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Human cancers exhibit phenotypic diversity that medical imaging can precisely and

non-invasively detect. Multiple factors underlying innovations and progresses in the

medical imaging field exert diagnostic and therapeutic impacts. The emerging field

of radiomics has shown unprecedented ability to use imaging information in guiding

clinical decisions. To achieve clinical assessment that exploits radiomic knowledge

sources, integration between diverse data types is required. A current gap is the

accuracy with which radiomics aligns with clinical endpoints. We propose a novel

methodological approach that synergizes data volumes (images), tissue-contextualized

information breadth, and network-driven resolution depth. Following the Precision

Medicine paradigm, disease monitoring and prognostic assessment are tackled at

the individual level by examining medical images acquired from two patients affected

by intracranial ependymoma (with and without relapse). The challenge of spatially

characterizing intratumor heterogeneity is tackled by a network approach that presents

two main advantages: (a) Increased detection in the image domain power from

high spatial resolution, (b) Superior accuracy in generating hypotheses underlying

clinical decisions.
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INTRODUCTION

Background
Modern medical imaging methods are increasingly used in the clinical practice to visualize
rich hierarchies of anatomic details in a variety of tissues and organs. By combining contrast
agents and dynamic acquisitions, maps of images can show the complex interdependence of
pathophysiological processes characterizing various diseases. This is especially important in
oncology. Many factors influence tumor progression, namely hemodynamic, metabolism, pH,
shape, etc. (1–4). These factors deliver information useful for planning treatment and follow-up
processes. The quality of the results of such processes depends on an efficient use of standard clinical
imaging scanners like MRI (magnetic resonance imaging), PET (positron emission tomography),
and CT (computer tomography).
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Past research efforts were directed mostly toward the
search for individual biomarkers. Ideally, such biomarkers were
conceived as targets of specific drugs. However, this strategy
clearly implies an oversimplification of reality. Tumors are
composed by non-homogeneous tissue, and the component
tissues naturally communicate in a complex way between them,
with the hosting organ and with the rest of the body (5).
Additionally, having an unprecedented amount of information
leads to a paradox: our ability to produce highly detailed
data may still be insufficient for an accurate detection due to
redundancies, spurious correlations, missing data, algorithmic
approximations etc.

Precision Medicine Focus
Precision Medicine (PM) is an approach conceived for
disease treatment and prevention taking specifically into
account individual variability in a variety of health-influencing
factors (6). Naturally enough, the aim from a data science
perspective is to integrate all multisource information for
personalized management. Data-driven PM advances leverage
data aggregation, pattern detection, feature extraction and
similar strategies aimed at improving outcome management and
quality of care. Among the goals of data science there are:
(1) Individual profiling, diagnostic choices, treatment decisions,
prognostication and (2) Integration of disparate information
identifying clinically relevant associations, early signals of disease
onset or progression and changes in health trajectories.

Through radiomics, radiographic images are fuel for PM
[see (7), among others]. The value of image-associated clinical
details is increasingly contributed by automated learning via
computer aided algorithms. An example is deep learning (DL).
DL is expected to leverage large-scale collections of images to
extract clinical aspects not immediately and/or clearly associated
to a clinical question. Despite being efficient, Dl is known to
be not exempt from hurdles of various nature (8, 9). Therefore,
as medical images span informative details far beyond the
possible answers to any specific clinical question, next generation
computational inference tools (DL and other types) should be
tuned to the assembling and processing of information while
preserving interpretability of results.

Rationale
In cancer research, data types are generated to cover global as well
as particular characteristics (or features) of tumors. Nonetheless,
we can hardly achieve comprehensive summaries or maps of
tumors. It is also problematic to establish linkages between
features, making the task of predicting tumor progression
itself remains only partially accomplished. Clearly enough, the
prediction of tumor outcome following treatment remains a
major goal of clinicians as well as the key feedback for patients.
This is again in line with the PM shift of paradigm (10).
Two objectives are: (a) to provide data syntheses and (b)
to establish linkages. The added value with instruments like
networks is the identification of significant associations within
well-characterized disease contexts. The way to look at the cancer
puzzle is neither unique nor universal. We want to stress the role
of specific features, as explained in the next section.

