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Abstract: As is the case for many lizards, leopard geckos (Eublepharis macularius) can self-detach a
portion of their tail to escape predation, and then regenerate a replacement complete with a spinal
cord. Previous research has shown that endogenous populations of neural stem/progenitor cells
(NSPCs) reside within the spinal cord of the original tail. In response to tail loss, these NSPCs are
activated and contribute to regeneration. Here, we investigate whether similar populations of NSPCs
are found within the spinal cord of the trunk (body). Using a long-duration 5-bromo-2′-deoxyuridine
pulse-chase experiment, we determined that a population of cells within the ependymal layer are
label-retaining following a 20-week chase. Tail loss does not significantly alter rates of ependymal
cell proliferation within the trunk spinal cord. Ependymal cells of the trunk spinal cord express SOX2
and represent at least two distinct cell populations: radial glial-like (glial fibrillary acidic protein- and
Vimentin-expressing) cells; and neuronal-like (HuCD-expressing) cells. Taken together, these data
demonstrate that NSPCs of the trunk spinal cord closely resemble those of the tail and support the
use of the tail spinal cord as a less invasive proxy for body spinal cord injury investigations.

Keywords: lizard; neurobiology; central nervous system; neural stem cell; spinal cord

1. Introduction

In mammals, the intrinsic ability to repair the spinal cord is limited [1–3]. Although
there are currently no curative treatments, numerous efforts have focused on the potential
of neural stem/progenitor cells (NSPCs) [4–6] and how these cells may be endogenously
recruited to promote the re-acquisition of function [7]. Crucial insight into the potential
of resident NSPCs to stimulate and facilitate repair comes from comparative studies in-
volving various non-mammalian species including zebrafish, axolotls, and, increasingly,
lizards [8–14]; see also [15].

For many lizards, tail regeneration is associated with a naturally evolved mechanism
that closely parallels surgical amputation: tail autotomy. Tail autotomy is the ability to
self-detach part of the tail to avoid or escape predation (e.g., [16]). The result is a complete
rupture of multiple tissue types, including the spinal cord [10]. Previous investigations
have revealed that, following tail autotomy, ependymal cells of the remaining spinal cord
proliferate and create the regenerated spinal cord (e.g., [10,11,17,18]; reviewed in [19]).

Spontaneous regeneration of the spinal cord following injury involves the activation
of an endogenous pool of NSPCs. The primary source of NSPCs is the ependymal layer
lining the central canal [4,5]. In lizards and other non-mammalian species, NSPCs of the
ependymal layer are typically identified as radial glia [10,20–22] (=ependymal radial glia,
ependymoglia, or ependymo-radial glia; [23–25]). Radial glia are typically defined as a
population of stem-like cells with astrocytic/astroglial characteristics, and an elongate
basal (radial) process that spans from the ventricular lumen to the pial surface [21,26–28].
Characteristically, radial glia express a conserved panel of protein markers. These include
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the pluripotency transcription factor SOX2, and the intermediate filaments glial fibrillary
acidic protein (GFAP) and Vimentin. In addition, NSPCs are known to be slow-cycling or
quiescent under physiologically normal conditions (i.e., prior to injury; [12,29,30]). NSPC
quiescence has been suggested as a mechanism to preserve DNA integrity [31]. However,
following injury, rates of proliferation markedly increase [10,12,32]; see also [18].

While radial glia have been identified within the tail spinal cord, less is known about
the trunk (body) spinal cord. Here, we characterize ependymal cells from the trunk spinal
cord of the leopard gecko (Eublepharis macularius; hereafter ‘gecko’), a lizard capable of
tail (and tail spinal cord) regeneration [20]. We hypothesized that ependymal cells from
the trunk spinal cord includes populations of radial glia, and that these cells are activated
in response to tail autotomy. We determined that ependymal cells of the trunk spinal
cord represent a heterogenous assemblage, including both radial glia and a neuronal-like
population. While trunk ependymal cells proliferate under homeostatic conditions, we
found no evidence that rates significantly increased following tail loss. Although the in
situ regenerative capacity of these cells remains poorly understood (although see [15]), our
data reveal that ependymal cells of the trunk spinal cord are essentially identical to those in
the tail, suggesting that the regenerative capacity of the central nervous system may extend
into the body proper.

2. Materials and Methods
2.1. Animal Care

Juvenile, captive-bred leopard geckos (Eublepharis macularius) were obtained from
a commercial supplier (Global Exotic Pets, Kitchener, ON, Canada). The University of
Guelph approved Animal Utilization Protocol 1954 which complies with Canadian Council
on Animal Care procedures and policies. Animal husbandry requirements were followed
as described in McLean and Vickaryous [20]. Briefly, leopard geckos (ranging in mass
from 8.0–34.4 g) were housed in the Hagen Aqualab, University of Guelph, in 5-gallon
polycarbonate tanks inside a controlled environmental chamber with a 12:12 photoperiod
and ambient temperature of ~27 ◦C. Using a heating cable (Hagen Inc., Baie d’Urfé, QC,
Canada) set at 32 ◦C, heat was provided to one end of each enclosure (situated atop the
cable) to establish a thermal gradient. Geckos had constant access to water, replaced a
minimum of twice weekly, and were fed 2–3 mealworms per day. Mealworms were gut-
loaded and dusted with powdered calcium and vitamin D3 (cholecalciferol) for dietary
supplementation (Zoo Med Laboratories Inc., San Lupis Obispo, CA, USA). Health status
was assessed weekly with mass and length measurements (snout-to-vent length, tail length,
regenerate tail length). A total of 21 geckos were used for this study. We used 6 geckos
for each of the long and short-duration 5-bromo-2′-deoxyuridine (BrdU) experiments
(=12 BrdU geckos). For the protein expression characterization we used 12 geckos, three of
which were also used for the short-duration BrdU experiment.

