
Published online 14 March 2019 Nucleic Acids Research, 2019, Vol. 47, No. 10 e58
doi: 10.1093/nar/gkz156

AIControl: replacing matched control experiments
with machine learning improves ChIP-seq peak
identification
Naozumi Hiranuma, Scott M. Lundberg and Su-In Lee*

Paul G. Allen School of Computer Science and Engineering, University of Washington, WA, USA, 98195-2350

Received October 16, 2018; Revised February 15, 2019; Editorial Decision February 20, 2019; Accepted February 28, 2019

ABSTRACT

ChIP-seq is a technique to determine binding loca-
tions of transcription factors, which remains a central
challenge in molecular biology. Current practice is to
use a ‘control’ dataset to remove background sig-
nals from a immunoprecipitation (IP) ‘target’ dataset.
We introduce the AIControl framework, which elimi-
nates the need to obtain a control dataset and instead
identifies binding peaks by estimating the distribu-
tions of background signals from many publicly avail-
able control ChIP-seq datasets. We thereby avoid the
cost of running control experiments while simulta-
neously increasing the accuracy of binding location
identification. Specifically, AIControl can (i) estimate
background signals at fine resolution, (ii) systemati-
cally weigh the most appropriate control datasets in
a data-driven way, (iii) capture sources of potential bi-
ases that may be missed by one control dataset and
(iv) remove the need for costly and time-consuming
control experiments. We applied AIControl to 410
IP datasets in the ENCODE ChIP-seq database, us-
ing 440 control datasets from 107 cell types to im-
pute background signal. Without using matched con-
trol datasets, AIControl identified peaks that were
more enriched for putative binding sites than those
identified by other popular peak callers that used a
matched control dataset. We also demonstrated that
our framework identifies binding sites that recover
documented protein interactions more accurately.

INTRODUCTION

Chromatin immunoprecipitation followed by sequencing
(ChIP-seq) is one of the most widely used methods to
identify regulatory factor binding sites and analyze regula-
tors’ functions. ChIP-seq identifies the positions of DNA–
protein interactions across the genome for a regulatory pro-
tein of interest by cross-linking protein molecules to DNA

strands and measuring the locations of DNA fragment en-
richment associated with the protein (1–3). The putative
binding sites can then be used in downstream analysis (4,5),
for example, to infer interactions among transcription fac-
tors (6–8), to semi-automatically annotate genomic regions
(9,10) or to identify regulatory patterns that give rise to cer-
tain diseases such as cancer (11,12).

Identifying protein binding sites from signal enrichment
data, a process called ‘peak calling,’ is central to every ChIP-
seq analysis, and has thus been a focus of the computa-
tional biology research community (13–21). Like other bio-
logical assays, ENCODE ChIP-seq guidelines recommend
that researchers obtain two ChIP-seq datasets to help sepa-
rate desirable signals from undesirable biases: (i) an IP (im-
munoprecipitation) target dataset to capture the actual pro-
tein binding signals using immunopreciptation and (ii) a
control dataset to capture many potential biases (22). Peak
calling algorithms compare IP and control datasets, locate
peaks likely associated with true protein binding signals and
simultaneously minimize false positives. However, despite
the guideline’s recommendations, many ChIP-seq users per-
form experiments either without a matched control dataset
or with a related control dataset from a public database in
order to avoid the additional time and expense of generating
control datasets.

Here, we introduce AIControl (Figure 1A), a single-
dataset peak calling framework that replaces a control
dataset with machine learning by inferring background sig-
nals from publicly available control datasets on a large scale.
As noted, most popular peak callers perform compara-
tive ChIP-seq analysis using two datasets: IP and control
datasets. Many of them have an option to perform single-
dataset analysis (i.e. IP dataset only) by determining the
structure of background signals from the IP dataset itself;
however, it is unlikely to be as accurate as when a control
dataset is used. AIControl aims to estimate and simulate
the true background distributions at each genomic posi-
tion based on the weighted contribution of a large num-
ber of publicly available control datasets, where weights are
learned from both the IP dataset and publicly available con-
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Figure 1. (A) An overview of the AIControl approach. A single control dataset may not capture different kinds of biases that give rise to background
signal. AIControl more thoroughly removes background signal of ChIP-seq by using a large number of publicly available control ChIP-seq datasets (see
‘Materials and methods’ section). (B) Comparison of AIControl to other peak calling algorithms. (Left) AIControl learns appropriate combinations of
publicly available control ChIP-seq datasets to impute background signal distributions at a fine scale. (Right) Other peak calling algorithms use only one
control dataset, so they must use a broader region (typically within 5,000–10,000 bps) to estimate background distributions. (Bottom) The learned fine
scale Poisson (background) distributions are then used to identify binding activities across the genome.

trol datasets (see ‘Materials and methods’ section for de-
tails).

Most popular peak callers––such as Model-based Analy-
sis of ChIP-seq ver 2.0 (MACS2) (13) and Site Identification
from Short Sequence Reads (SISSRs) (17)––learn local dis-
tributions of read counts from a matched control dataset in
a nearby region (Figure 1B, right). They then identify peaks
by comparing observed read counts in the IP dataset to
learned local background distributions across the genome.
Several methods––such as MOdel-based one and two Sam-
ple Analysis and inference for ChIP-Seq Data (MOSAiCs)
and BIDCHIPS––use a few predictors expected to repre-
sent sources of biases, such as GC content and read map-
pability. MOSAiCs performs negative binomial regression
of an IP dataset using GC content, read mappability and a
matched control dataset as predictors (19). Similarly, BID-
CHIPS uses staged linear regression to combine GC con-
tent, read mappability, DNase 1 hypersensitivity sites, an
input control dataset and a mock control dataset (18).

AIControl’s main innovations are 4-fold: (i) AIControl
can learn position-specific background distributions at a
finer resolution than traditional approaches by leveraging
multiple weighted control datasets. Most other peak callers
take a large window of nearby regions to learn the position-
wise distributions, which may inaccurately estimate local
structure of background signal. This feature also offers
significant improvements over our previous work, Cloud-
Control (16). CloudControl generates one synthetic con-
trol dataset based on publicly available control datasets
and identifies peaks by using peak callers that rely on a
large window of nearby signals for background estimation.
Throughout this paper, we show that AIControl signifi-
cantly improves peak calling quality relative to CloudCon-
trol. (ii) Existing peak callers require users to decide which
control datasets to include. AIControl offers a systematic
way to integrate a large number of publicly available con-

trol datasets. (iii) Because AIControl integrates many con-
trol datasets, it can potentially capture more sources of bi-
ases compared to existing methods that use only one con-
trol (e.g. MACS2 and SISSRs). Most confounders––such as
GC content and mappability––are likely present in some of
the control datasets AIControl incorporates. See ‘Model-
ing background signal’ in ‘Materials and methods’ section
for our mathematical formulation. (iv) AIControl does not
need a matched control dataset. We incorporate 440 con-
trol ChIP-seq datasets from 107 cell types in the ENCODE
database. By inferring local structure of background signal
from the large amount of publicly available data, AIControl
can identify peaks even in cell types without any previously
measured control datasets. We demonstrate that our frame-
work intelligently uses existing control datasets to estimate
background distributions for IP datasets in unseen cell types
in a cross-cell-type setup.

