduction

Estrogens are the prime female sex hormones and play vital
roles for menstrual cycle regulation and female sexual devel-
opment [1]. However, in the past twenty years, it was
reported that estrogens affect both males and females physi-
ologically, including the metabolism of carbohydrate and
lipid, the skeletal homeostasis, the cardiovascular system,
and the central nervous system (CNS) [2, 3]. Extensive evi-

dence suggests that estrogens attenuate oxidative stress by
preventing generation of reactive oxygen species (ROS),
which was related either to regulation of ROS-generating
enzymes or augmentation of ROS-eliminating mechanisms
[4]. The biological effects of estrogen are regulated through
estrogen receptors [5]. ERα (estrogen receptor α) has a wide
distribution in the development and functioning of various
organs and tissues in the body, such as the brain, bone, uro-
genital tract, and cardiovascular system [6, 7]. ERα-positive
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and estrogen-dependent breast cancers make up a high pro-
portion (more than 70%) [8]. Endocrine therapy is consid-
ered as an effective treatment through blocking the ER
transcription. It was also reported that ERα is clinically rele-
vant in endometrial, ovarian, and other cancer types [9, 10].
Therefore, ERα was an ideal pharmaceutical target and a lot
of ERα ligands have been successfully developed for ERα-
positive breast cancer treatment [11, 12].

Selective estrogen receptor modulators (SERMs) have
special action mode with ER, which act as antagonists
for antibreast cancer in breast tissue, but agonists in other
tissues such as the bone and cardiovascular system [13].
Therefore, SERMs, such as tamoxifen, prevent bone den-
sity loss and also benefit the cardiovascular system [14].
Although there are lots of advantages of SERMs, they still
remain deficiencies. For instance, tamoxifen for long-term
treatment leads to the development of endometrial cancer
and drug resistance [15, 16]. Therefore, new SERMs with
higher activity and fewer side effects are given more and
more attention [17].

Natural products have a wide molecular diversity and
range of biological properties to provide a primary
resource for high-throughput screening (HTS) and virtual
screening [18]. There are a lot of natural product data-
bases for collecting constitutes of herbs, such as TCM
Database@Taiwan [19], TCMSP [20], TCMID [21],
CEMTDD [22], SuperToxic [23], and SuperNatural [24],
providing much data for screening and mechanism of
action studies [25]. It was reported that some flavonoids
derived from herbs were capable of reducing bone loss
and bone deterioration associated with estrogen deficiency,
but they could not lead to uterotrophic effects [26]. There-
fore, natural products could be potential SERMs for the
treatment of cancers or other diseases.

The discovery of leads by HTS is high cost and time-
consuming and demands large for labor. Therefore, virtual
screening that needs less time and investment has been
widely used for facilitating drug discovery [27]. Ligand-
based drug design (LBDD) and structure-based drug
design (SBDD) techniques were two powerful approaches
to find or develop a hit or lead compound as drug candi-
date [28]. LBDD refers to pharmacophore, quantitative
structure-activity relationship (QSAR), and machine learn-
ing techniques. SBDD includes molecular docking, molec-
ular dynamics, and pharmacophore based on protein
structure [29]. Therefore, based on the availability of the
known ligands and/or target structure information, we
should apply proper method to build virtual screening
model. In addition, integrating the different methods
together is beneficial for making up their deficiency and
improving the reliability [30].

In our study, we attempted to combine the machine
learning methods and molecular docking for identifying
novel ERα ligands from in-house natural product database.
Naive Bayesian (NB) and recursive partitioning (RP) models
were built and validated based on training set and test set and
then were utilized for classification of active and inactive
from the database. These compounds predicted as ER antag-
onists were further evaluated by molecular docking.

According to docking score and the representative structures,
several compounds were selected for ERα competitor assay
and luciferase reporter gene assay for their antagonistic activ-
ity against ERα. These studies provided better insight into the
natural products acting as estrogen receptor modulators,
which were important lead compounds for rational design
of new SERMs in the future.