2.2. Tail Autotomy

Lizards capable of tail autotomy are able to voluntarily self-detach their tails in an effort
to escape predation. Tail autotomy was used to induce tail loss by manually restraining
the geckos and firmly pinching the tail between forefinger and thumb until the tail is
shed. Following tail loss, geckos were returned to their enclosures and allowed to undergo
wound healing and subsequent regeneration before being collected for tissue preparation
and analysis.

2.3. 5-Bromo-2′-Deoxyuridine (BrdU) Pulse-Chase Experiments

To label proliferating cells, we used 5-bromo-2′-deoxyuridine (BrdU). BrdU is a thymi-
dine analogue that is incorporated into DNA as a cell undergoes the synthesis phase of the
cell cycle. The timeframe during which BrdU is administered is referred to as the pulse
period. Any cells that cycle during the pulse period take up the analogue, which can then
be detected using immunofluorescence. BrdU was injected into the peritoneal cavity of
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each experimental gecko at a dose of 50 mg/kg [stock solution diluted to 50 mg/mL in
dimethyl sulfoxide, and working solution diluted to 5 mg/mL in sterile, injectable phos-
phate buffered saline (PBS)] twice daily, using a 0.5 cc insulin syringe (Abbott Laboratories,
Saint-Laurent, QC, Canada). Injections alternated between the left side of the peritoneal
cavity and the right side of the peritoneal cavity.

To identify quiescent cells, we conducted a long-duration (20 week) BrdU pulse-chase
experiment. Geckos with original tails were pulsed with BrdU for seven (7) days (twice
daily), and were then divided into two collection groups: immediately following the pulse
(0 days chase; n = 3), and 20-weeks post-pulse (140-day chase; n = 3). BrdU was not
administered during the 140-day chase period.

To determine whether ependymal cells constitutively proliferate and investigate if
cell proliferation is affected by tail loss, we conducted a short-duration BrdU experiment
using two groups of geckos. Geckos were assigned to one of two conditions: constitutive
proliferation (original-tailed geckos), or proliferative response to tail loss. Geckos in the tail
loss condition were stimulated to autotomize (= day 0). Immediately following autotomy,
both original tail and tail loss groups were pulsed with BrdU for two days (twice daily).
Geckos from both conditions were sampled immediately following the pulse (0 days
chase; n = 6).

2.4. Tissue Collection and Preparation

Geckos were euthanized with an intra-muscular injection of Alfaxan (Alfaxalone;
85 mg/kg), then exsanguinated and fixed via transcardial perfusion of PBS followed by
10% neutral buffered formalin (NBF; Fisher Scientific, Waltham, MA, USA). Tissues were
then immersed in NBF for an additional ~22 h to complete fixation and subsequently stored
in 70% ethanol.

To characterize trunk spinal cord ependymal cells, we sampled tail regenerating geckos
at three different time points (2 days post-tail loss; 8 days post-tail loss; and 12 days post-tail
loss), as well as original tailed geckos. We defined the trunk as the region of the body
located between the cranial margin of the pectoral apparatus and the caudal margin of the
pelvic apparatus (Figure 1A). To isolate the trunk region of the spinal cord, we removed the
limbs, tail, and head/neck, followed by the pectoral apparatus, the ventral portion of the
pelvic apparatus, and the organs of the coelomic cavity. The remaining vertebral column
(including spinal cord) and associated musculature was then subdivided into three equal
segments, termed cranial, middle and caudal (Figure 1A).
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and immunostained for either PCNA or BrdU. (C) The entire ependymal layer was then imaged. To 
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inating from the center of the central canal. (D) The proportion of PCNA+ or BrdU+ cells across each 
group was collected using ImageJ and statistically analyzed. 
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Cal-Ex® (Fisher Scientific, Waltham, MA, USA) prior to processing. Tissue segments were 
dehydrated in 100% isopropanol, cleared in xylene and infiltrated with paraffin wax using 
an automated processor (Fisher Scientific, Waltham, MA, USA) prior to being embedded 
in paraffin wax blocks. Using a rotary microtome (HM 355S Automatic Microtome; 
Thermo Scientific, Ottawa, ON, Canada), tissues were then sectioned at 5µm and mounted 
on charged slides (Surgipath X-Tra; Leica Microsystems, Ontario, BC, Canada) prior to 
baking at 60 °C overnight. 

2.5. Hematoxylin and Eosin 
For histological examination of the trunk spinal cord, representative serial sections 
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xylene (2 min each), and rehydrated to water through three washes of 100% isopropanol 
(2 min each) and one wash of 70% isopropanol (2 min) before being brought to deionized 
water (dH2O; 2 min). Slides were then immersed in modified Harris hematoxylin (Fisher 
Scientific, Waltham, MA, USA) for 10 min, rinsed in running dH2O, and dipped six times 
in acid alcohol (1% hydrochloric acid in 70% isopropanol) to differentiate. Slides were then 
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Next, slides were dipped six times in 70% isopropanol prior to staining with eosin for 1 
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and cleared in three washes of xylene (2 min each) before being coverslipped with Cyto-
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Figure 1. Experimental design. (A) Schematic representation of the leopard gecko (Eublepharis
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(n = 3 per group) were collected, divided into three equal segments (cranial, middle and caudal), and
sectioned in the transverse plane. (B) Three random sections, 500 to 2500 µm apart, were selected
and immunostained for either PCNA or BrdU. (C) The entire ependymal layer was then imaged.
To define the region of interest, a 16 µm diameter circle was drawn around the ependymal layer,
originating from the center of the central canal. (D) The proportion of PCNA+ or BrdU+ cells across
each group was collected using ImageJ and statistically analyzed.