We evaluated the AIControl framework on 410 ChIP-seq
‘IP datasets’ available in the ENCODE database (23) (Sup-
plementary Table S1) using 440 ChIP-seq ‘control datasets’
(Supplementary Tables S2 and S3). The IP datasets span
across five cell types: K562, GM12878, HepG2, HeLa-
S3 and HUVEC. Every cell type except for HUVEC is a
cell line, and HUVEC is a primary cell (endothelial cell
of umbilical vein). Results show the following: (i) AICon-
trol outperformed other peak callers on identifying puta-
tive protein-binding sites based on sequence-based motifs
(Figure 2). All competing peak callers used matching pairs
of IP/control datasets, whereas AIControl did not––it used
only IP datasets (no matching control) and publicly avail-
able control datasets. AIControl predicted putative bind-
ing sites well even when all control datasets from the same
cell type were removed, which suggests that it reliably esti-
mates background signals in a cross-cell-type manner when
ChIP-seq is performed on an unseen cell type (Figure 4). (ii)
PPIs were more accurately predicted from peaks called by
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AIControl than from those called by all other methods in all
tested cell types (Figure 5). (iii) Peaks identified by AICon-
trol showed superior performance in motif enrichment and
PPI recovery tasks when they were processed with the ir-
reproducible discovery rate (IDR) pipeline (Supplementary
Figure S1). (iv) AIControl exhibited strong performance on
datasets that are not part of the ENCODE database (Fig-
ure 6). Our findings suggest that AIControl can remove the
time and cost of running control experiments while simul-
taneously identifying binding site locations of transcription
factors accurately.

MATERIALS AND METHODS

Methods

Modeling background signal. AIControl models back-
ground signals across the human genome as a linear combi-
nation of multiple different sources of confounding biases.
In particular, let us denote a control ChIP-seq dataset i as
yi ∈ R

g, where g represents the number of binned regions
across the whole genome. Let us also denote the signals
from n bias sources as x1, ..., xn ∈ R

g. For example, x1 may
represent the GC content across the whole genome. Then,
we model each control dataset yi as a linear combination of
x1, ..., xn:

yi = wi1x1 + wi2x2 + ... + win xn (1)

ŷi = yi + εi (2)

Here, �i represents irreproducible noise in a control dataset
i, and ŷi represents an observed control dataset i. Each con-
trol dataset is modeled as a specific linear combination of n
bias sources, and wi = 〈wi1, wi2, ..., win〉 ∈ R

n corresponds
to a specific control dataset i. These weight vectors of all
control datasets are not observed.

For a particular target IP dataset t, AIControl attempts
to estimate its background signal ŷt, which is modeled as
a weighted linear combination of x1, ..., xn with a weight
vector ŵt ∈ R

n :

ŷt = ŵt1x1 + ŵt2x2 + ... + ŵtn xn + εt. (3)

Below, we show that we can estimate ŷt without explicitly
learning ŵt and x1, ..., xn. The idea is that we can view a
set of weight vectors w1, ...wm ∈ R

n from m publicly avail-
able control datasets (here, 440 ENCODE control datasets,
summarized in Supplementary Tables S2 and S3) as a span-
ning set of Rn (or a large subset of it) provided that n < <
m. Thus, we can model ŵt as a linear combination of weight
vectors w1, ...wm:

ŵt = a1w1 + a2w2 + ... + amwm. (4)

Plugging equation (4) into equation (3) leads to:

ŷt = (a1w11 + ... + amwm1) · x1 + ...

+(a1w1n + ... + amwmn) · xn + εt (5)

= a1 · (w11x1 + ... + w1n xn) + ...

+am · (wm1x1 + ... + wmn xn) + εt (6)

= a1 y1 + a2 y2 + ... + am ym + εt (7)

= a1 ŷ1 + a2 ŷ2 + ... + am ŷm, (8)

where �t represents the total irreproducible noise. This
shows that ŷt can be represented as a weighted linear com-
bination of a large number of m control datasets. To learn
the coefficient vector, a = 〈a1, ..., am〉, we could do a linear
regression of a true background-signal vector for IP dataset
t, yt, against ŷ1, ..., ŷm; however, yt is not observed. Instead,
we regress the observed signal of the IP dataset, ot, against
ŷ1, ..., ŷm given that ot can be decomposed as follows.

ot = ProteinBindingSignal

+ReproducibleBackgroundSignal

+IrreproducibleNoise (9)

= pt + yt + εt (10)

The idea is that in theory, m control datasets, ŷ1, ..., ŷm,
should contain no information about pt and �t; therefore,
we can determine the coefficient vector a by regressing ot
against ŷ1, ..., ŷm unless we overfit. Here, the sample size is
millions, and the number of variables is 440, which means
that this problem is far from high-dimensional and unlikely
to overfit.

Computing coefficients. We regularize AIControl by ap-
plying the L2 ridge penalty on the coefficient vector a = 〈a1,
..., am〉. This leads to the following objective function:

argmin
a

||ot − Ya||22 + λ||a||22. (11)

Here, Y is a g by m ( = 440) matrix, where each column i cor-
responds to ŷi , the ith observed control dataset. Using the
closed form solution of ridge regression, we can efficiently
compute the coefficient vector, a:

â = (YTY + λI)−1YTot. (12)

Because this regression problem involves a large number of
samples (i.e. is far from being high-dimensional), we chose
a small regularization coefficient λ = 0.00001 to ensure nu-
merical stability. Since the dimension of Y is g by m, where
m is 440 and g is 30 million (under the default setting where
the size of bins is 100 base pairs (bps)), we are unlikely to
require strict regularization to prevent overfitting.

When implementing AIControl, we learned separate
models for signals mapped to forward/reverse strands
and even/odd positions, which results in four coefficient
vectors â per target IP dataset. ReproducibleBack-
groundSignal is estimated separately for forward and re-
verse strands as ŷ forward and ŷ reverse by applying the coeffi-
cients learned at even positions to calculate ŷ at odd po-
sitions and vice versa. Training on odd positions and pre-
dicting on even positions (and vice versa) are designed to
further prevent any possible overfitting. Spearman’s corre-
lation values of learned coefficients are shown in Supple-
mentary Figure S2. These values are generally above 0.8 for
any pair in the same IP dataset, showing that learned sets
of weights are consistent among forward, reverse, odd- and
even-positioned data.
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It is important to note that we need not to recompute
YTY ∈ R

440×440 for different IP datasets, because it remains
constant when the same set of control datasets is reused.
To estimate ŷt, we need only two passes through the whole
genome: the first to compute YTot and the second to calcu-
late Yâ.

Identifying peaks. Commonly used peak calling ap-
proaches identify a peak based on how far its read count
at a particular genomic region diverges from the null dis-
tribution (typically, Poisson, Zero-inflated Poisson or neg-
ative binomial distribution) that models background signal
without protein-binding events (13,17). Usually, null distri-
butions are semi-locally fit to signals from nearby regions
(5,000–10,000 bps) in a matched control dataset.

Like many other peak callers, AIControl uses the Poisson
distribution to identify peak locations; however, null back-
ground distributions are learned at much finer scale. In par-
ticular, we use the following probabilistic model of the null
background distribution for the read count observed at the
ith position of genome, cti ,in the target IP dataset t:

cti ∼ Poisson(λ = maximum(ŷti , 1))

= Poisson(λ = maximum(a1 ŷ1i + a2 ŷ2i + ... + am ŷmi , 1)),

where ŷ1, ..., ŷm represent m publicly available control
datasets, and a1, ..., am are estimated using equation (12).
This approach can be viewed as fitting a Poisson distribu-
tion to count data at each genomic bin i, ŷ1i , ..., ŷmi , which
are weighted differently with corresponding weights a1, ...,
am. The use of m control datasets (not just one matched con-
trol) lets us learn a higher resolution background distribu-
tion (Figure 1B). Finally, we introduce the minimum base
count of 1 read to prevent ŷt from being too small or neg-
ative since the coefficient vector a can contain negative val-
ues. In our implementation, users have an option to include
nearby b bins to learn the null background distribution in
case they choose not to use our standard control dataset
release and so do not have a sufficiently large number of
background controls m.