2. Materials and Methods

2.1. Data Collection and Preparation. There were two data-
sets prepared. After eliminating the duplicate structures,
ERα antagonists with the values of IC50 less than 10μM
were obtained from the BindingDB database [31]. In addi-
tion, corresponding decoy datasets were generated in
DUD-E online database [32] with the above ERα antago-
nists. The training set and test set were generated ran-
domly. Then inorganic salt atoms of compounds were
deleted, and subsequently, the compounds were added
hydrogen atoms, deprotonated strong acids, protonated
strong bases, built valid three-dimensional conformation,
and minimized of energy by Molecular Operating Envi-
ronment (MOE). All ERα antagonists and decoys were
marked with “1” and “−1,” respectively.

2.2. Molecular Descriptors. The MOE software is able to
compute 186 2D descriptors as well as 148 3D molecular
descriptors [33]. 2D molecular descriptors are defined to
be numerical properties that can be calculated from the
connection table representation of a molecule. 2D descrip-
tors refer to notation and terminology, physical properties,
subdivided surface areas, Kier & Hall connectivity and
kappa shape indices, adjacency and distance matrix
descriptors, pharmacophore feature descriptors, and partial
charge descriptors. 3D molecular descriptors consist of
potential energy descriptors, MOPAC descriptors, surface
area, volume and shape descriptors, and conformation-
dependent charge descriptors. Similarly, Discovery Studio
2016 (DS) was used to calculate the 2D descriptors, which
were made up of AlogP, estate keys, molecular properties,
molecular property counts, surface area and volume, and
topological descriptors. Extended-connectivity fingerprint-
6 (ECFP-6) was also calculated with this software.

2.3. Molecular Descriptor Selection. To avoid the complex-
ity and increase the efficiency of models, we firstly selected
the proper molecular descriptor by Pearson correlation
analysis and stepwise variable selection method [34]. Pear-
son correlation analysis was used to delete the descriptors
not remarkably associated with activity and highly associ-
ated with each other. The criterion of elimination was that
descriptors with correlation coefficients with less than 0.1
were removed. In addition, when correlation coefficient
between two descriptors was more than 0.9, the descriptor
with a lower correlation coefficient to activity would be
deleted. Then, the rest of the descriptors were selected by
stepwise analysis. The initial regression equation was cre-
ated by the first descriptor. Then, other descriptors were
imported to the equation in tune. At the same time, every
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new regression equation would be subjected to a signifi-
cance test for evaluating the addition of a new descriptor.
For example, the new descriptor would be removed, if the
regression equation was not “statistically significant.” In
addition, the descriptors were also deleted when they did
not conform to “statistically significant” in the equation.
The process would be completed if there were no descrip-
tors imported or deleted.

2.4. Machine Learning Models

2.4.1. Naive Bayesian (NB) Classifier. Based on Bayes’
theorem, Bayesian categorization model is a useful
probabilistic classification model [35]. During a learning
process, the algorithm could generate a series of Boolean
features according to the input descriptors. The fre-
quency of occurrence of each feature in the good subset
was calculated in all data samples. Then, features of the
sample were generated for applying the model to a
particular sample, and weights for each feature were cal-
culated through Laplacian-adjusted probability estimate,
which was a relative predictor of the possibility of that
sample being from the good subset. Bayesian categoriza-
tion can process a great quantity of data with high effi-
ciency and is immune to random noise. In this study,
NB classifiers were carried out by DS 2016. The param-
eters remained their default values.

2.4.2. Recursive Partitioning (RP) Classifier. RP generates
decision tree to reveal the relationship between a depen-
dent property (activity) and a set of independent proper-
ties (molecular descriptors) [36]. The input data were
divided into two subsets based on a particular molecular
descriptor and corresponding splitting value at each node
of the decision tree. When there were no more significant
nodes, the splitting process was finished. RP classifiers
were established by using Discovery Studio (DS) 2016. In
RP model, to avoid excessive partitioning, the minimum
number of samples per node was set as 10 and the maxi-
mum tree depth was used as 20. Each class was weighted
equally. The class for a node is the class with the greatest
weighted sum of samples in the node. The Gini index was
used as a measure of the increase in node purity as the
result of a split.