To prepare for serial histology, the segments of tissue were decalcified for 30 min in
Cal-Ex® (Fisher Scientific, Waltham, MA, USA) prior to processing. Tissue segments were
dehydrated in 100% isopropanol, cleared in xylene and infiltrated with paraffin wax using
an automated processor (Fisher Scientific, Waltham, MA, USA) prior to being embedded in
paraffin wax blocks. Using a rotary microtome (HM 355S Automatic Microtome; Thermo
Scientific, Ottawa, ON, Canada), tissues were then sectioned at 5 µm and mounted on
charged slides (Surgipath X-Tra; Leica Microsystems, Ontario, BC, Canada) prior to baking
at 60 ◦C overnight.

2.5. Hematoxylin and Eosin

For histological examination of the trunk spinal cord, representative serial sections
were stained with hematoxylin and eosin. Slides were deparaffinized in three washes of
xylene (2 min each), and rehydrated to water through three washes of 100% isopropanol
(2 min each) and one wash of 70% isopropanol (2 min) before being brought to deionized
water (dH2O; 2 min). Slides were then immersed in modified Harris hematoxylin (Fisher
Scientific, Waltham, MA, USA) for 10 min, rinsed in running dH2O, and dipped six times
in acid alcohol (1% hydrochloric acid in 70% isopropanol) to differentiate. Slides were
then rinsed in dH2O, dipped in ammonia water until blue (~4 dips), and rinsed again in
dH2O. Next, slides were dipped six times in 70% isopropanol prior to staining with eosin
for 1 min. Slides were then brought through three washes of 100% isopropanol (2 min each)
and cleared in three washes of xylene (2 min each) before being coverslipped with Cytoseal
(Fisher Scientific, Waltham, MA, USA).

2.6. Immunofluorescence

The primary antibodies used and their associated protocols are listed in Table 1. Pri-
mary antibodies had previously been validated for use in the leopard gecko [10]. Omission
controls lacking primary antibody were used to confirm the specificity of the secondary
antibody. All omission controls were negative for immunostaining.

Table 1. Summary table of optimized immunofluorescent protocols for proteins of interest.

Antigen Retrieval Block Primary Secondary

BrdU
(Anti-5-bromo-2′-

deoxyuridine)

Citrate buffer
12 min at 95 ◦C,
20 min at room
temperature in

solution
0.1% trypsin in
PBS 20 min at

37 ◦C

5% NGS in
diluent 30 min at

37 ◦C

1:100 in diluent
overnight at 4 ◦C

(DSHB, mouse
monoclonal,
G3G4, RRID:
AB_2618097)

1:200 in sterile
1XPBS for 1 h at

room
temperature

(Goat anti-Mouse
AlexaFluor 488,

Life Technologies,
A11001, RRID:
AB_2534069)

GFAP
(Anti-glial

fibrillary acidic
protein)

Citrate buffer
12 min at 95 ◦C,
20 min at room
temperature in

solution
0.1% trypsin in
PBS 20 min at

37 ◦C

5% NGS in
diluent 30 min at

37 ◦C

1:400 in diluent
overnight at 4 ◦C

(DAKO, rabbit
polyclonal,

Z0334, RRID:
AB_10013382)

1:1000 in 1XPBS
for 1 h at room

temperature
(Cy3-conjugated
Goat anti-Rabbit
IgG, 111-165-144,

RRID:
AB_2338006)
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Table 1. Cont.

Antigen Retrieval Block Primary Secondary

HuCD
(Anti-human

neuronal protein
HuC/HuD)

Tris buffer 30 min
at 95 ◦C, 30 min

at room
temperature in

solution

10% NGS in 0.3%
Triton-X-100 in

1XPBS 30 min at
room

temperature

1:10 in 1%BSA in
1XPBS overnight

at 4 ◦C
(Molecular

Probes, mouse
monoclonal,

16A11, RRID:
AB_221448)

1:500 in sterile
1XPBS for 1 h at

room
temperature

(Goat anti-Mouse
AlexaFluor 488,

Life Technologies,
A11001, RRID:
AB_2534069)

NeuN
(Anti-neuronal

nuclei)

Tris buffer 30 min
at 95 ◦C, 30 min

at room
temperature in

solution

10% NGS in 0.3%
Triton-X-100 in

1XPBS 30 min at
room

temperature

1:500 in 1%BSA
in 1XPBS

overnight at 4 ◦C
(Abcam, rabbit

polyclonal,
ab104225, RRID:
AB_10711153)

1:1000 in 1XPBS
for 1 h at room

temperature
(Cy3-conjugated
Goat anti-Rabbit
IgG, 111-165-144,

RRID:
AB_2338006)

PCNA
(Anti-

proliferating cell
nuclear antigen)

none
3% NGS in

1XPBS 1 h at
room

temperature

1:100 in1XPBS
overnight at 4 ◦C

(Santa Cruz
Biotech., rabbit

polyclonal,
sc-7907, RRID:
AB_2160375)