We then calculate the P-value and fold enrichment of the
observed count at each genomic bin based on the learned
null background distribution and background count. To
this point, peak identification processes are completed sep-
arately for forward and reverse strands; we use a1, .., am
learned from even-numbered regions to identify peaks at
odd-numbered regions (and vice versa) for each forward
and reverse strand. We then slide the locations of the P-
values and enrichment values by d

2 and − d
2 , for forward

and reverse signals, respectively. d is defined as the expected
distance between forward and reverse peaks; it is automat-
ically estimated in our framework (see below). Finally, the
smaller negative log10 P-value and fold enrichment of read
counts between the slid forward and reverse signals at every
position is output as a peak signal. This last step ensures
that peaks have bimodal shapes as expected for transcrip-
tion factor binding signals (13).

Estimating distance between forward and reverse peaks d.
AIControl automatically estimates the distance between
forward and reverse peaks similar to other peak callers.

Specifically, for each dataset, we find the sliding distance d
that minimizes the disagreement between the forward and
reverse mapped reads. In particular, the disagreement is de-
fined as follows:

disagreementd = 1
N

N∑

i=0

|SlidForwardReadsi −ReverseReadsi |.

(13)

N is the number of bins in the hg38 genome, which is ap-
proximately 30 million with a bin size of 100 bps. We find
d that minimizes the disagreement value with brute force
search between d = 0 and d = 400. With a default binning
size of 100 bps, there are only four options for d, and it is
relatively fast to find the optimal d. The summary of d esti-
mation for all 410 tested ENCODE IP datasets is shown in
Supplementary Figure S3.

Merging contiguous bins with significant binding signal.
AIControl assigns a P-value and fold enrichment of bind-
ing signal to each 100 bp genomic bin. As an optional post-
processing step, the current implementation of AIControl
can merge contiguous bins that have more significant bind-
ing signal than threshold (default is negative log10 P-value
of 1.5, approximately P-value of 0.03) by taking the maxi-
mum P-value and fold enrichment values among them. The
resulting peaks are output in a .narrowPeak format.

Data processing

Aligning BAM files. We describe BAM files used in this
project in our prior work on ChromNet (6). Specifically,
the raw FASTQ files were downloaded from the ENCODE
database and were mapped to the UCSC hg38 genome with
BOWTIE2 to ensure an uniform processing pipeline (24).
We provide the full list of ENCODE experimental IDs used
in this project in Supplementary Data S1.

Calling peaks with other methods. The version of MACS2
used in this paper was MACS2 2.1.0.20150731 (13).
The peaks were called with the following command:
'macs2 callpeak -f BAM -t chipseq dataset
--control matched control -q 0.05'. The
version of SPP used was 1.13, and the peaks were
called with an FDR threshold of 0.05 using the
'find.binding.positions' function in its R pack-
age (15). Additionally, we downloaded SPP peaks from
the ENCODE portal if they were available (we call
it ‘SPP-ENCODE’). For SISSRs, we used v1.4, and
the peaks were also called with a P-value threshold of
0.05 with the following command: 'sissrs.pl -i
chipseq dataset.bed -b matched control.bed
-p 0.05 -s 3209286105' (17). The peaks from
CloudControl were obtained in conjunction with MACS2
using the same parameters as above (16). All resulting
peak files can be viewed in Google Drive through our
GitHub repository under the ‘Paper’ section (https:
//github.com/suinleelab/AIControl.jl).

Obtaining peaks that are optimally controlled with IDR.
The ENCODE official pipeline for processing biological

https://github.com/suinleelab/AIControl.jl
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replicate samples is to use SPP and IDR in combination
(25). We also investigated the performance of peak callers
in combination with the IDR process (Supplementary Fig-
ure S1). In particular, for peaks processed with SPP, we
downloaded peak files tagged as ‘optimal idr thresholded
peak’ from the portal website of ENCODE (23). If they
were available on the hg19 genome, we used the UCSC
liftover tool to convert peak locations from the hg19 to
hg38 genome. For other peak callers (i.e. MACS2, SIS-
SRs and AIControl), we used the Python implementation
of idr (https://github.com/kundajelab/idr) to re-order peaks
for each pair of biological replicates. We believe that the
significant value thresholds we used (0.05 for MACS2 and
SISSRs, and 0.03 for AIControl) are lenient enough to cap-
ture both reproducible and irreproducible signals that are
required for the IDR process.

Storing large matrix of control signals efficiently. One of
the challenges in implementing AIControl in a user-friendly
manner is to find an efficient way of storing a massive
amount control datasets. In particular, we have 440 ChIP-
seq control datasets, and each of them is represented as a 30
million long vector, which stores read count for every 100 bp
bin. Collectively, the control datasets are represented as a
sparse, non-negative matrix of size 440 by 30 million. For
this project, we developed our own file format to store the
large matrix. First three 8 bit chunks of the file encode the
following three parameters: (i) a number of control datasets
(i.e. width of the matrix), (ii) a maximum possible value
stored in the matrix (100, if duplicate reads are removed)
and (iii) a data type (i.e. UInt8 or UInt16). Subsequent 8
or 16 bits, depending on the data type, are used for indi-
cating an actual value in the current entry of matrix, if it
is less than the predefined maximum value. Otherwise, it is
used for indicating how many entries (value − the maximum
value) to skip column-wise by filling in 0s. With this file for-
mat, we can compress all 440 control datasets to 4.6 GB.
Given that typical BAM files are about 0.5–3.0 GB, we be-
lieve this makes our standard control dataset package com-
pact enough for users to download.

Analysis pipeline

Standardizing peak signals. Different peak calling algo-
rithms identify different numbers of peaks at a given sig-
nificance value threshold and generate peaks with different
widths. To eliminate the possibility that these differences in
peak numbers or widths create biases, we standardized peak
signals for each dataset as follows. (i) We bin peak signals
by 1,000 bp windows. This creates vectors where each en-
try corresponds to the peak with the largest ranking mea-
sure (i.e. negative log10 P-values or signal values) among
the peaks that fall into the corresponding bin. We thereby
standardize peak width to 1,000 bps across all methods. (ii)
For each dataset, we use the top n binned peaks for all peak
callers, where n is the minimum number of binned peaks
from all tested peak callers at their corresponding signif-
icance thresholds (see above). Choice of ranking measure
matters. We used column 7 (signal value) of the narrowPeak
format for SPP and AIControl, and column 8 (P-value) for
MACS2. For SISSRs, its output does not follow the nar-

rowPeak format, but we use P-values associated with peaks
as the ranking measure. This process, which standardizes
the number of peaks identified by different peak callers, re-
sults in an average of 21,470 genome-wide peaks per dataset
(Supplementary Figure S4).

Evaluating motif enrichment. We applied AIControl to
410 ChIP-seq IP datasets from the ENCODE database for
which we could find motif information. For each IP dataset,
we obtained a probability weight matrix (PWM) of bind-
ing sites for its target transcription factor from the JASPAR
database (26). We then used FIMO from the MEME soft-
ware to search for the putative binding sites at the P-value
threshold of 10−5 (27). The idea is that correctly identified
peaks are likely in a region that contains the correspond-
ing motif. Of course, motif enrichment alone may not be a
reliable measure; thus in addition to examining the whole
genome, we also focus on the regions where transcription
factor binding occurs relatively more often. For instance,
studies show that 98.5% of the transcription factor binding
sites are positioned in DNase 1 hypersensitivity (DHS) re-
gions (28).

Therefore, to increase the reliability of motif-based evalu-
ation criteria, we focused our analysis on the following four
regions when we performed motif enrichment-based eval-
uation: (i) the whole genome, (ii) DNase 1 hypersensitivity
regions, (iii) regions that are 5,000 up- and downstream of
the start sites of protein coding genes and (iv) regions that
have more than 50% GC content. The DHS signals were
downloaded from the portal website of the Roadmap Epige-
nomics project (29). The regions proximal to protein coding
genes were obtained through BioMart (30). After standard-
izing peak signals across all methods (as described in the
previous subsection), for each peak calling method, we pre-
dicted the presence of putative binding sites in each of afore-
mentioned regions using varying thresholds of the signifi-
cance of binned peaks. This led to a precision-recall curve
for predicting the presence of putative binding sites when
the significance level of the peak varies (i.e. x-axis in the
standard precision-recall curve). We then used the area un-
der the precision-recall curve (AUPRC) to assess the perfor-
mance of peak calling methods. We computed the AUPRC
using Riemann sum approximation.