Our Contribution
Data connectivity in radiomics was discussed in Dominietto et al.
(11). In principle, connected biomarkers open new avenues to
therapeutic paths, and allows assessment of emerging digital
biomarkers (12). Here, we demonstrate the applicability of a PM
network approach in onco-radiomics (13, 14). We considered
patients affected by intracranial ependymoma whose response to
radiotherapy was assessed by MRI. Identifying secondary spots
in the presence of primary tumor is typically done in cancer
radiology, and the recourse to MRI methods may be justified for
instance by the need of identifying tumor regions with abnormal
vascularity (15). Intra-tumor heterogeneity indicates the need
of integrating physiological signals, typically metabolism or
proliferation, and achieving more accurate description (16).
It remains challenging to spatially characterize heterogeneous
tissue with tumor marks and treatment-related changes. This
information should be integrated over time to improve predictive
models for patient outcome (17).

The value of the proposed analysis is toward our
understanding of the potential of a network inference approach
within the radiomics [see also (11, 12) for treatment of the
topic]. From the image domain, specific features were selected
from repeated measurements (MRI) and mapped onto a
network domain. By preserving the spatial resolution present
in voxel domain, the mapping offers various advantages:
(a) Marks/patterns indicating possible disease relapse can
be detected, which adds predictive value with regard to the
assessment of therapy effects; (b) Timely therapeutic intervention
strategies can be topologically analyzed and monitored; (c) With
more patients recruited generalization of the approach may
provide patient stratifications and disease classifications of
relevant to clinical trials design.

MATERIALS AND METHODS

Image Features in Ependymoma Studies
Two young patients affected by ependymoma have been
considered for this study. The first patient is a 12-year old
female presented with a 3-month history of headache. Brain
MRI depicted a solid mass in the left occipital lobe. No
metastatic lesions were found at image workup. The child was
submitted to gross total resection of the tumor; pathological
diagnosis was of a WHO grade III anaplastic ependymoma.
The patient received local proton therapy (PRT) according
the HIT-2000 protocol guidelines. The dose of PRT was of
59.4Gy (RBE), 1.8Gy (RBE) par fraction. PRT was delivered
with pencil beam scanned protons technique. After definitive
treatment, the patient was followed with routine physical exams
and serial MRI. Three years later, a tumor recurrence was
observed at the primary site. The patient was re-operated
(total resection). New pathological exam confirmed WHO grade
III anaplastic ependymoma recurrence. The patient received
a second course of PRT with pencil beam scanned protons
technique to the site of recurrent disease. The gross tumor
volume included the tumor bed after the second surgery.
The clinical target volume margin was ≤0.5 cm adjusted to
anatomical boundaries and to the optical tract. A planning
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target volume of 4mm was applied. The targets were treated
to 59.4Gy (RBE), delivered in 1.8Gy (RBE) fractions on 5 days
each week.

The second patient is a 14-year old male presented with neck
pain, confusion with word finding disorder, blurred speech and
ophthalmological visual field defect. MRI showed a solid and
polycystic mass in the right occipital lobe with an important
edema surrounding the lesion. The child underwent gross total
resection of the tumor and pathological diagnosis was a WHO
grade III anaplastic ependymoma. The patient received local
PRT of 59.4Gy (RBE), 1.8Gy (RBE) par fraction with pencil
beam scanned protons technique. Also, in this case, after the
radiotherapy treatment, the patient was followed with routine
physical exams and serial MRI. At this time, 2 years after the end
of treatment, no recurrences have been observed. In both cases,
before surgery, a consistent set of MRI acquisitions has been
acquired in order to define tumor staging and plan the surgical
and radiation therapy treatment. From this set of acquisitions, 21
anatomical and physiological features were extracted. They are
reported in Table 1.