1:200 in 1XPBS
for 1 h at room

temperature
(Cy3-conjugated
Goat anti-Rabbit
IgG, 111-165-144,

RRID:
AB_2338006)

pHH3
(Anti-phospho-

histone H3
(Ser10))

Citrate buffer
12 min at 95 ◦C,
20 min at room
temperature in

solution

3% NGS in
1XPBS 1 h at

room
temperature

1:100 in1XPBS
overnight at 4 ◦C
(Cell Signaling,

rabbit polyclonal,
3377S, RRID:
AB_1549592)

1:250 in 1XPBS
for 1 h at room

temperature
(Cy3-conjugated
Goat anti-Rabbit
IgG, 111-165-144,

RRID:
AB_2338006)

SOX2
(Anti-SRY

(sex-determining
box region Y)

box2)

Citrate buffer
12 min at 95 ◦C,
20 min at room
temperature in

solution
0.1% trypsin in
PBS 20 min at

37 ◦C

5% NGS in
diluent 30 min at

37 ◦C

1:50 in diluent
overnight at 4 ◦C
(Cell Signaling,

rabbit polyclonal,
2748S, RRID:
AB_823640)

1:200 in 1XPBS
for 1 h at room

temperature
(Cy3-conjugated
Goat anti-Rabbit
IgG, 111-165-144,

RRID:
AB_2338006)

Vimentin
(Anti-Vimentin)

Citrate buffer
12 min at 95 ◦C,
20 min at room
temperature in

solution
0.1% trypsin in
PBS 20 min at

37 ◦C

5% NGS in
diluent 30 min at

37 ◦C

1:50 in diluent
overnight at 4 ◦C

(DSHB, mouse
monoclonal, H5,

RRID:
AB_528506)

1:200 in sterile
1XPBS for 1 h at

room
temperature

(Goat anti-Mouse
AlexaFluor 488,

Life Technologies,
A11001, RRID:
AB_2534069)

BSA, bovine serum albumin; DSHB, Developmental Studies Hybridoma Bank, University of Iowa, USA; NGS,
normal goat serum; PBS, phosphate buffered saline; RRID, Research Resource Identifier.

To identify radial glia, our investigation focused on three classic markers: SOX2, glial
fibrillary acidic protein (GFAP) and Vimentin. SOX2 is one of the original four Yamanaka
pluripotency factors [33] and participates in the maintenance of neural progenitor popula-
tions [34]. Both GFAP and Vimentin are intermediate filaments. In mammals, Vimentin
is characteristic of neuroepithelial cells; the embryonic precursors of ependymal cells.
However, following development of the spinal cord, the Vimentin content of these cells
is gradually replaced by GFAP [35]. In contrast, among species capable of spinal cord
regeneration, such as zebrafish, Vimentin expression is typically maintained by ependymal
cells throughout adulthood [34,36].

To establish if cells of the ependymal layer constitutively proliferate, we investigated
all three segments of the trunk spinal cord prior to tail loss. To estimate cell proliferation,
we used two protein markers—proliferating cell nuclear antigen (PCNA), an S phase
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marker, and phosphor Histone H3 (pHH3), an M phase marker [37,38]—and conducted a
short-duration (2 day) BrdU experiment (see Section 2.3).

To identify neuronal-like populations within the ependymal layer of the trunk spinal
cord, we immuostained for two neuronal proteins: HuCD and Neuronal Nuclei (NeuN).
HuCD is a pan-neuronal marker and is reportedly expressed by neuronal-like cells of the
ependymal layer known as cerebrospinal fluid-contacting (CSF-c) cells [39–42]. Similar
to neurons, CSF-c cells have large, round nuclei [43] and some are even capable of firing
action potentials [44]. NeuN is a marker specific to the majority of mammalian neurons,
including those of the gecko tail spinal cord [10].

2.6.1. Standard Immunofluorescence Protocol

Standard immunofluorescence was used to detect PCNA and pHH3. Sections were
rehydrated to dH2O (see above) prior to either antigen retrieval (pHH3 only; slides im-
mersed in citrate buffer heated to 95 ◦C for 12 min, followed by a 20-min cool at room
temperature) followed by three washes of PBS for 2 min each, or three washes of PBS
(2 min each) if citrate buffer retrieval was not required (PCNA only; see Table 1). Sections
were then blocked with 3% normal goat serum (NGS; Vector Laboratories, Burlingame,
CA, USA) diluted in sterile PBS for one hour at room temperature before being tipped off
and incubated overnight with primary antibody (rabbit anti-PCNA [1:100]; Santa-Cruz
Biotechnology, Dallas, TX, USA; rabbit anti-pHH3 [1:100]; Cell Signaling, Whitby, Ontario,
Canada) diluted in sterile PBS at 4 ◦C. Using a hydrophobic barrier, one section per slide
served as an omission control and was incubated in sterile PBS only. Slides were then
rinsed with three changes of PBS (2 min each) and sections were subsequently incubated
with secondary antibody (Cy3 labelled goat anti-rabbit; PCNA [1:200]; pHH3 [1:250]; Jack-
son ImmunoResearch Laboratories, West Grove PA, USA) in sterile PBS for one hour at
room temperature. Slides were then washed with PBS three times (2 min each) prior to
counterstaining with DAPI (4′,6-diamidino-2-phenylindole [1:10,000]; Life Technologies,
ThermoFisher Scientific, Waltham, MA, USA) in sterile PBS for two minutes at room tem-
perature. Finally, slides were again washed with PBS three times (2 min each) prior to
coverslipping with fluorescent mounting medium (Agilent Technologies Inc., Mississauga,
ON, Canada).