We used ‘waterfall plots’ to collectively visualize the
AUPRCs of all peak callers for all IP datasets in each cell
type for (i) the whole genome (Figure 2 and Supplemen-
tary Figure S5), (ii) DHS regions (Supplementary Figure
S6), (iii) up/downstream regions of protein-coding genes
(Supplementary Figure S7) and (iv) high GC content re-
gions (Supplementary Figure S8). For example, in Figures
2B and 4, each colored line corresponds to the performance
of a particular peak calling algorithm on IP datasets. The y-
axis measures the ratio of AUPRC given by the correspond-
ing peak calling methods to AUPRC given by the baseline
method, i.e. MACS2 without a control dataset (also repre-
sented by the dotted line). The x-axis corresponds to the
IP datasets, which are sorted independently for different
peak calling methods based on their y-axis values. We re-
moved datapoints if any peak caller called <20 peaks to
ensure the stability of AUPRC values (Supplementary Fig-
ure S4B). Peak callers with larger areas under the colored

https://github.com/kundajelab/idr
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line and above the dotted line, on average, better identified
peaks supported by sequence motifs (Supplementary Tables
S5 and S9). The AUPRC value for each peak caller on each
dataset is shown in Supplementary Data S2 for the whole
genome, Supplementary Data S3 for the DHS regions, Sup-
plementary Data S4 for the gene proximal regions and Sup-
plementary Data S5 for the GC rich regions.

Using area under PR curve of n most significant peaks as
an evaluation metric. As described in ‘Standardizing peak
signals’ section above, we analyze only the n most significant
binned peaks, where n is determined by the minimum num-
ber of binned peaks called among all peak callers. We then
generated the precision-recall curve for predicting the pres-
ence of putative binding sites using peak significance values
and used the AUPRC to assess peak calling quality. Here,
we aim to justify the use of AUPRC as an evaluation metric.
Supplementary Figure S9 explains what the AUPRC metric
captures for peak callers with different behaviors. Supple-
mentary Figure S9A shows a precision-recall curve when a
peak caller performs well at selecting true peaks in top n
(captured by area A) but poorly at ordering them in top n
(captured by area B). Supplementary Figure S9B shows an
example for the opposite case, in which a peak caller per-
form poorly at placing true peaks in top n but well at order-
ing them in top n. Both quantities measured by the area A
and B are important for high quality peak calling. In prac-
tice, researchers use 500–15,000 most significant peaks de-
pending on transcription factors. Our average choice for n
is 21,470, much higher than the widely used threshold (Sup-
plementary Figure S4A). This PR curve-based approach is
equivalent to testing peak calling quality (precision and re-
call) at every possible rank threshold up to the minimum
number of peak called, and we believe that this is better than
using an arbitrary threshold.

Obtaining and evaluating on protein–protein interaction
(PPI) matrix. The validated PPI interactions we used
for evaluation were downloaded from the BioGrid web-
site by 2018/2/5 (31). We used only the PPIs in Homo
sapiens from BIOGRID-ORGANISM-Homo sapiens-
3.4.157.mitab.txt. Because the interactions are
recorded in terms of Entrez ID in BioGrid, the uniprot IDs
of the targeted transcription factor of ENCODE IP datasets
were converted to Entrez ID using the Uniprot Mapping
Tool from http://www.uniprot.org/mapping/.

PPIs were estimated for each cell type as follows. First,
for each peak calling method, the inverse correlation matrix
from all n IP datasets in the cell type of interest was com-
puted using standardized peak signals (see ‘Standardizing
peak signals’) after binarization. This resulted in a matrix
of size n by n. Finally, the magnitudes of the inverse corre-
lation values were used as predictors for PPIs.

To visualize the quality of predictions, we used fold en-
richment plots (Figure 5 and Supplementary Figure S10),
like we did previously (6). Fold enrichment is defined as fol-
lows for given number of selected predicted interactions (x-

axis of Figure 5 and Supplementary Figure S10):

fold enrichment = # of BioGrid-validated edges
expected # of validated by random

.

(14)

This value has been shown to reflect both type 1 and type
2 errors. We plot the fold enrichment value (y-axis) against
the number of predicted interactions selected (x-axis) (Fig-
ure 5 and Supplementary Figure S10). A larger area under
the fold enrichment curve indicates superior performance
similar to PR curves.

Measuring consistency among pairs of unrelated IP datasets.
This analysis used 9,310 pairs of IP datasets in K562
that target unrelated transcription factors. Here, ‘unrelated’
means that the pair of transcription factors has no docu-
mented PPIs based on the BioGrid database (31). The num-
ber of shared peaks between a pair of datasets is computed
as follows: First, we binarize the standardized peak signals
for each dataset. Then, we counted the number of non-zero
entries at the intersection between two datasets. This gives
us the number of peaks in the same genomic locations be-
tween a pair of datasets.

SOFTWARE AVAILABILITY

The Julia 1.0 implementation of the AIControl soft-
ware and a thorough step-by-step guideline can be found
at our GitHub repository: https://github.com/
suinleelab/AIControl.jl. In the following four sub-
sections, we described in detail some of the important steps
to install and run our implementation and our user experi-
ence survey.

Converting an .fastq file to a sorted .bam file and aligning
it to hg38

Users must align their input .fastq files to the hg38
genome from the UCSC repository, which can be
found at http://hgdownload.soe.ucsc.edu/
goldenPath/hg38/bigZips/hg38.fa.gz using
bowtie2 (24). Unlike other peaking callers, the unique
core idea of AIControl is to leverage all available control
datasets in public. This requires all data––both target
ChIP-seq and public control datasets––to be mapped to
the exact same reference genome. Currently, the control
datasets that we provide are mapped to the UCSC hg38
genome. Therefore, for instance, if the target ChIP-seq
dataset is mapped to a slightly different version of the hg38
genome, the AIControl pipeline will report an error. If
users start with a .bam file that is already mapped, the
recommended way of resolving this error is to use bed-
tools, which provides a way to convert .bam files back
to .fastq files and realign to the correct version of the
hg38. (see ‘Step 3.1’ on our GitHub repository at https:
//github.com/suinleelab/AIControl.jl for
specific commands). The direct output of bowtie2 is
a .sam file. Users need to use samtools to convert
it to a .bam file and sort it in lexicographical order
(see ‘Step 1’ on our GitHub repository at https:

http://www.uniprot.org/mapping/
https://github.com/suinleelab/AIControl.jl
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/hg38.fa.gz
https://github.com/suinleelab/AIControl.jl
https://github.com/suinleelab/AIControl.jl
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//github.com/suinleelab/AIControl.jl for a
piped single-line command for alignment).

Downloading compressed control data files

AIControl requires users to download binned control
datasets on their local systems. The compressed control data
files for all 440 ENCODE control datasets are available
through an FTP server for our project at https://dada.
cs.washington.edu/aicontrol/. We have two sepa-
rate files for signals mapped to forward and reverse strands.
These files are 4.6 GB in total, and they occupy 13 GB when
decompressed (see ‘Control data files required for AICon-
trol’ on our GitHub repository at https://github.
com/suinleelab/AIControl.jl).

Running the AIControl script

We generated a julia script file, aicontrolScript.jl,
which performs the AIControl framework, which takes in
the sorted .bam file and outputs a .narrowPeak file (see
‘Step 3’ on our GitHub repository at https://github.
com/suinleelab/AIControl.jl for how exactly to
execute it). For a full commentary of our major updates in
Julia implementation, please refer to the ‘Major Updates’
section of our GitHub repository.