3D Image Domain
A generic 3D image is composed of voxels. A voxel is defined
as the smallest measurable cubic volume retrievable from an
image and is characterized by three spatial coordinates (x, y, z).
These unitary image components allow the value of anymeasured
feature to be computed. In other words, the image space
embeds the feature space and a 3D image globally represents
the distribution of each measured feature. In our study we have
extracted twenty-one 3D features (Table 1) from multimodal
MRI acquisitions that were co-registered and re-sliced in order
to have uniform voxel dimension (0.37 × 0.37 × 5.5 mm3).
Each acquisition is targeted to measuring a specific feature. The
assembly of all the features forms our dataset. Starting from each
voxel v, the dataset is obtained from the feature set values f1. . . fN
in spatial coordinates:

vx,y,z = (f1, f2...fN)x,y,z

This means that for a given matrix that is formed in
correspondence with each feature extracted from MRI images
(a 3D matrix), each voxel includes various feature values, and
the feature set (N = 21) is obtained from the entire matrix.
Therefore, a given voxel is characterized by an array of 21
distinctly informative features.

In-depth image assessment goes through voxel comparison
and implies consideration of all values computed from the
measured features. Statistically speaking, if two voxels present
similar values of features then they have similar behavior in terms
of imaging acquisition. From a physiological point of view, this
means that the portion of tissue that composes the voxels is
also quite similar. Naturally enough, this leads to the idea of
applying clustering (say, K-Means or Agglomerative algorithms)
to identify groups of voxels with similar values of features, based
on the measured correlation (18).

At a methodological level, the higher the number of features
and the better the statistics that can be computed, particularly

TABLE 1 | List of anatomical and physiological features acquired using MRI

(details in the footnote a-e).

Type Feature n. MRI acquisitions

Anatomical

structure

1 HiRes 3D T1w gradient echo pre-CA

2 HiRes 3D T1w gradient echo post-CA

3 T1w fluid suppression pre-CA

4 T1w fluid suppression post-CA

5 T2w coronal

6 T2w transaxial

7 T2w sagittal

8 T2w FLAIR

Vascular network

architecture

9 TOF angiography

Iron blood

products/calcification

10 Susceptibility weighted images

Water diffusion 11 Diffusion—Fractal Anisotropy (FA)

12 Diffusion—Trace

13 Diffusion—Apparent Diffusion

Coefficient (ADC)

Haemodynamic 14 Relative local Cerebral Blood Flow

(CBF)

15 Relative local Cerebral Blood Volume

(CBV)

16 Relative local Mean Transit Time

(MTT)

17 Relative local Time To Peak (TTP)

18 Relative global Cerebral Blood Flow

(CBF)

19 Relative global Cerebral Blood

Volume (CBV)

20 Relative global Mean Transit Time

(MTT)

21 Relative global Time To Peak (TTP)

(a) Anatomical features were directly acquired by the means of standard static MRI

acquisitions that include T1-weighted (T1w) and T2-weighted (T2w) sequences. A

Gadolinium-based contrast agent has been used to enhance the signals. (b) Vascular

architecture was imaged via beans of Time-Of-Flight (TOF) angiography without the need

of contrast agent. (c) Susceptibility weighted images (SWI) have been used to detect the

presence of hemorrhages or calcifications. (d) Water diffusion features map the diffusion

process of water molecule in tumor and healthy tissue. Diffusion coefficients are the result

of the interaction among water and macromolecules or more complex structures, and

they are indicators of cell mobility and tumor behavior. (e) Haemodynamic features were

acquired by themeans of dynamicMRI sequences exploiting the use of Gadolinium-based

contrast agent and physiological/mathematical models in both global and local fashion.

Features characterize the dynamic of blood supply in terms of volume, flow and velocity

and time. Dynamics are indicators of tumor stage, which is related to vascularization’s

quality (e.g., a very aggressive tumor has a certain vascular system integrated with the

healthy surrounded tissue).

when considering their intra-cluster distribution.Mean, standard
deviation, kurtosis, skewness, minimum and maximum can thus
be found for each feature.