2.4.3. Model Performance. NB and RP classifiers with the
two kinds of descriptors, and ECFP_6 was initially gener-
ated. Subsequently, 5-fold cross-validation for the training
set, test set, and external test set was used to evaluate the
performance of NB. Y-scrambling was also employed to
prevent NB and RP performance from a result of chance
correlation for the best models. Performances of NB and
RP models were evaluated by calculating the true positives
(TP), true negatives (TN), false negatives (FN), false
positives (FP), sensitivity (SE), and specificity (SP), predic-
tion accuracy of antagonist (Q+), prediction accuracy of
nonantagonists (Q−), and Matthews correlation coefficient
(MCC) [33].

SE =
TP

TP + FN
,

SP =
TN

TN + FP
,

Q+ =
TP

TP + FP
,

Q− =
TN

TN + FN
,

MCC =
TP × TN − FN × FP

TP + FN TP + FP TN + FN TN + FP
1

2.5. Molecular Docking. Molecular docking was investigated
to further study the binding mode of ERα and compounds
predicted by NB and RP classifiers. We utilized the LibDock
and CDOCKER protocol of DS 2016 for docking analysis.
The crystal structure of ERα was obtained from the Protein
Data Bank (PDB ID: 3ERT) [37]. LibDock is a useful algo-
rithm for docking small molecules into an active receptor
pocket. Primarily, a hotspot map is generated for the receptor
active site which contains polar and apolar groups. This hot-
spot map is subsequently utilized to form favorable interac-
tions by strictly aligning the ligand conformations. The
ligand poses with top scoring are saved after a final energy-
minimization step [38]. CDOCKER is the other important
docking program in DS using a rigid receptor and
CHARMmfield [39]. The interaction energy for each final
pose of ligands with CHARMm energy was calculated, and
the top scoring (most negative, thus favorable to binding)
poses are retained. The structure of ERα firstly was prepared
through removing water, adding hydrogen, and then we used
clean protein module in DS to correct problems, such as non-
standard naming, protein residue connectivity, missing side-
chain, or backbone atoms. The compounds also were pre-
pared by hydrogen addition, conversion into 3D structures,
pH-based ionization, and charge neutralization [40]. The
original ligand, 4-hydroxytamoxifen, was selected to define
the active pocket of ERα. Then, redocking was performed
to calculate the root-mean-square deviation (RMSD) values
between the docking and initial poses for validating the reli-
ability of docking methods.

2.6. ERα Competitor Assay. The ERα binding affinities of rep-
resentative compounds predicted as ERα antagonists were
measured by fluorescence polarization procedure using green
PolarScreen™ ERα Competitor Assay kit (Life Technologies,
CA, United States of America) [41]. Briefly, 75 nM ERα
together with 4.5 nM fluormone was mixed with a series of
concentrations of the test compounds in the assay buffer.
Then, they were incubated for 2 h in room temperature in
black low volume 384-well assay plate with NBS surface
(Corning, NY, United States of America) for fluorescence
polarization assay. Subsequently, the detection wavelength
was set at excitation wavelength 485nm and emission wave-
length 535nm with bandwidths of 25/20 nm in EnVision
Workstation version 1.7 (PerkinElmer, MA, United States
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of America). 2104 EnVision® Multilabel Plate Reader was
performed for the measurements.