We provided error messages for several types of errors
that could occur frequently in practice. These errors include
(i) ‘input ChIP-seq file missing error’, (ii) ‘compressed con-
trol file missing error’ and (iii) ‘genome mismatch error’.
Specifically, for the ‘genome mismatch error’, we made an
optional step that explains why that happens and how to
resolve it in our GitHub repository (see ‘Step 3.1’). If you
have a problem running the AIControl pipeline, please refer
to the ‘Issues’ page of our GitHub repository at https://
github.com/suinleelab/AIControl.jl or e-mail
suinlee@cs.washington.edu.

Verifying the AIControl pipeline

We conducted a survey for user experience on AIControl by
asking 11 researchers in the computational biology field to
run the AIControl pipeline from scratch, starting from Julia
installation. All users were able to install and run AIControl
successfully. We asked each of them (i) whether our step-
by-step GitHub guideline was clear, (ii) whether they were
able to install Julia with no issue when they followed just
the guideline, (iii) whether they were able to run AIControl
with no issue and (iv) which system they used to install and
run AIControl on.

We verified that our pipeline can be installed and run on
the following operating systems: CentOS 7, Ubuntu 18.04,
Arch Linux, macOS Sierra, macOS Mojave and Windows 8.
Although AIControl has been verified on many widely used
systems (macOS, Windows and Linux), we recommend that
users run AIControl on Unix-based systems (i.e. macOS
or Linux), because the other peripheral software, such as
samtools or bowtie2, are easier to install there through
conda and bioconda.

RESULTS

Peaks identified by AIControl are more enriched for binding
sequence motifs

We compared AIControl to the following four alternative
peak calling methods in terms of its enrichment for pu-
tative binding sites, the most widely used evaluation met-
ric for peak-calling algorithms: MACS2 (13), SISSRs (17),
SPP (15) and MACS2 + CloudControl (16). To define pu-
tative binding sites without using ChIP-seq data, we iden-
tified sequence motifs using FIMO from the MEME tool
(27) and position weight matrices (PWMs) from the JAS-
PAR database (26) (see ‘Materials and methods’ section).
MACS2, in particular, has been favored by the research
community due to its simplicity and steady performance
as validated by many comparative studies of peak calling
algorithms (20,21,32). To evaluate the enrichment for puta-
tive binding sites, we used ranking measures (negative log10
P-values or signal values, see ‘Standardizing peak signals’
section) of peaks to predict the presence of putative bind-
ing sites and measured the area under the precision-recall
curves (AUPRCs) in the following four genomic regions:
(i) the whole genome, (ii) DNase 1 hypersensitivity regions
(DHS), (iii) 5,000 bps up- and downstream of protein cod-
ing gene start sites, (iv) regions with more than 50% GC
content. To ensure that each peak caller was tested on the
same number of peaks, we measured AUPRC values on the
n most significant peaks, where n is the minimum number
of peaks called across all peak callers for each IP dataset
(see ‘Materials and methods’ section). This process prevents
peak callers that identify more peaks at a given threshold
from having an unfair advantage. For the analyses across
the whole genome, this resulted in an average n of 21,470
peaks per IP dataset for the entire genome (Supplementary
Figure S4).

Figure 2B compares the AUPRCs across the whole
genome achieved by the five peak callers for 410 IP datasets
across five different cell types: K562 (149), GM12878 (99),
HepG2 (87), HeLa-S3 (60) and HUVEC (15). AIControl
yielded better fold improvements of AUPRCs over that of
baseline than the other peak callers (P-value < 0.0001 with
the Wilcoxon signed-rank test on AIControl versus SIS-
SRs on matched pairs of fold improvements). When the re-
sults are viewed separately for the five cell types, AICon-
trol achieves the best performance in all cell types except
for HUVEC (Supplementary Figure S5 and Supplementary
Table S5). Again, AIControl used only IP datasets without
their matched control datasets, whereas other peak callers,
except for CloudControl+MACS2, accessed both IP and
their matched control datasets. AIControl continues to per-
form better on the motif enrichment task even when the
analyses are restricted the aforementioned regions (2)–(4)
of the genome (Supplementary Tables S6, S7, S8 and Sup-
plementary Figures S6, S7, S8). To validate that we used
these peak callers correctly, we further investigated the per-
formance of all peak callers on five IP datasets for the RE1-
Silencing Transcription factor (REST) measured in K562,
for which we had quantitative polymerase chain reaction
(qPCR) verified TF-binding sites (33). All five peak callers

https://github.com/suinleelab/AIControl.jl
https://dada.cs.washington.edu/aicontrol/
https://github.com/suinleelab/AIControl.jl
https://github.com/suinleelab/AIControl.jl
https://github.com/suinleelab/AIControl.jl
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Figure 2. (A) Average percent improvement of area under precision recall curves (AUPRCs) per transcription factor. Peaks were identified using: (i)
AIControl w/o control, (ii) MACS2 w/control, (iii) SISSRSs w/control, (iv) SPP w/control and (v) CloudControl + MACS2 w/o control. Only the
transcription factors that were measured more than five times are shown (the number of measurements shown in parenthesis), and they are ordered by
AIControl’s performance. The transcription factors that AIControl performed the best on are shown with an asterisk (24 out of 33). The ones on which
AIControl performed worst are shown with a minus sign (1 out of 33). (B) Relative performance of five peak calling methods compared to MACS2 without
using a matched control dataset as a baseline (dotted line). The y-axis shows the fold improvement of the area under the precision-recall curves (AUPRCs)
for predicting the presence of putative binding sites with ranking measures associated with the peaks over the baseline (i.e. MACS2 without using a matched
control dataset) across the whole genome. The x-axis shows the all 410 ENCODE ChIP IP datasets ordered by the fold improvement (y-axis) across all
tested cell types; 149, 99, 60, 87 and 15 for K562, GM12878, HeLa-S3, HepG2 and HUVEC, respectively. Note that the ordering of datasets is different
for each peak caller. Area between each line and the dotted baseline is shown in parenthesis.

identified all eight qPCR-confirmed binding locations on
chromosome 1.

Datasets that target certain transcription factors yielded
more performance improvements than others. Figure 2A
shows the mean percent improvement of the five peak
callers––three of which use matched control datasets––over
baseline (i.e. MACS2 without matched control) for tran-
scription factors that are measured more than five times
across all 410 IP datasets. The AIControl framework out-
performed all other peak callers in 24 out of 33 tran-
scription factors without needing a matched control exper-
iment. In particular, our framework exhibited major av-
erage improvements on transcription factors MAX, JUN
and STAT1, over the best performing peak callers, while

it showed decreased performance on SP1. Arvey et al.
(34) examined cell-type-specific binding of patterns of 15
transcription factors from ENCODE data between K562
and GM12878. In the study, they observed more cell-
type-specific peaks from transcription factors MAX, JUN,
JUND, YY1 and SRF. In Figure 2A, AIControl performs
the best on all of these factors, suggesting that our frame-
work is able to well identify binding sites of transcription
factors that exhibit differential binding patterns depending
on target cell types.

We also investigated whether our analysis is affected by
the quality of putative true binding sites by checking the re-
lationship between the relative performance of AIControl
over MACS2 across the whole genome and the information
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contents of the JASPAR PWMs. However, we did not find
any significant correlation (r = 0.02, P-value = 0.84, Sup-
plementary Figure S11).