Ci ≡













. . . .

fmean
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1 , fmax
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. . . .

fmean
N , f stdN , f kurtosisN , f skewnessN , fmin

N , fmax
N

. . . ..













voxel in cluster i

Frontiers in Medicine | www.frontiersin.org 3 January 2020 | Volume 6 | Article 333

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Dominietto et al. Network Integrated Radiomic Features

However, we believe that together with the statistics and their
informativeness, what counts is contextual to the technology
determining the type of features (Table 1), MRI in our case. For
this reason, we next introduce networks as our preferred tools for
inference. We do not aim to classify images, as in that case DL
could be a valid support to radiomic analysis. Our challenge is
the interpretability of what we can observe in the image domain
once it is translated in a network domain. Notably, topological
information becomes available and established properties can be
used to quantitatively discriminate among tissue characteristics.

Network Architecture
A complex network is a graph composed of nodes connected with
each other by themeans of edges.We built a network in which the
edges were determined from the cross-correlation (COR) existing
between each couple of nodes, with nodes representing voxel
clusters. As common in networks, an adjacency matrix must be
built and in our context its generic entry (i, j) is the COR between
nodes i and j computed from feature values. These coefficients
establish weights assigned to the edges cast between the nodes:
a strong correlation implies connection between nodes, which
in turn translates into a reduced distance. This relationship
depends on the underlying reference network metric. Networks
in general present static configurations in which states are
associated to conditions and represented by nodes or groups of

nodes functionally similar and dynamically inter-communicating
(19, 20). Our work analyzes networks derived from images,
with configurations of nodes and edges expected to discriminate
between cancer and normal image regions.

Network Topology
In Figure 1 (top plot) we show a qualitative classification of
nodes based on the connections with other nodes. The central
plot shows nodes grouped into clusters. Since clusters’ density
depends on node interconnectivity, each node in the cluster has
the same importance. Moving up we find the authority (able to
connect multiple nodes) and the hub (binding the authorities).
At the top, the bridge links together two or more sub-networks.
These are key structures, as in case of depletion of a bridge, the
architecture of the network will drastically change since the sub-
network will be separated from the rest and the communication
between them will be interrupted (21). Finally, sub-networks
form communities when significantly connected, i.e., associated
by functional similarity.

Node classification between the above structures depends
on network metrics. In our work, metrics have been evaluated
using the libraryNetworkX (http://networkx.github.io) in Python
code and standard network topological properties like clustering
coefficient (CC), degree, hubs, betweenness have been measured.
Note the following aspects: (a) CC measures the average

FIGURE 1 | Node classification. Nodes can be grouped all together in a cluster (green) or can be connected individually to an authority (yellow). Similarly, more

authorities can be connected together to a hub (orange). The bridge then binds together two subnetworks. At the bottom, Euclidean and geodesic distances are

visualized. The nodes 1 and 2 have two kinds of interactions: (a) weak direct interactions (Euclidean distance, orange edge) characterized by a long path, (b) stronger

interactions mediated by node a (geodesic distance, green shorter path).
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probability that two neighbors of a node are themselves neighbors
(therefore, nodes in image regions uniformly characterized like
tumor or normal tissue have the same importance); (b) High-
degree nodes are authorities, and hubs assemble multi-connected
authorities (image dense spots); (c) High-betweenness nodes,
namely the extent to which nodes lie on the path between
other nodes, when combined with low-degree properties identify
bridges that are relevant for network intra-communication.

In general, each node is to some extent informative about
radiomic phenotypes summarized by features, and the key
part is establishing associations between nodes that might
be possible target. For instance, nodes with feature values
characteristic of tissues displaying tumor growth or invasion,
and of course integrating these features with genomic ones
would allow to explore phenotypically enriched gene signatures
(radiogenomics) (22–24).

Apart from the information that nodes deliver, edges too can
be classified based on their properties. Through the edge length,
the distance between nodes is defined (Euclidean distance):

D = 1− COR

Here, strong/weak interaction corresponds to short/long
distance, respectively. More importantly, given a destination
node, we can infer predictability based on the path length
concatenating edges that end at such node. Here, the geodesic
distance (shortest path between two nodes) becomes relevant
because two nodes can be strong interactors also indirectly
(mediated by neighboring nodes). Figure 2 sketches our
approach, and Figure 3 displays the computed adjacency matrix.
Note that the network-to-image back-projection step implies
the possibility to assess the clinical response after therapeutic or
surgical interventions or otherwise to monitor patient follow-up.