2.7. Luciferase Reporter Gene Assay for ERα. Cell transfection
and luciferase activity assay were utilized to investigate the
effects of the compounds on ER transcriptional activation
[42]. The human breast cancer cell line MCF-7 was obtained
from the Beijing Key Laboratory of Drug Target Research
and Drug Screening, Chinese Academy of Medical Sciences
(Beijing, China). Dulbecco’s Modified Eagle’s Medium
(DMEM) culture medium containing 10% fetal calf serum
(FBS), 100U/mL penicillin, and 100μg/mL streptomycin
was used as complete culture medium. The culture condi-
tions were at 37°C, saturated humidity, and 5% CO2. The cul-
ture medium was changed every day and when the
confluence of cells reached 90%, MCF-7 cells were digested
with 0.25% trypsin containing 0.02% EDTA and then cul-
tured under the same culture conditions. MCF-7 cells in log-
arithmic growth phase were resuspended in 3mL complete
culture medium and were seeded on 24-well plates with a
density of 1× 105/well overnight. After incubation for 24h,
cells were grown to approximately 60–80% confluence and
then washed by culture medium without serum. MCF-7 cells

were cotransfected with the reporter plasmid pGL2-ERE3-
luc. Based on the manufacturer’s instructions, transfection
was mediated by lipofectamine 3000 (Invitrogen). After incu-
bation for 12h, transfection medium was eliminated, and
MCF-7 cells were treated with three concentrations of com-
pounds for 24 h. Then, MCF-7 cells were washed with
phosphate-buffered saline (PBS) and cell lysis was collected
after oscillation with a low speed. Finally, the luciferase activ-
ity was determined by dual-luciferase reporter assay system
(Promega) according to the product manual.

3. Results and Discussion

3.1. Chemical Space Analysis. A total of 2075 ERα antagonists
with the values of IC50 less than 10μM were collected from
the BindingDB database. 7000 decoy compounds were
obtained fromDUD-E online database. After random assign-
ment, the training set was generated with 1556 active and
5000 inactive compounds, and the test set was made up of
519 active and 2000 inactive compounds.

The chemical space of the training set (compounds) and
test set (2519 compounds) was investigated using principal
component analysis (PCA). After Pearson correlation

Table 1: 56 molecular descriptors selected by the Pearson correlation analysis and stepwise regression.

Descriptor
class

Numbers of
descriptors

Descriptors

DS
descriptors

24

PEOE_VSA_FNEG,PEOE_RPC+,a_base,a_ICM,a_nBr,a_nCl,
a_nN,a_nO,a_nS,ast_violation,b_rotR,BCUT_SMR_0,BCUT_

SMR_1,chi1_C,chiral_u,density,GCUT_PEOE_1,GCUT_SLOGP_1,
GCUT_SMR_0,PEOE_VSA_NEG,PEOE_VSA_POS,

PEOE_VSA+ 3,PEOE_VSA-0,PEOE_VSA-1,PEOE_VSA-3,PEOE_VSA-6,
radius,reactive,rings,SMR_VSA0,vdw_vol,vsa_don

MOE
descriptors

32

a_donacc,a_ICM,a_nCl,a_nN,a_nO,a_nS,b_rotR,BCUT_SMR_1,
chi1_C,chiral_u,density,FCharge,GCUT_PEOE_1,GCUT

_SLOGP_1,PEOE_RPC,PEOE_RPC+,PEOE_VSA_FNEG,PEOE_
VSA_FPOL,PEOE_VSA_NEG,PEOE_VSA_POS,

PEOE_VSA+ 1,PEOE_VSA-0,PEOE_VSA-1,PEOE_VSA-3,PEOE_VSA-6,
rings,SlogP, SlogP_VSA7, SMR_VSA0,SMR_VSA7,vdw_vol,vsa_don
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Figure 1: Diversity distribution of the training set and test set as
described by principal component analysis (PCA).

Table 2: Performance of Bayesian and recursive partitioning
models and their 5-fold cross-validation results.