Interestingly, but not surprisingly, the more publicly
available control datasets are incorporated, the better is
the performance of AIControl. We picked 36 datasets that
are associated with transcription factors measured more
than 10 times across all tested cell types (i.e. YY1, CEBPB,
STAT1, JUN, FOS, REST, MAX, CTCF and NRF1 from
each tested cell type; some TF/cell-type pairs were missing
due to data availability). When averaged over many random
subsets of different sizes, we observed that the AIControl
framework experiences monotonic but diminishing increase
of the performance from no control to 440 control sets,
peaking at 29% improvement with all 440 control sets (Sup-
plementary Figure S12). While approximately 86% of the
overall improvement is made with 200 control datasets, the
additional 240 datasets still contribute positively (P-value
< 0.001 for Wilcoxon signed-rank test, comparing the per-
formance at 200 and 440 control pairwise). This result sug-
gests that the improved performance of AIControl in fact
depends on the inclusion of public control datasets.

We recognize that our own pipeline for SPP is differ-
ent compared to that of the ENCODE consortium since
it has extra read/peak filtering steps. Naturally, this results
in slightly different sets of peaks. Therefore, we decided to
compare AIControl directly against the ENCODE peaks
(SPP-ENCODE) in order to assure that AIControl still
holds an advantage. We downloaded a peak file from the
ENCODE portal for each dataset, if it was available. Sup-
plementary Figure S13 shows that SPP-ENCODE outper-
forms SPP potentially due to the extra filtering steps, and
more importantly, AIControl outperforms SPP-ENCODE.
We note that we did not include SPP-ENCODE to Figure
2 because the SPP-ENCODE data are available in only a
subset of IP datasets (i.e. 123 out of 149 for K562; 65 out
of 99 for GM12878; 46 out of 87 for HepG2; 18 out of 60
for HeLa-S3; 7 out of 15 for HUVEC). The IDs of SPP-
ENCODE peak files downloaded are listed in Supplemen-
tary Data S6.

AIControl coefficients reflect cell type specificity but not lab
specificity

AIControl learns the weights of contributions by all 440
ENCODE control datasets to estimate the background
ChIP-seq signals for each IP dataset (Figure 1; also see ‘Ma-
terials and methods’ section). Figure 3 shows the magnitude
of weights assigned to all 440 control datasets (columns) for
each of the 410 IP datasets (rows). A clear block diagonal
pattern emerges when we sort the rows and columns based
on cell type (Figure 3). This is expected because known fac-
tors for background signals, such as sonication bias and
DNA acid isolation, depend on cell types. On the other
hand, when we sort the rows and columns based on lab, we
see less significant pattern, except for the datasets from the
Weissman lab (Supplementary Figure S14). This suggests
that lab-specific batch effects are less significant than cell
type-specific effects on the ENCODE ChIP-seq data. Al-
though the control datasets from the same cell type as the
IP dataset are more likely to have large weight magnitudes

(Figure 3), it is important to note that AIControl learns
to put high weights on some of the other biologically sim-
ilar cell types. For example, the green box in Figure 3 indi-
cates the weights of control datasets measured in GM12892
and learned for the IP datasets in GM12878. Both are B-
lymphocyte cell types, and AIControl learns to leverage in-
formation from both cell types to identify peaks more accu-
rately in GM12878.

AIControl retains its performance in a cross-cell-type setting
where control datasets from the same cell types or the same
labs are excluded from the background set

The results described in the previous subsection indicate
that AIControl leverages information about background
signal from biologically similar cell types. A natural ques-
tion is whether AIControl can correctly identify peaks in
an IP dataset from an unseen cell type that is not included
in the public control datasets that AIControl uses. This
tests AIControl’s ability to estimate, in a cross-cell-type
manner, background signals in an unknown cell type from
background signals in known cell types. Another impor-
tant question is whether AIControl performs well for an
IP dataset generated in a lab that did not generate the con-
trol datasets AIControl uses. To address these questions, we
compared the following settings: (i) AIControl with all 440
control datasets except for matched controls, (ii) AIControl
without control datasets from the same cell type as the IP
dataset, (iii) AIControl without control datasets from the
same lab as the IP dataset, (iv) AIControl without control
datasets from the same lab or the same cell type as the IP
dataset, (v) SISSRs with matched control datasets and (vi)
SISSRs without matched control datasets. We chose SIS-
SRs because it is the best competitor in terms of identifying
presence of motif sequences (Figure 2).

Figure 4 shows that AIControl with different patterns of
excluding control datasets are still able to outperform SIS-
SRs with matched control datasets in all cell types except for
HUVEC, for which we only have a small number of datasets
(n = 15). Notably, the exclusion of control datasets from the
same cell type (i.e. settings (ii) and (iv)) has a larger impact
on the performance than the lab-based exclusion (i.e. setting
(iii)). This indicates that lab specific biases are less signifi-
cant and easier to learn in a cross-lab setting. For settings
(ii) and (iv), we observed the largest decrease in the per-
formance of AIControl in K562, followed by HepG2 and
HeLa-S3. On the other hand, in GM12878, AIControl was
able to leverage information from other B-lymphocyte cell
lines (i.e. GM12892) (Supplementary Figure S15).

The decline in K562, followed by HepG2 and HeLa-
S3, has two likely reasons. First, the largest number (48 of
440, or 10.9%) of ENCODE control datasets are from the
K562 cell line (Supplementary Table S3). Second, the struc-
ture of background signals in K562, HepG2 and HeLa-
S3 cell types may be unique because of their abnormal
karyotypes. Regions with multiplication, deletion and copy
number variations that are not documented in the reference
genome can display signals that are locally proportional to
alterations in the abnormal karyotype. This makes it harder
for AIControl to estimate background signals in abnormal
regions without having access to the controls from the same
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Figure 3. Normalized weights that the AIControl framework assigns to 440 ENCODE control datasets (columns) for each of the 410 IP datasets (rows)
(Supplementary Tables S1 and S3). The black rectangles indicate the weights of the control datasets measured in the same cell type as the IP datasets. The
green rectangle indicates the weights for control datasets measured in GM12892, which AIControl learned to estimate background ChIP-seq signals for
IP datasets measured in GM12878. Both are B-lymphocyte cell types.

cell type. On the other hand, in GM12878 and HUVEC,
which is known to have a normal karyotype, the perfor-
mance of AIControl did not drop even without having ac-
cess to control datasets from the same cell types.

We further investigated whether including additional
control datasets with abnormal karyotypes hurt the perfor-
mance of AIControl because they are less informative in
certain regions, or including control datasets from just nor-
mal karyotypes is better even if it results in a significantly
reduced number of datasets. For the GM12878 datasets,
we compared the performance (i) using all 440 control
datasets against the performance and (ii) using only 93 con-

trol datasets from the related GM cell lines, which have rel-
atively normal karyotypes. Matching control datasets were
not used. We observed that the performance slightly in-
creases even when control datasets with abnormal kary-
otypes were included (Supplementary Figure S16, P-value
= 0.02 with Wilcoxon signed-rank test). This is expected
since our model should be able to put appropriate weights
on control datasets, based on how informative they are for
imputing common background signal in an IP dataset, es-
pecially given that we use 30 million genomic positions as
samples that provide strong statistical power. While Sup-
plementary Figure S12 from the previous section already
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Figure 4. Relative performance of AIControl when control datasets from the same cell types or the same labs have been excluded from the background
set. We compare across six settings: (i) AIControl with all 440 control datasets except for matched controls, (ii) AIControl without control datasets from
the same cell type as the IP dataset, (iii) AIControl without control datasets from the same lab as the IP dataset, (iv) AIControl without control datasets
from the same lab or the same cell type as the IP dataset, (v) SISSRs with matched control datasets and (vi) SISSRs without matched control datasets. As
in Figure 2, the y-axis shows the fold improvement of the AUPRCs for predicting the presence of putative binding sites compared with the baseline (i.e.
MACS2 without using a matched control dataset) for (A) 149 IP datasets measured in K562, and (B) IP datasets measured in the tier 1 ENCODE cell
types: GM12878, HepG2, HeLa-S3, HUVEC.
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shows that more control datasets are always better (assum-
ing you do not know which controls you need), this result on
GM cell types shows that even control datasets from abnor-
mal cell types improve the performance on cell types with
a normal karyotype, thanks to the ability of AIControl to
properly integrate background signal structures.