2.6.2. Modified Immunofluorescence Protocol with Tris Retrieval

To document the expression of HuCD, and to co-label with each of GFAP and NeuN,
double immunofluorescence was conducted using a modified protocol. First, slides were
rehydrated to dH2O (see above) and washed with PBS for 15 min. Slides were then
immersed in a tris base solution (50 mM tris buffered saline with 0.05% Tween 20) for
30 min at 95 ◦C followed by a 30-min cool at room temperature for antigen retrieval. Slides
were then washed in PBS with 0.1% Tween 20 (PBST) for 10 min, followed by two washes of
PBS for five minutes each. Sections were then blocked in 10% NGS in sterile PBS with 0.3%
Triton-X-100 (Sigma-Aldrich, Oakville, ON, Canada) for 30 min at room temperature before
being tipped off and incubated with primary antibody (mouse anti-HuCD [1:10] Molecular
Probes, Rockford, IL, USA; rabbit anti-GFAP [1:400] Agilent Technologies Inc., Mississauga,
ON, Canada; rabbit anti-NeuN [1:500] Abcam, Cambridge, MA, USA) overnight at 4 ◦C.
Primary antibodies were applied as a cocktail, and diluted in sterile PBS with 1% bovine
serum albumin (BSA; Santa Cruz BioTechnology, Santa Cruz, CA, USA). One section per
slide was incubated in sterile PBS only as an omission control. Slides were then washed
three times with PBS with 1% BSA for 10 min each, followed by the application of secondary
antibody (Alexa Fluor-488 labelled goat anti-mouse [Life Technologies, ThermoFisher
Scientific, Waltham, MA, USA] for HuCD [1:500]; or Cy3 labelled goat anti-rabbit for GFAP
[1:1000] and NeuN [1:1000]. Secondary antibodies were applied as a cocktail and were
diluted in sterile PBS for one hour at room temperature. Slides were then washed in PBS
three times (2 min each), counterstained with DAPI [1:10,000] in sterile PBS for 5 min at
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room temperature, and were washed a final time in three changes of PBS (2 min each) prior
to coverslipping with fluorescent mounting medium.

2.6.3. Modified Immunofluorescence Protocol with Trypsin Retrieval

To detect each combination of SOX2/BrdU, SOX2/Vimentin, and GFAP/Vimentin, a
modified immunofluorescence protocol with two antigen retrieval steps was employed.
Slides were rehydrated to dH2O (see above) and washed in PBS for 5 min. Slides then
underwent antigen retrieval by immersion in citrate buffer (12 min at 95 ◦C followed by a
20-min cool at room temperature). Slides were then washed again with PBS (2 min) before
being incubated in 0.1% trypsin (Sigma-Aldrich, St. Louis, MI, USA), in sterile PBS, for
20 min at 37 ◦C for further antigen retrieval. After an additional PBS wash (2 min), sections
were then blocked in 5% NGS in diluent (1% BSA, 0.5% Tween 20 (Sigma-Aldrich, Oakville,
ON, Canada), 0.1% sodium azide [Fisher Scientific, Waltham, MA, USA] in PBS) for 30 min
at 37 ◦C. Next, the blocking solution was tipped off and sections were incubated in primary
antibody in diluent overnight at 4 ◦C (rabbit anti-SOX2 [1:50] Cell Signaling, Whitby, ON,
Canada; mouse anti-Vimentin [1:50] Developmental Studies Hybridoma Bank, Iowa City,
IA, USA; rabbit anti-GFAP [1:400] Agilent Technologies, Mississauga, ON, Canada; mouse
anti-BrdU [1:50] Developmental Studies Hybridoma Bank, Iowa City, IA, USA). One section
on each slide served as an omission control and was incubated in diluent without primary
antibody. After being washed three times in PBS (2 min each), sections were incubated in
secondary antibody (Alexa Fluor-488 labelled goat anti-mouse for Vimentin [1:200] and
BrdU [1:200]; or Cy3 labelled goat anti-rabbit for SOX2 [1:200] and GFAP [1:1000] diluted
in sterile PBS for one hour at room temperature. Slides were again washed three times
in PBS (2 min each) before counterstaining with DAPI [1:10,000] in PBS for 2 min. Slides
were washed a final three times in PBS (2 min each) before coverslipping with fluorescent
mounting medium.

2.7. Quantification of Slow Cycling and Proliferation Data

We used two different strategies to investigate whether: (1) the proportion of pro-
liferating ependymal cells differed along the length of the trunk spinal cord; and (2) the
proportion of proliferating ependymal cells was altered in response to tail loss. First, we
used our BrdU data generated during the short-duration BrdU experiment. Second, we
used a separate experiment with different time points to immunostain for the S phase
marker PCNA. Our PCNA data were derived from the trunk spinal cords of original tailed
(n = 3) and tail regenerating individuals at three different time points: 2 days post-tail loss
(n = 3); 8 days post-tail loss (n = 3); and 12 days post-tail loss (n = 3). To reveal any regional
differences in the proportion of slow cycling cells (as obtained from the long-duration BrdU
pulse-chase experiment) and constitutively proliferating cells, as well as any differences in
response to tail loss, we quantified the number of immunopositive ependymal cells in each
of the cranial, middle and caudal segments (Figure 1A).