RESULTS

Complex Network
A network (Figure 4, top panel) was built for the first patient
from the 21 MRI features and consisting of 46 nodes (size
proportional to degree) and 209 edges (length proportional to
COR). After normalizing the values of the measures defined
in Figure 1, we determined the network hierarchy mapped in
Figure 4 (bottom panel). For the first patient, a first subnetwork

FIGURE 2 | Flowchart. It shows the analysis performed in both image and network domains. Starting from MRI acquisitions, we extracted a dataset of N = 21

features that have been used to group the voxels into clusters and, based on their correlation, to build the complex network. By the means of centrality (nodes

classification) and connectivity (edges classification) we have classified nodes and identified subnetworks. Finally, network topology has been back-projected on initial

anatomical images.
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FIGURE 3 | Adjacency matrix. It represents the cross-correlation coefficients between the clusters. The cross-correlation coefficients measure similarity between

clusters by varying within a 0–1 range (i.e., from no correlation or no features similarity to strong correlation and identical feature distribution).

appears densely connected with a cluster structure (green) in
which all nodes show high CC value (>0.75).

a. A second subnetwork depicted in red without the presence
of clusters.

b. A group of bridges is depicted in blue and have high
betweenness (>0.80) and low degree (<0.20), while
connecting the two subnetworks.

Note that the above thresholds are determined based on the
available data, following the general principles of limiting
network redundancy and maximizing interpretability.

Tissue Identification
According to the color, network nodes of Figure 4 have been
back-projected on the T2-weighted image in order to find their

anatomical position in the brain. Figure 5 shows that most red
nodes fill quite well the bulk tumor while few more spots are
localized out of it. The green nodes are located in the healthy
part of the brain. Surprisingly, the blue nodes that represent
the bridges in the network appear in the images as surrounding
the red regions, thus acting at the interface between tumor and
healthy tissues.

For the second patient, the analysis confirmed the presence
of two subnetworks (highlighted in red and green) that copy
well with tumor extension and healthy surrounding tissue,
respectively (Figures 6b,c). Only a single node (depicted in blue)
bridges between the subnetworks. The back-projection onto
the anatomical image shows that the corresponding region is
smaller and is not overlaying the whole lesion. At present, the
small red spot spread in the healthy area can be questioned.
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FIGURE 4 | (Top) Network created from acquired MRI features (Table 1). The node dimension (and color gradient) is proportional to the degree. (Bottom) Network

configuration determined by the centrality metric. We have spotted regions with high clustering coefficient and showed them in green and in red. The two are

connected together by the means of a set of bridges showed in blue.

These spots could reflect image aberrations, clustering errors
or signs of tumor presence. The uncertainty remains based
on the physiological features that were measured, indicating
presence of tumor. However, there is no clinical evidence that
they already represent secondary tumor localizations. They
can possibly turn into tumorigenic tissue, although targeted
histological examination would be needed, at least in principle.

Tumor Heterogeneity
Evaluating the node hierarchy in the presence of tumor allowed
to stratify the nodes in four groups depending on their degree and
then back-project their corresponding voxels onto the T2-weight
image (Figures 6d,e). Notably, the tissue identified inside the
tumor can be explained by the network topology, showing that
the differentiation is possibly reflecting the tissue heterogeneity
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FIGURE 5 | (Top) T2-weighted MRI acquisitions showing anatomical details of tumor at time of diagnosis. (Center) Overlay of the network classification results, with

the red subnetwork covering the tumor and some other external areas. The cluster subnetwork depicted in green identifies the surrounded brain. Finally, the blue

bridges linking together the two subnetworks surround the red regions and act as interface between tumor and brain. (Bottom) T2-weighted MRI acquired 3 years

after surgical and proton therapy treatment highlights the presence of recurrence (red arrow at leftmost plot) and post-surgery cavity (tumor bed, orange arrow at both

leftmost and central plots).

visible at the anatomical image level (Figure 6a). Especially low-
degree nodes cover diffusively the area of the lesion, while high-
degree nodes appear at restricted sites. When this happens at the
tumor interface, high connectivity could be consequence of well-
established phenotypes such as proliferation and invasiveness.
Alternatively, this might be considered a mark of increased
activity at the tumor microenvironment level.