The performance of AIControl indeed dropped when the
control datasets from the same cell types are not available.
However, it is important to note that our framework, with-
out controls from the same cell type, identified peaks that
are better associated with sequence motifs than other peak
callers with matched control datasets from the same cell
type (Supplementary Tables S5 and S9). This suggests that
our framework can successfully estimate the structure of
background signals in one cell type by leveraging informa-
tion from other cell types in a ‘cross-cell-type’ manner.

AIControl reveals transcription factor interactions better
than alternative methods

One of the many downstream use cases of ChIP-seq data is
to learn interactions among regulatory factors by observing
their co-localization patterns on genome (35–37). In partic-
ular, Lundberg et al. (6) showed that the chromatin network
(i.e. a network of transcription factors (TFs) that co-localize
in the genome and interact with each other) can be inferred
by estimating the conditional dependence network among
multiple ChIP-seq datasets. The authors showed that the in-
verse correlation matrix computed from a set of ChIP-seq
datasets can capture many of the known physical protein–
protein interactions (PPIs) from the BioGrid database (31).
Here, we use the same evaluation criteria: significance of the
overlap between BioGrid-supported PPIs and the network
estimates inferred based on the peaks called by AIControl
or by alternative methods. Note that the interactions be-
tween datasets that target the same transcription factor and
the self-interactions in the diagonal entries are included in
this analysis.

Figure 5A shows the fold enrichment of true posi-
tive predictions over random ones with respect to the
number of network edges considered (x-axis) (i.e. sorted
based on the magnitude of entries in inverse correla-
tion matrices), as revealed by Lundberg et al. (6). Ar-
eas under the enrichment curves indicate that AICon-
trol performs better at revealing known PPIs than other
methods in K562 (Figure 5). In particular, AIControl
ranked more true BioGrid-supported interactions––for
example, JUN/STAT1, E2F6/MAX, IRF1/STAT1 and
GATA2/JUN––above the threshold (defined as the num-
ber of true interactions) than other peak callers (Supple-
mentary Table S10). Additionally, we performed the same
enrichment analysis on the other four cell types: GM12878,
HepG2, HeLa-S3 and HUVEC. We observed that the im-
proved performance of AIControl in terms of the area un-
der the enrichment curve consistently generalizes to other
cell types (Supplementary Figure S10).

Figure 5B visualizes the inverse correlation matrices gen-
erated from the peaks called by five different peak callers
as well as the PPIs documented in BioGrid database (la-
beled as ‘Truth’). Note that AIControl constructs a chro-
matin network that best overlaps with the ground truth

(i.e. BioGrid PPIs) relative to other methods. Additionally,
we compared AIControl against SPP peaks downloaded
from ENCODE (‘SPP-ENCODE’) and SPP peaks gener-
ated with our own pipeline. Similar to the result in the motif
enrichment task, AIControl continues to exhibit better per-
formance at recovering PPIs (Supplementary Figure S17).

Supplementary Table S11 shows top 10 TF interactions
that are uniquely suggested by AIControl. Although these
interactions are not currently in the database, some studies
suggest potential interactions between the pairs. For exam-
ple, interactions among CEBPB, NFY and other transcrip-
tion factors were also thought to play a functionally impor-
tant roles in the hypoxia-inducing factor (HIF) transcrip-
tional response (38). These predicted interactions, unique
to AIControl, may serve as potential targets for discovering
previously uncharacterized PPIs.

Although we showed that AIControl better recovers
known PPIs, it is important to note that the truth ma-
trix likely contains some false positives and potentially
many false negatives. First, the truth matrix is constructed
using information drawn from all available cell types.
Second, some interactions might still be undocumented
in the BioGrid database. Further, our prediction from
ChIP-seq data is more likely to recover interactions near
DNA strands. Despite these uncertainties, the finding that
AIControl recovers PPIs more accurately in all cell types
suggests that using this framework can improve the quality
of downstream analysis that follows ChIP-seq experiments.

AIControl better removes common background signal among
datasets

One of the most frequently used quality measures for bio-
logical experiments is the consistency of a pair of replicate
datasets, which can be measured by the number of shared
peaks. A pair of replicate datasets should capture the exact
same signals; thus, a pair with better quality should share
more peaks with each other. On the other hand, the quality
of background signal removal can be assessed by measur-
ing the inconsistency in a pair of unrelated datasets. We de-
fine an ‘unrelated’ pair as a pair of datasets that (i) is in the
same cell type and (ii) targets unrelated transcription factors
without any documented PPI in BioGrid. As described in
‘Materials and methods’ section, AIControl models ChIP-
seq experiments as follows:

ChIPseqData = ProteinBindingSignal

+ReproducibleBackgroundSignal

+IrreproducibleNoise

For a pair of unrelated datasets, we assume that there is no
ProteinBindingSignal that gives rise to shared peaks.
The only source of shared peaks in an unrelated pairs is Re-
producibleBackgroundSignal. If a peak caller per-
fectly removes ReproducibleBackgroundSignal, it
should ideally leave no peak that is shared between a pair
of unrelated datasets. Thus, peak callers better able to re-
move common background signal should have fewer shared
peaks for unrelated datasets. This metric alone is not per-
fect, because a pair of completely random peaks can achieve
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Figure 5. Performance of AIControl compared to other peak callers on the PPI recovery task in K562. (A) Enrichment of BioGrid-supported interactions
of transcription factors in the inverse correlation networks inferred from 149 K562 IP datasets. Peak signals are obtained from: (i) AIControl w/o control,
(ii) MACS2 w/control, (iii) SISSRSs w/control, (iv) SPP w/control and (v) CloudControl + MACS2 w/o control. (B) Documented interactions among
regulatory proteins (top left) and heat maps of inverse correlation networks (rest). The heat maps are binarized to show top 3,583 interactions, which is
equal to the number of true interactions.

good results as well. However, we believe that, in combina-
tion with the motif enrichment and PPI recovery task, this
metric highlights an important aspect of noise removal pro-
cess.

Supplementary Figure S18 shows the ‘sharedness’ of
peaks for 9,310 pairs of unrelated datasets in K562 pro-
cessed by five peak callers: AIControl, MACS2, SISSRs,
SPP and CloudControl+MACS2. The y-axis indicates the
proportion of unrelated datasets that have less than a par-
ticular number of shared peaks, which is represented in the
x-axis. The smaller area under the curve demonstrates that
a peak caller generally identifies fewer shared peaks be-
tween a pair of unrelated datasets, and AIControl exhibits
the smallest area under its curve. For other peak callers, a
larger percentage of unrelated dataset pairs contained more
shared peaks, suggesting that their bias-removal process
was not as thorough as that of AIControl’s.

AIControl is compatible with the irreproducible discovery
rate (IDR) framework

We investigated the performance of AIControl in a situation
where biologically replicated samples are available. In par-
ticular, the ENCODE consortium uses the irreproducible
discovery rate (IDR) framework to adaptively rank and se-
lect peaks based on the rank consistency/reproducibility of
signals among biological replicates (25). The ENCODE of-
ficial pipeline uses SPP in combination with IDR to identify
and reorder peaks in ChIP-seq datasets. In order to evalu-
ate the effect of IDR on the peak callers, for datasets where
biological replicates are available, we performed IDR analy-
sis after calling peaks with AIControl, MACS2 and SISSRs.
For SPP, we directly downloaded peaks processed with IDR
from the ENCODE website.