Model TP FN FP TN SE SP MCC Q+ Q−

NB-a 1091 35 223 5206 0.969 0.959 0.874 0.830 0.993

NB-b 1119 8 21 5408 0.993 0.996 0.985 0.982 0.999

NB-c 749 316 455 5037 0.704 0.917 0.591 0.622 0.941

NB-d 1054 11 75 5416 0.990 0.986 0.953 0.933 0.998

RP-a 1113 13 51 5379 0.988 0.991 0.966 0.956 0.998

RP-b 1111 15 49 5381 0.987 0.991 0.966 0.958 0.997

RP-c 1007 57 177 5314 0.946 0.968 0.876 0.850 0.989

RP-d 1022 42 95 5396 0.960 0.983 0.925 0.915 0.992

Note: NB-a: NB model with MOE 2D descriptors; NB-b: NB model with
MOE 2D descriptors + ECFP_6; NB-c: NB model with DS 2D descriptors;
NB-d: NB model with DS 2D descriptors + ECFP_6; RP-a: RP model with
MOE 2D descriptors; RP-b: RP model with MOE 2D descriptors
+ ECFP_6; RP-c: RP model with DS 2D descriptors; RP-d: RP model with
DS 2D descriptors + ECFP_6.
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analysis and stepwise regression, we obtained 56 molecular
descriptors (24 from Discovery Studio (DS) and 32 from
MOE) (Table 1), which were used as the input variables for
PCA. Chemical space analyzed by PCA was shown in
Figure 1. It demonstrated that chemical space distributions
were dispersive for all compounds, and most of the com-
pounds in the test set are well within the chemical space of
the training set.

3.2. Performance of NB and RP Models. In this study, all the
classification models were initially built using RP and NB
classifiers with MOE and DS 2D molecular descriptors and
ECFP-6. Considering the limitation of the descriptors calcu-
lated in MOE for characterizing the important substructures
or molecular fragments, molecular fingerprints (ECFP-6),
together with property descriptors, were used simultaneously
to establish novel prediction models. Subsequently, 5-fold
cross-validations for the models were performed (Table 2).
The sensitivity (SE) and prediction accuracy of antagonist
(Q+) of NB classifiers with DS 2D molecular descriptors were
not favorable, but added ECFP_6, the performance was
excellent with SE of 0.990 and 0.933. Y-scrambling for 30
times was as well as used to evaluate the chance correlation
possibility. When the activities of compounds from the train-
ing set were disturbed, Matthews correlation coefficient
(MCC) was significantly decreased, especially for NB and
RP with MOE 2D descriptors in the existence of ECFP_6
(Figure 2). As shown in Table 3, DS 2D descriptors without
ECFP_6 were also not better thanMOE 2D descriptors in test
set, which maybe DS 2D descriptors did not characterize the
important substructures and molecular fragments which are
critical for ERα antagonist. Then, compounds in external test
set, which were not involved in the training and test set, were
extracted from literatures published in recent years for fur-
ther validation [6, 43–46]. The external test set included 20
antagonists and 50 inactive compounds. Figure 3 suggested
that NB and RP MOE 2D descriptors with ECFP_6 were
the most powerful models for prediction of ERα antagonist.

Taken together, both NB and RP models were applied for
the screening of natural product database with MOE 2D
descriptors and ECFP_6.

3.3. Good and Bad Fragments Given by Naive Bayesian
Model. ECFP_ 6, as the structural fingerprint used in Bayes-
ian classifier, could identify key fragments or fingerprint fea-
tures frequently found in two classifying groups, which
provided important information for the design of ERα antag-
onist. The top 10 favorable and 10 unfavorable fragments for
ERα binding were ranked by the Bayesian scores of the NB-b
model (Figure 4). The positive fragments for ERα binding
mainly included phenolic hydroxyl and saturated nitrogen
atom. By analyzing 4-hydroxytamoxifen in the ligand-
binding domain in ERα (PDB ID: 3ERT), we found phenolic
hydroxyl could interact with Arg394 and Glu353 by forming
stable hydrogen bonds. However, most fragments referring
to nitrogen atoms with positive charges were observed in

Table 3: Performance of Bayesian and recursive partitioning
models on the test set.