Network Identification
As in most of clustering procedures, the exact number of clusters
is not known a priori and must be estimated. However, we
consider this clustering only a pre-processing step in voxel
domain, and the control over the clustering quality can be

done by iteratively (a) incrementing the number of clusters and
(b) visualizing the respective network configurations. Figure 7
displays a sequence of increasing clusters/nodes number clearly
showing that already 20 clusters/nodes make the network
structured, and then further detailed with 30 and 50 clusters.
In principle, increasing the resolution limit means considering
smaller and smaller voxel groups, at clear risk of overfitting
(limited representativeness of physiological features). Because
of such information gap, 100 clusters indicate edges that are
artificially present as no longer robust and mainly dominated by
the law typical of a random process.We have estimated such limit
to be reached at around 60 clusters, and thus used 50 clusters
as stopping criterion. In conclusion, the clustering classification’s
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FIGURE 6 | Hierarchical segmentation of intra-tumoral tissue heterogeneity. The extension of the ependymoma is shown in (a) the T2-weighted image. (b) The

complex network obtained from the acquired MRI features by the means of two subnetworks and one bridge node. (c) Back-projection onto the anatomical image.

(d) Hierarchical analysis performed over the tumor subnetworks, with highlighted nodes according to the degree values (from yellow low-degree to violet high-degree).

(e) Segmentation of intra-tumoral tissues by node hierarchies.

aim is to identify voxels with similar features, or that belong to the
same kind of tissue. Clusters are then formed from similar voxels
and represented as network nodes. Importantly, this mapping
preserves the original spatial resolution.

DISCUSSION

Role of Networks
Biomedical data are rich in structure (modular) and
systematically organized. A natural question is whether
hierarchies are identifiable according to specific relationships
between data attributes. Networks include such hierarchies,
and the higher elements (hubs and central nodes) are the ones
influencing the overall behavior (25, 26). When considering
tumor’s behavior, two categories of nodes have high importance:
(a) Bridges or sub-network connectors; (b) Authorities or large-
scale node aggregators. In the latter case, even if located in the
middle of the pyramid, authorities regulate a large tissue part,
and thus act as global influencers or regulators. In principle,
from a clinical point of view, bridges and authorities could be
considered the main targets for therapy due to their role in
connecting and controlling tumor tissues.

We reported specifically on the application of complex
networks for tumor characterization with two main outcomes:
(a) Identification of the interface between tumor and healthy

surrounded tissue, and (b) Segmentation of intra-tumoral tissue
heterogeneity based on node hierarchies. By focusing on response
to therapy (relapse or not of ependymoma) we showed clearly
identifiable back-projection effects from the observed network
hierarchy. The anatomical images have clearly identified (red
region) the extension of the tumor location separated from
the healthy brain (green region). However, as smaller regions
(blue ring) surrounded the identified tumor regions (red spots),
a match was established between these spots and network
bridges (27).

In general, no clear conclusions hold for the small regions
located in the apparently healthy brain. Based on images readouts
such regions show similar features and behave similarly to tumor.
Whether this is sufficient to hypothesize a likely relapse deserves
further investigation and probably richer sequence of data. The
availability of more patients would facilitate the goal of designing
targeted risk tools. However, PM data present nowadays so
many dimensions at the individual patient scale that their
integration has become a need. Such aggregate would involve all
the features spanning multiple domains (environmental, genetic,
clinical, therapeutic, follow-up and lifestyle, nutrition etc.) and
informing on disease phenotypes. For instance, observation of
intra-heterogeneity occurring along the disease course might
reveal molecular target expression levels objectively limited in
the ability to guide treatment (what are suitable cutoffs for
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FIGURE 7 | Dependence of networks’ structure on clusters’ number. It is possible to visualize different levels of the network by incrementing the number of clusters.

Equivalently, an increase of network’s complexity allows better definition of the number of tissues and their connections. When the number of nodes exceeds the

informative content provide by our features, the network is overfitting and the links between nodes follow a random process.
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assessing the presence of targets? How is characterized the target
expression at time of recurrence?).