After segmentation, trunk spinal cord segments were sectioned in the transverse
plane. Three random sections per trunk spinal cord segment were selected (500 to 2500µm
apart) and immunostained with either BrdU or PCNA (Figure 1B). For each section, the
ependymal layer was imaged at 40× objective using an Axio Imager D1 Microscope (Carl
Zeiss Canada Ltd., Toronto, ON, Canada). Using ImageJ, a 16 µm diameter circle was
drawn around the ependymal layer using the Selection Brush tool, originating from the
center of the central canal, to circumscribe the region of interest (Figure 1C). The number of
ependymal cells (including those immunopositive and immunonegative for the antigen
of interest) within or contacting the circle defining the region of interest were manually
counted using the Multi-Point tool and were recorded for statistical analysis (Figure 1D).
All cell counts were conducted by a counter blinded to the treatment conditions.
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2.8. Statistical Analyses

All proportions are reported as the mean with a 95% confidence interval. When the
probability (p) value was less than 0.05 (p < 0.05), results were considered statistically
significant. All analyses were performed using the software SAS 9.3 (SAS Institute Inc.,
Cary, NC, USA). To test for differences in the proportion of immuno-positive ependymal
cells between groups, a general linear mixed model that included the random effect of
lizard and the fixed effects of group (original or tail loss), segment (cranial, middle, caudal),
and chase (where applicable; long-duration BrdU experiment, 0 days, 140 days), as well
as their interaction, was used. The random effect was coded as: lizard (time [days post-
autotomy]) for the PCNA data; lizard (group) for the short-duration BrdU experiment;
and lizard (chase) for the long-duration BrdU pulse-chase experiment. Subsamples were
averaged within segments, and data were tested for normality with a Shapiro–Wilk test and
examination of the residuals; all datasets were normally distributed. A log transformation
was used if it improved the distribution, and analyses were performed with a bias correction
term of 0.005 (all zeros within the data set were included as 0.005).

3. Results
3.1. Spinal Cord Structure and Histology

In cross section, the spinal cord is organized around a near-centrally positioned
central canal, surrounded by a tubular arrangement of epithelial-like ependymal cells
(Figures 2 and 3). Closer inspection reveals that ependymal cells have a pseudostratified
arrangement and appear to be ciliated. The central canal is continuous with the ventricular
system of the brain and demonstrates a subtle change in shape along the length of the
spinal cord, which is mirrored by the ependymal layer (Figure 2B’–E’). Although it is
typically ovoid (long axis in the vertical plane) cranially, it becomes circular in shape in
more caudal positions.
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Figure 2. The gecko spinal cord has a consistent histological organization across its length.
(A) Schematic representation of the leopard gecko (Eublepharis macularius) in lateral view. The central
nervous system is highlighted in white. Vertical lines indicate the location and plane of section of
panels (B–E). (B–E) Serial sections of the spinal cord in transverse plane, stained with hematoxylin
and Eosin. Note that though the organization remains consistent along the length of the spinal cord,
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the proportions of grey to white matter and spinal cord diameter vary slightly with position. (B’–E’)
The central canal is lined by a pseudostratified layer of ependymal cells. The central canal and
ependymal layer exhibit a more ovoid shape cranially, and progressively round caudally. Note the
presence of cilia in the lumen of the central canal. Scale bars: (B–E) = 100 µm; (B’–E’) = 25 µm.
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Figure 3. Histology of the gecko trunk spinal cord. A transverse section of the trunk spinal cord
stained with hematoxylin and eosin. The spinal cord shows a butterfly-shaped grey matter sur-
rounded by columns of white matter. The dorsal horns of the grey matter divide the white matter
into paired dorsal funiculi. The ependymal layer is centrally located in the spinal cord and lines
the central canal. Ventral and medial to the ependymal layer are the paired medial longitudinal
fasciculi. * = central canal, df = dorsal funiculus, el = ependymal layer, gm = grey matter, mlf = medial
longitudinal fasciculus, wm = white matter. Scale bar = 100 µm.

The ependymal layer is invested within the grey matter (Figures 2 and 3). The grey
matter is rich in neuronal soma and is organized into four conspicuous horns, paired
dorsally and ventrally; there are no lateral horns. Grey matter is surrounded by white
matter, composed mainly of nerve tracts (Figure 3). Ventral to the ependymal layer, nested
medially adjacent to the grey matter, are bundles of large, myelinated axons known as the
medial longitudinal fasciculus [45]. The boundary between white and grey matter is less
distinct than that observed in mammals, but still identifiable. Within the transverse plane,
the white matter can be subdivided into right and left sides by dorsal and ventral medial
septa. That portion of the white matter between the dorsal septum and the dorsal horns is
known as the dorsal funiculus; lateral and ventral funiculi are continuous with each other.
The white matter is bounded by the pia mater.

3.2. Ependymal Cells of the Trunk Spinal Cord Are a Heterogeneous Population That
Includes NSPCs

Across vertebrates, including mammals, resident populations of NSPCs have been
identified within the ependymal layer of the trunk spinal cord (e.g., [4,32,46]; see also [24]).
In addition, cells expressing various NSPC markers have also been identified in the spinal
cord of the gecko tail [10]. To test whether cells from the trunk spinal cord also demonstrated
NPSC-like characteristics, and to determine whether they altered their protein expression in
response to spinal cord injury (in this case tail loss), we performed immunostaining at three
key time points: (1) prior to tail loss (i.e., spinal cord intact); (2) two days post-tail loss (tail
spinal cord ruptured); and (3) eight days post-tail loss (tail spinal cord regenerating). As tail
autotomy results in the complete rupture of the spinal cord, we exploited this phenomenon
to investigate whether a distal spinal cord injury affects ependymal cell marker expression
in the trunk spinal cord. We reasoned that the spinal cord is a closed system [47], and hence
injuries in one region may elicit an organ-wide response. As an additional comparison,
we also sampled spinal cords from original tails. For this analysis, we focused on three
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classic markers of radial glia, the transcription factor SOX2, and the intermediate filaments
Vimentin and glial fibrillary acidic protein (GFAP).