Model TP FN FP TN SE SP MCC Q+ Q−

NB-a 426 7 68 2018 0.985 0.967 0.904 0.862 0.997

NB-b 425 8 27 2059 0.981 0.987 0.952 0.941 0.996

NB-c 346 62 356 1756 0.849 0.832 0.559 0.493 0.966

NB-d 389 19 40 2071 0.954 0.981 0.917 0.907 0.991

RP-a 426 8 31 2055 0.983 0.985 0.948 0.932 0.996

RP-b 427 6 29 2057 0.987 0.986 0.953 0.936 0.997

RP-c 379 54 81 2005 0.875 0.961 0.817 0.824 0.974

RP-d 401 33 35 2051 0.925 0.983 0.906 0.920 0.984

Note: NB-a: NB model with MOE 2D descriptors; NB-b: NB model with
MOE 2D descriptors + ECFP_6; NB-c: NB model with DS 2D descriptors;
NB-d: NB model with DS 2D descriptors + ECFP_6; RP-a: RP model with
MOE 2D descriptors; RP-b: RP model with MOE 2D descriptors
+ ECFP_6; RP-c: RP model with DS 2D descriptors; RP-d: RP model with
DS 2D descriptors + ECFP_6.

0.00 0.20 0.40 0.60 0.80 1.00 1.20

NB-MOE 2D descriptors

NB-MOE 2D descriptors + ECFP_6

NB-DS 2D descriptors

NB-DS 2D descriptors + ECFP_6

RP-MOE 2D descriptors

RP-MOE 2D descriptors + ECFP_6

RP-DS 2D descriptors

RP-DS 2D descriptors ECFP_6

Figure 2: Y-scrambling for 30 times for evaluating the chance correlation possibility of naive Bayesian (NB) and recursive partitioning (RP)
models by calculating Matthews correlation coefficient (MCC). The red bar represented the performance of NB and RP without Y-
scrambling. The blue bar showed that the MCC values decreased after Y-scrambling.
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the negative contributions to ERα binding. In addition, most
of unfavorable fragments contain sulfur atoms, indicating its
common occurrence in many inactive ligands.

3.4. Virtual Screening of an In-House Natural Product
Database for ERα. The best models (NB-b and RP-b) were
applied for virtual screening of an in-house natural product
database (including 13166 compounds) to identify for ERα
lead ligands. First of all, each compound was prepared by cal-
culating 25 descriptors (24 DS descriptors and ECFP_6) and
33 descriptors (32 DS descriptors and ECFP_6), respectively,
then NB-b and RP-b were performed to evaluate the proba-
bility as ERα antagonists for each compound. 393 com-
pounds were predicted as potential ERα antagonists by the
NB-b model, while 193 compounds were predicted as active
compounds against ERα using the RP-b model. By analyzing
the overlapping part, 162 compounds were predicted as ERα
antagonists with the two models simultaneously. Then, these
compounds were further evaluated by molecular docking.
The greatest advantage of LibDock is its high speed and par-
allel operation, which makes it suitable for large scale appli-
cations. Therefore, we used LibDock for further screening.
Then, RMSD value calculated through redocking between
the docking and initial poses was 1.410Å, which suggested
the reliability of LibDock methods. CDOCKER uses simu-
lated annealing to optimize each conformation in the active
site region of the acceptor, thereby making docking results
more accurate. Therefore, we utilized CDOCKER to analyze
the interaction of ligand and receptor. We also calculate the
RMSD for CDOCKER, and the value was 1.242Å, which val-
idated that the docking models could be used for further
docking studies. After preparation of 162 compounds, Lib-
Dock was firstly performed for quick screening. Most of these
compounds could dock to the pocket of ERα with a wide
range of LibDockScore from 27.76 to 176.61. By cluster anal-
ysis, we found the structures mainly referring to isoflavone,

flavone and their glycoside, lignan, dihydrochalcone, poly-
phenol, catechin, and triterpenoid. To investigate the binding
affinity and modes of these compounds, we selected 12 com-
pounds with high score and representative structure. They
were genistein, daidzein, phloretin, ellagic acid, ursolic acid,
EGCG, kaempferol, naringenin, diosmin, naringin, silibinin,
and genistein 7-O-β-D-glucoside. Genistein and daidzein
were selected as two isoflavones, while kaempferol and narin-
genin were flavones. Phloretin, silibinin, ellagic acid, EGCG
((−)-epigallocatechin-3-gallate), and ursolic acid were repre-
sentative of dihydrochalcone, lignin, polyphenol, catechin,
and pentacyclic triterpenoid, respectively. Naringin, diosmin,
and genistein 7-O-β-D-glucoside belonged to glycoside.
Their binding affinities and modes with ERα were investi-
gated as follows.