These knowledge gaps call for more precise prevention,
detection and treatment, and in turn requires a clinically-focused
effort by computational oncologists. Some key challenges have
been identified in multiple data modalities, insufficient data,
model interpretability and learningmethods (28). In this work we
have addressed mainly the second and third of these challenges,
given the availability of images and the centrality assigned to
network inference.

Role of Cancer
We have selected two cases ad hoc and showed the utility of
retrieving features that can be put in relationships by a simple
network metric. Then we have assessed the validity of such
features in view of the patient history, i.e., whether or not a
recurrence occurred years after the surgical and proton treatment
(Figure 5).

Concerning model interpretability, a limiting factor is how
to measure the effects of therapy at the image level. The
anatomical changes due to the surgical resection prevent from
an exact localization of the recurrence in the diagnostic images.
Nevertheless, we identified such region as the part of brain
in contact with the superior right part of the primary tumor
that moved down after tumor removal (Figure 5, central panel).
Based on the anatomical images, such regions seem located in
the healthy tissue. By contrast, the network assigns it to the
red spots associated with the primary tumor. This means that
although at the time of diagnosis the risk of recurrence is hard
to predict, networks can be highly informative for treatment
planning and follow-up.

Our results are also relevant to tumor microenvironment.
First, an interface between tumor and healthy tissue is
clearly identified by network bridges. Second, highly complex
interactions between tumor and host tissue occur exactly here,
something relevant for clinical decisions and intervention. From
a tumor perspective there is the need to degrade the extracellular
matrix and change pH to promote cellular infiltration, while
from the host there is the urgency to promote immune response
to block expansion and inoculate lymphocytes into the tumor
(29, 30). The success of chemo- and radiation therapy strongly
relies on the extension and vascularization of such interface. As
a matter of fact, any systemically administered drug needs to
cross such interface to reach the tumor. Furthermore, a good
oxygen perfusion, which is necessary for the radiation therapy
to be effective, is determined by the vascularization of such
interface (31). On the other hand, the same factors helping tumor
treatment may also increase the probability for tumor cells to
detach and enter the blood flow, which translates into an increase
of metastatic potential.

Methodological Choices
We applied a (non-deep) network approach. MR imaging
features have been used to establish attributes and dimension of
network nodes (or voxel clusters) with reference to ependymoma
patients monitored for response to proton therapy and subject
or not to relapse. For the challenge of image classification, the

standard practice is to adopt DL methods to dissect images and
define class characteristics. DL has been widely used in brain
studies, especially with MRI. The idea is to learn sequentially,
from local patches to representations and then labels. However, a
limitation is a certain lack of contextual information required for
some task. This needs further testing and makes DL suboptimal
for a content-based image retrieval task. Also, in some cancers
large datasets are missing and class imbalance may bias the
results. In particular, the size variation of target object within
the image is very relevant to our scopes. DL training with
multiscale input data followed by output data fusion is currently
non-sufficiently informative about robustness to size variation.

In our network approach to images, node connectivity could
be of high importance in clinical perspective. Let us consider
spatio-temporal aspects. For example, let us consider two tissues
apparently disconnected, namely an inner region of the tumor
and a portion of healthy tissue far from it. Even if they are
not in contact, or spatially contiguous, these two regions can
still strongly interact through vessels. In principle, estimating
the distances between nodes along the entire network allow to
discriminate between short- vs. long distance processes, which
are represented by tumor infiltration and metastases formation,
respectively. Temporality is a key factor, as for instance relapse
has been documented in one of the examined cases. Explicit
consideration of this factor supported by quantitative assessment
and visual interpretability of results adds value to the arguments
of those emphasizing the need to investigate longitudinal
heterogeneity, possibly therapy-driven along disease course.
Accounting for follow-up information means covering with the
analysis multiple timepoints and capture dynamic aspects of
cancer phenotypes.