Using immunofluorescence, we determined that most (but not all) ependymal cells
along the length of the trunk spinal cord express SOX2 prior to and following tail loss
(Figure 4). A similar pattern of SOX2 expression by ependymal cells was also observed in
the original tail spinal cord (Figure 4B).
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Our immunostaining revealed that Vimentin is robustly expressed by ependymal cells 
along the length of the gecko trunk spinal cord (Figures 4C and S1), including the majority 
of those immunostaining for SOX2 (Figure 4D). Vimentin expression was particularly ob-
vious as a consolidation of radial processes forming fascicles passing within the dorsal 

Figure 4. Ependymal cells of the trunk spinal cord express NSPC markers SOX2, Vimentin and
GFAP. (A,B) The majority of ependymal cells in the trunk and tail spinal cord express NSPC marker
SOX2. SOX2– ependymal cells are marked with white arrows. (C) SOX2/Vimentin expression in
the trunk spinal cord. Vimentin expression is largely confined to the ependymal layer and white
matter. A fascicle of Vimentin+ fibers is seen projecting toward the pia within the dorsal medial
septum. (D–F) SOX2/Vimentin expression in the ependymal layer of the trunk spinal cord before (D),
2 days (E) and 8 days (F) post-autotomy. Note that expression remains unchanged across time points.
(G) SOX2/Vimentin is expressed by ependymal cells of the original tail spinal cord, and mirrors
expression in the trunk spinal cord. (H) A representative section from the cranial segment of the
trunk spinal cord. The majority of Vimentin+ ependymal cells co-express radial glia marker GFAP



J. Dev. Biol. 2022, 10, 21 11 of 22

(filled arrows). GFAP+/Vimentin– ependymal cells are also present within the ependymal, slightly offset
from the central canal (open arrows). dpa = days post-autotomy. Scale bars: (A,B,D–F,G,H) = 10 µm;
(C) = 20 µm.

Next, we sought to determine if SOX2+ ependymal cells also expressed Vimentin.
Our immunostaining revealed that Vimentin is robustly expressed by ependymal cells
along the length of the gecko trunk spinal cord (Figures 4C and S1), including the majority
of those immunostaining for SOX2 (Figure 4D). Vimentin expression was particularly
obvious as a consolidation of radial processes forming fascicles passing within the dorsal
medial septum and ventrolaterally within the ventral horns of the grey matter (Figure 4C).
Vimentin+ processes were also found throughout the white matter, radiating toward the
pial surface (Figure 4C). Following tail loss (Figure 4E,F), we continued to observe robust
co-expression of SOX2 and Vimentin by ependymal cells, with no qualitative differences
in immunoreactivity for either marker. Matching the immunostaining pattern observed
in the trunk, ependymal cells of the original tail spinal cord were also SOX2+/Vimentin+
(Figure 4G).

Robust expression of SOX2 and Vimentin by ependymal cells points towards their
identification as radial glia. To expand our characterization, we then immunostained for
GFAP. We found that for most ependymal cells, GFAP co-localized with Vimentin, although
rare GFAP+/Vimentin– ependymal cells were also observed (Figure 4H). Characteristically,
these cells appeared to be set back from (i.e., abluminal, not in direct contact with) the
central canal. Beyond the ependymal layer, GFAP/Vimentin expression was widespread
throughout the trunk spinal cord (Figure S2A). In addition, GFAP+ stellate-shaped astro-
cytes were found at the borders of the ventral horns and adjacent white matter, as well as
radially oriented processes throughout the grey and white matter (Figure S2B). Similar to
SOX2 and Vimentin, we did not detect any qualitative changes in GFAP expression at any
time point following tail loss (Figures 5D,E and S3).
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Figure 5. Trunk spinal cord ependymal cells represent a heterogeneous population with distinct
GFAP+ and HuCD+ populations. (A) HuCD+ cells are present within the trunk spinal cord and are
in close contact with the central canal. HuCD+ cells have either weak (filled arrow) or absent NeuN
expression (open arrows). Note that NeuN expression in HuCD+/NeuN+ cells does not reach the
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intensity of NeuN expressing neurons of the grey matter (inset). (B) The ependymal layer of the trunk
spinal cord contains distinct populations of GFAP+/HuCD–cells (open arrows) and GFAP–/HuCD+
cells (filled arrows). GFAP+ cells reside peripherally in the ependymal layer. (C–E) GFAP/HuCD
expression in the ependymal layer of the trunk spinal cord before (C), 2 days (D) and 8 days (E)
post-autotomy. Note that expression remains relatively constant across time points. (F) The original
tail spinal cord contains distinct GFAP+/HuCD– and GFAP–/HuCD+ populations of ependymal
cells. The locations at which these cells reside in the tail mirror what is found in the trunk spinal
cord. Representative sections from cranial trunk spinal cord was used for all images. dpa = days
post-autotomy. Scale bar: (A–F) = 10 µm.

We then asked if any neuronal-like cells contributed to the ependymal layer. We
observed large numbers of HuCD+ cells within the ependymal layer, typically in close
contact with the lumen of the central canal (Figure 5A). In addition, we also found that
some HuCD+ ependymal cells also weakly expressed NeuN. It is worth noting that the
weak but detectable NeuN expression in some ependymal cells stands in stark contrast
with the robust NeuN (and HuCD) labelling observed in large neurons of the adjacent grey
matter (Figure 5A, inset).