Supplementary Figure S1A shows the superior perfor-
mance of AIControl+IDR in the motif sequence iden-
tification task across five tested cell types (i.e. K562,
GM12878, HepG2, HeLa-S3 and HUVEC) compared to
that of other peak callers with IDR. Negative log10 IDR
values were used as a ranking measure. Needless to say,
other peak callers have access to matched control datasets,
whereas AIControl does not. We also observed that AICon-
trol+IDR better predicts protein–protein interactions in the
K562 cell type than other peak callers when they are used
in combination with IDR (Supplementary Figure S1B).

AIControl retains its performance on datasets outside the
ENCODE database

The recommended protocol strictly regulates ChIP-seq ex-
periments in the ENCODE database. However, external
labs do not always adhere precisely to this protocol. To as-
sure that the AIControl framework generalizes strong per-
formance on a ChIP-seq IP dataset that is not a part of the
ENCODE database, we performed peak calling on 14 IP
datasets that are obtained from 8 independent studies (39–
46), which are not part of the ENCODE database and are
only on the GEO or ArrayExpress database. We only ana-
lyzed the datasets whose target motif PWMs for H. sapiens
are available in the JASPAR database. The AUPRC values
were measured across the whole genome. The information
of the 14 datasets are summarized in Supplementary Table
S4. We compared the following peak calling frameworks:
AIControl, MACS2, SISSRs and SPP.

Figure 6 shows the performance of AIControl on all 14
external datasets in comparison to other peak callers. Indi-
vidual PR curves are shown in Supplementary Figure S19.
AIControl retains its strong performance on all datasets
except for the one that targets SP1 in the HEK293 cell
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Figure 6. Relative performance of five peak calling methods on external datasets. Peak regions were identified using: (i) AIControl w/o control, (ii)
MACS2 w/control, (iii) SISSRSs w/control and (iv) SPP w/control. The y-axis shows the percent improvement of the area under the precision-recall
curves (AUPRCs) for predicting the presence of putative binding sites with ranking measures associated with the peaks over the baseline (i.e. MACS2 with-
out using a matched control dataset). The x-axis shows the non-ENCODE ChIP IP datasets ordered by the percent improvement achieved by AIControl
(y-axis). Datasets measured in cell types that are not in the 440 ENCODE control set are shown with asterisks.

type. This is consistent with the result shown in Figure 2A,
where AIControl exhibits the worst performance on the
datasets with SP1. Most notably, 5 out of the 14 external
datasets were measured in the cell types that were not in-
cluded in the pool of control datasets used for AIControl.
All datasets had matched control datasets, which were used
by MACS2, SISSRs and SPP, but not by AIControl. The
fact that AIControl without matched control datasets re-
tained strong performance suggests that it is able to inte-
grate background control signals in a cross-cell-type setting
even in a case where the datasets are not as highly regulated
as that of ENCODE database.

Principal components of the control datasets are associated
with potential bias sources

Control datasets capture background signals that are also
present in corresponding IP datasets. Many studies suggest
that these background signals are combinations of multiple
different sources of biases, for instance, GC content, soni-
cation biasand platform-specific biases (18,19). The AICon-
trol framework assumes that observed background signals
in a control dataset can be represented as the weighted sum
of many different known or unknown bias sources (see ‘Ma-
terials and methods’ section).

Supplementary Figure S20 shows Spearman’s correlation
coefficients between potential bias sources and K562 con-
trol datasets projected on the first five principal compo-
nents. Open chromatin regions (HS) and read mappabil-
ity (MP) are similar to the first principal component, while
GC content (GC) is similar to the second principal com-
ponent. Notably, the first five principal components collec-
tively capture only 54.05% variance, which suggests other
bias sources are likely to exist that contribute to the ob-
served background signal. AIControl implicitly learns the
contributions from unobserved sources of biases; this is one
of the reasons that AIControl can call more accurate peaks
relative to other peak identification methods.

DISCUSSION

Accurately identifying the locations of regulatory factor
binding events remains a core, unresolved problem in

molecular biology. AIControl offers a framework for pro-
cessing ChIP-seq data to identify binding locations of
transcription factors without requiring a matched control
dataset.

AIControl makes key innovations over existing systems.
(i) It learns position-specific distribution of background sig-
nal at much finer resolution than other methods by using
publicly available control datasets on a large scale (see ‘Ma-
terials and methods’ section). Our evaluation metrics show
that using finer background distributions improved enrich-
ment of putative TF-binding locations and recovery of
known protein–protein interactions. (ii) AIControl system-
atically integrates control datasets from a public database
(e.g. ENCODE) without any user input. Its ability to learn
background signals extends to datasets obtained in unseen
cell types without any previously measured control datasets.
We obtained 440 ChIP control datasets from 107 cell types
in the ENCODE database, and AIControl learns to statis-
tically combine them to estimate background signals in an
IP dataset in any cell type. We showed that our performance
on unseen cell types exceeds that of established baselines.
AIControl’s performance is also generalizable to datasets
from labs outside the ENCODE project. (iii) The mathe-
matical model of AIControl accounts for multiple sources
of biases due to its integration of control datasets at a large
scale (see ‘Materials and methods’ section). On the other
hand, some sources of biases may not be fully captured by
existing methods that use only one matched control dataset
(13,17) or account for only a specific set of biases. (18,19).
(iv) Finally, AIControl reduces the time and cost incurred
by generating a matched control dataset since it does not
require a control to perform rigorous peak calling.

We demonstrated the effectiveness of AIControl by con-
ducting a large-scale analysis on the peaks identified in
the 410 ENCODE ChIP-seq datasets from five major EN-
CODE cell types for 54 different transcription factors (Sup-
plementary Table S1). We showed that AIControl has better
motif sequence enrichment compared to other peak callers
within predicted peak locations. However, this metric mea-
sures only direct interactions between transcription factors
and DNA. Thus, we evaluated the performance of AICon-
trol with another metric: PPI enrichment analysis. In this
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metric, we also observed that AIControl is superior to other
peak callers even without any matched control samples. In
conclusion, we showed that our framework’s single-dataset
peak identification performs better than other established
baselines with matched controls datasets.

AIControl satisfies many of the properties favored by the
comparative analysis of peak calling algorithms (20,21,32).
This includes the use of local distributions that are suitable
for modeling count data and the ability to combine ChIP-
seq and input signals in a statistically principled manner.
There are several future extensions for our framework. (i)
Our default implementation bins IP and control datasets
into 100 bp windows in order to perform fast genome-
wide regression. Because most transcription factors show
signals wider than 100 bps, we believe that our resolution
is sufficient to conduct accurate downstream analysis.
The Julia implementation can be accessed at https:
//github.com/suinleelab/AIControl.jl, and
the accompanying files can be accessed through the Google
Drive link under the ‘Paper’ section on the GitHub page.
(ii) Since our framework learns weights that are globally
applied to all genomic positions, it performed relatively
worse on estimating background signal for cell types with
abnormal karyotype in a cross-cell-type setting. In future,
this could be resolved by automatically detecting karyotype
abnormality and learning different sets of weights for those
regions. (iii) Unlike other peak callers, the unique core
idea of AIControl is to leverage available control datasets
in public. This requires all datasets (both user-provided
ChIP-seq target dataset and public control datasets) to be
mapped to the exact same version of reference genome. The
public control datasets are currently mapped to the hg38
human genome assembly from the UCSC repository, which
can be found at http://hgdownload.soe.ucsc.
edu/goldenPath/hg38/bigZips/hg38.fa.gz.
Therefore, our framework also expects user-provided
ChIP-seq datasets in the UCSC hg38 space. If an user
wants to use our framework for identifying peaks on the
different genome assembly (e.g. hg19) or on the different
version of hg38, they must start by remapping reads to the
UCSC version of the hg38 assembly.

ChIP-seq is one of the most widely used techniques for
identifying protein binding locations. However, conducting
a set of two ChIP-seq experiments can be resource inten-
sive. By removing the cost of obtaining control datasets, we
believe that AIControl can lead to more accurate ChIP-seq
signals without expending additional resources.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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