CONCLUDING REMARKS

Challenges
The integration of medical imaging data is traditionally a
complex task. Each set of data is a measure of the activity of
multiple biological and physiological processes. This means that
a synthesis between two images is not necessarily informative
by itself, i.e., by simply joining component images. Without
integrating the unitary components, the synthesis would be
incomplete and the image fusion not accomplished. Aware
of such limitation, we proposed a biomedical imaging model
centered necessarily on voxels as the unitary components. The
strategy of integration is inspired by network inference through a
few landmark points:

a) Cancer data are extremely heterogeneous. This is visible from
both the data generating sources, which in turn calls for
different (complementary or not) techniques to treat them
(32, 33). Networks can work with a blend of underlying
machine learning algorithms, data fusion methods and
statistical principles.

b) Voxels acquire meaning when connected with each other. It
is expected that tissue characteristics are reflected by the
voxels and they clusters, but the picture is far more blurred
with cancer microenvironment. Therefore, voxels and their
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clusters inform of tissue characteristics more or less distinctly
depending on how similar they are to each other.

c) Images can be represented by sets of highly specific features.
For instance, physiological processes cover different
spatio-temporal scales, and require many parameters to
be accounted for by models. Metabolism-driven images
refer metabolic processes taking place at the molecular
level. Instead, blood perfusion takes place at the cellular
level. Biological processes are interrelated and organized
sequentially or hierarchically (34). In all such cases features
have different properties that need to be harmonized, and
networks offer scaffolds suitable to do so.

d) Stochasticity and Dynamics must be accounted for. This
translates into the need of considering the effects of small-to-
big interactive perturbations that may induce drastic changes
and propagate their influence in complex non-linear systems
(35, 36).

Precision in Radiomics
While DL has been applied to a myriad of biomedical imaging
contexts, including onco-radiomics, complex networks have
been employed to a much lesser extent in medical imaging
applications, despite they can cope quite well with most of
the previously described hurdles. This gap is due to several
factors. For classification, reconstruction, recognition and
similar tasks DL is now a gold standard. The problems with
DL, together with overfitting, are mainly interpretability
and transparency, both dependent on the “black box”
learning paradigm.

At the other end, networks are composed of nodes bound
together by edges. Such simple geometrical representation
offers properties that fit most needs, such as (i) Leveraging a
hierarchical structure (ii) Allowing a multi-layer architecture
describing different spatial scales (iii) Offering a template
use for modeling external perturbations aimed at simulation
of treatments and interventions and (iv) Providing built-in
integration between image data and other molecular, genetic,
clinical data. Network topological properties highly stimulate our
aim of demonstrating both principled and practical applicability
of network inference to medical images together with their
radiomic integrability.

Radiomics elaborates the informative contents of big data
associated to medical images and obtained in relation with
physiological, clinical, biological, genomic evidences. This
merge necessarily generates a series of novel tasks in the
clinical practice and in the scientific research designed to
support clinical decisions. Quantitative imaging has many
tools and methods available to bring added value from
the translational medicine standpoint. The expected gain is
that data (including images) volume and variety may lead
to superior accuracy in measurements and more objective
data interpretation.

Precision radiotherapy is the associated field that may receive
immediate benefits from the availability of imaging-integrated
diagnostic tools useful for therapy selection and response
assessment (37). Method standardization is a requirement for

applications across multiple centers and in prospective clinical
trials so to establish the essential role of novel imaging
biomarkers. Networks present good properties in such regards,
as they are easily scalable and generalizable to various data
types integrable with medical images. Theranostics is another
promising area of research in which network-guided inference
may find application, especially for an understanding of the
efficacy of newly delivered drug classes (38).

Limitations of the Approach
A few bottlenecks emerged from our work. First, the need of
understanding better physiological vs. pathological implications
of network nodes. This calls for further research into data
knowledge assimilation and representation involving several
features, from images and other data types that might be
assessed as integrated node attributes. Second, the need of newly
conceptualized designs of therapy simulations, which might find
in our approach a natural application ground and an efficient
computational framework. A third direction that needs further
work involves theoretical developments in complex networks
potentially inspiring knowledge integration and modeling
from data outsourced by medical multimodal imaging and
radiomics. In all such directions, our work is continuing with
applications over larger patient cohorts and generalization
across cancers.
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