3.5. Binding Affinities and Modes. The binding affinities of 12
compounds were measured by green PolarScreen ERα Com-
petitor Assay. Among these compounds, diosmin, naringin,
silibinin, and genistein 7-O-β-D-glucoside showed no signif-
icant binding affinity with the value of IC50 beyond 10μM.
Table 4 summarizes IC50 values of the other 8 compounds
tested. Genistein had the highest inhibitory activity with
IC50 value of 29.38± 6.13 nM. But when genistein formed
glycoside, the binding ability would be decreased sharply.
The IC50 value of daidzein was 107.62± 9.38nM, not better
than genistein. The two flavone compounds, kaempferol
and naringenin, showed moderate affinity with the values of
IC50 of 316.67± 14.33 nM and 967.54± 70.95 nM, respec-
tively, which suggested that the affinity of isoflavone was bet-
ter than that of flavone. The common amino acid residues for
the four compounds binding to ERα included Arg394 and
Glu353 via conventional hydrogen bond/attractive charge
and Leu387 and Leu391 via pi-alkyl interaction (Figure 5).
Arg394 and Glu353 were also the key amino acid resi-
dues for 4-hydroxytamoxifen interacting ERα. Although

0.00 0.20 0.40 0.60 0.80 1.00

NB-MOE 2D descriptors

NB-MOE 2D descriptors + ECFP_6

NB-DS 2D descriptors

NB-DS 2D descriptors + ECFP_6

RP-MOE 2D descriptors

RP-MOE 2D descriptors + ECFP_6

RP-DS 2D descriptors

RP-DS 2D descriptors ECFP_6

MCC

Figure 3: The performance of MCC value made by 8 classifiers on external test set. NB and RP MOE 2D descriptors with ECFP_6 were the
most powerful models for prediction of ERα antagonist.
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Table 4: IC50 values (nM) of 8 representative compounds as ERα antagonist from natural products and their binding affinity evaluated by
Discovery Studio 2016.

Chemical IC50 (nM) -CDOCKER_ENERGY -CDOCKER_INTERACTION_ENERGY

Estradiol 7.38± 0.80 32.60 42.1106

Genistein 29.38± 6.13 31.63 45.9033

Daidzein 107.62± 9.38 38.321 42.813

Phloretin 74.55± 24.24 44.56 49.7287

Ellagic acid 62.61± 9.34 27.54 40.3217

EGCG 66.01± 11.59 46.72 64.262

Ursolic acid 977.38± 125.30 −65.38 24.1527

Kaempferol 316.67± 14.33 30.31 41.5717

Naringenin 967.54± 70.95 30.08 38.021

HO

HO OH

HO ⁎

HO
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Figure 4: Examples of 10 good (a) and bad (b) fragments evaluated by the NB-b model. The Bayesian score (score) was given for each
fragment.
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-CDOCKER energy and -CDOCKER interaction energy
did not fluctuate significantly, the scores of isoflavones
were a little better than those of flavones. In addition,
compelling evidences suggested that isoflavones had mul-
tiple beneficial effects on breast and prostate cancers,
menopausal symptoms, neurodegeneration, and so on
[47]. Ellagic acid, phloretin, and EGCG did not belong
to flavonoid skeleton, but they also had a better binding
affinity. The values of IC50 were equally matched with
74.55± 24.24μM, 62.61± 9.34μM, and 66.01± 11.59μM,
respectively. Polyphenol structures of EGCG and ellagic
acid form a lot of hydrogen bonds, which lead to high
binding affinity, but lack of hydroxyl group, ursolic acid
had weak interaction with ERα. One phenolic hydroxyl
group of phloretin forms salt bridge with Arg394, which
was different from other compounds (Figure 5). There-
fore, phenolic hydroxyl groups and conjugated structures
made these natural products high binding affinities,
which were associated with the results of good fragments
given by Bayesian model.

3.6. Antiestrogenic Effects. To explore whether 8 compounds
have endocrine disrupting effects mediated by ERα, we
determined their antiestrogenic activities using luciferase
reporter gene assay systems. Figure 6 showed their effects
on the expression of ERα. We found that genistein could
decrease the expression of the ERα remarkably at a dose-

dependent manner. Recent studies suggested genistein
had an important role in the suppression of breast cancer
via the competition of phytoestrogen with natural estro-
gens, declination of their bioavailability, and inhibition of
cancer cell growth [48]. It was also reported that genistein
can significantly attenuate oxidative stress by modulating
the JNK3-mediated apoptosis, ERK1/2-mediated autoph-
agy, and TNFα-associated inflammatory pathways [49].
Although daidzein was also attributed to isoflavone, the
antagonist activity was lower than that of genistein. Ellagic
acid, a plant-derived polyphenol, could also decrease the
expression of ERα at high and medium concentrations. It
was also reported that ellagic acid had an influence on
ERα-mediated signaling pathway in many kinds of cancer
cell [50]. We provided the direct proof that ellagic acid
had a strong interaction with ERα and inhibited its
expression. Phloretin is a natural dihydrochalcone and dis-
plays antioxidative and anti-inflammatory activity [51].
We firstly reported that phloretin could bind to ERα
directly and regulated the expression of ERα in MCF-7
cells in a dose-dependent way. EGCG is one of the most
potent and the most studied green tea catechins. There
was much evidence about the involvement of EGCG for
antioxidant and anti-inflammatory effects. Our results
suggested that ERα was a target of EGCG to exhibit mul-
tiple pharmacological activities. Ursolic acid generated
antiestrogenic effects only at high dose. Kaempferol and
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Figure 5: The investigation of the binding modes of 6 different skeleton structures. They were genistein (a), naringenin (b), EGCG (c),
phloretin (d), ellagic acid (e), and ursolic acid (f), which belong to isoflavone, flavone, catechin, dihydrochalcone, polyphenol,
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naringenin, as two flavone compounds, showed weak
antiestrogenic effects, which was associated with the bind-
ing affinity results. It proved again that the antagonistic
activity against ERα of isoflavone was superior to that
of flavone.

4. Conclusion

In our study, we integrate the ligand- and structure-based
methods for identification of ERα antagonist from in-
house natural product library for the first time. As a result,
162 compounds were predicted as ER antagonists by NB-b
and RP-d models, which were further evaluated by molec-
ular docking, and 12 compounds were selected for activity
validation. Based on the ERα competitor assay and lucifer-
ase reporter gene assay, we found 8 compounds exhibited
antagonistic activity against ERα, including genistein,
daidzein, phloretin, ellagic acid, ursolic acid, EGCG,
kaempferol, and naringenin. The affinity of isoflavone
was superior to flavone, and genistein had the highest
inhibitory activity. However, the binding ability of genis-
tein would be decreased significantly when it formed
glycoside. It was also first reported that ellagic acid, phlor-
etin, and EGCG could directly bind to the active pocket of
ERα with high affinity due to their phenolic hydroxyl
group and conjugated structure. Therefore, natural prod-
ucts offer a rich resource for ERα antagonist. In addition,
virtual screening method for hit discovery and lead
optimization would accelerate new drug discovery and
increase efficiency and decrease the cost of the drug devel-
opment process, contributing to more effective, safe drugs
entering into market much at a quick pace.
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Figure 6: Antiestrogenic effects of 8 natural products in the ERα transactivation assay using MCF-7 cells transiently transfected with pERE-
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