To determine the relationship between GFAP and HuCD expressing cells, we next
performed double-labelling. We found that these proteins mark two distinct populations:
HuCD+/GFAP– cells, which typically contact the central canal; and HuCD–/GFAP+ cells,
which occupy abluminal positions (Figure 5B). An additional population of ependymal cells
appears to be HuCD–/GFAP–. We observed the same three cell populations in the original
tail (Figure 5F). Though not quantified, tail loss did not result in any detectable qualitative
change in HuCD or GFAP immunostaining in the trunk spinal cord (Figures 5C–E and S3).

3.3. Label-Retaining Cells Are Present in the Ependymal Layer

To determine whether ependymal cells of the trunk spinal cord were quiescent, we
conducted a long-duration (20-week) BrdU pulse-chase experiment. At the end of the pulse
(0-day chase), BrdU+ ependymal cells were observed in each segment of the trunk spinal
cord (Figure 6A–C). BrdU incorporation occurred at proportions of approximately 0.29% in
each the cranial, middle and caudal segments (Figure 6G; see Table 2 for proportions and
95% confidence intervals), indicating that a subpopulation of ependymal cells did cycle
during the seven-day pulse period. Next, we examined trunk spinal cord tissue at a 140-day
chase time point. After 20 weeks, BrdU+ cells were still detectable in the ependymal layer
of each of the cranial, middle and caudal segments of the trunk spinal cord (Figure 6D–F)
at proportions of approximately 0.55% (Figure 6G; Table 2). To determine if there were
any significant differences between the pulse (0 days) and chase (140 days) groups, we
conducted a statistical analysis using the general linear mixed model. This analysis revealed
that there were no statistically significant differences in regional variation at the pulse or
end of the chase (p values > 0.05), nor was there a statistically significant loss of the label
following the chase (p = 0.4776; Figure 6G). These findings suggest that there is no dilution
of the label taking place, and that the majority of cells incorporating the BrdU label were
slow-cycling/quiescent.
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After 7 days of pulse, BrdU+ cells are present in the ependymal layer of each the cranial (A), middle
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(A–F,H) = 10 µm.

Table 2. Proportion of BrdU+ ependymal cells and 95% confidence intervals for the long-duration
(7 day pulse, 140 chase) pulse-chase experiment.

Chase (Days) Segment Mean (%)
95% Confidence Interval
Lower Upper

0
cranial 0.356 0.073 1.733
middle 0.233 0.048 1.132
caudal 0.285 0.058 1.323

140
cranial 0.848 0.174 4.126
middle 0.330 0.068 1.605
caudal 0.485 0.100 2.360

BrdU, 5-bromo-2′-deoxyuridine.

Finally, we sought to determine if the label-retaining cells (BrdU+, 140-day chase) of the
ependymal layer also express the NSPC marker SOX2. Using double immunofluorescence,
we found that after 140 days of chase, BrdU+ cells also express SOX2 (Figure 6H).

3.4. Cells of the Ependymal Layer Constitutively Proliferate

We identified proliferating cells using immunostaining for all three proliferation
markers (PCNA, pHH3, and the short-duration BrdU experiment) in each of the three trunk
spinal cord segments (Figure 7A–I). Next, we quantified the number of immunopositive
cells. Using PCNA, the percentage of immunolabelled ependymal cells was less than 7% in
each segment (Figure 7J; Table 3). Although our immunostaining protocol did label pHH3+
cells, the low number of immunostained cells observed (five out of the ~1350 cells counted
across 23 sections) rendered a quantitative analysis impractical.
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Figure 7. Ependymal cells of the trunk spinal cord constitutively proliferate. (A–I) In original tailed
geckos, PCNA+ (A–C), pHH3+ (D–F) and BrdU+ (G–I) cells are present within the ependymal layer
across all three segments of trunk spinal cord. (J) Quantification of PCNA+ ependymal cells across
the trunk spinal cord before, 2 days, 8 days and 12 days after tail loss. (K) Quantification of BrdU+
ependymal cells across the trunk spinal cord after two-day pulse prior to and following tail loss.
(L) Quantification of BrdU+ ependymal cells in original tail and tail loss groups. Comparing BrdU
incorporation between groups reveals no significant difference in the proportion of BrdU+ cells after
tail loss (p = 0.2785). (M) Quantification of BrdU+ cells in each segment of the trunk spinal cord.
Combining data across time points reveals there is no segment variation in BrdU staining across the
trunk spinal cord (p values > 0.05). CI = confidence interval. Scale bars: (A–I) = 10 µm.

Table 3. Proportion of PCNA+ ependymal cells and 95% confidence intervals.

Group Segment Mean (%)
95% Confidence Interval
Lower Upper

Original
cranial 2.242 0.697 7.210
middle 6.809 2.118 21.894
caudal 5.033 1.055 16.183

2 dpa
cranial 0.740 0.230 2.380
middle 2.496 0.776 8.024
caudal 1.013 0.315 3.256

8 dpa
cranial 1.838 0.277 5.911
middle 2.415 0.751 7.765
caudal 4.125 0.572 13.262

12 dpa
cranial 1.669 0.519 5.368
middle 3.493 1.086 11.232
caudal 4.723 1.469 15.185

PCNA, proliferating cell nuclear antigen; dpa, days post-autotomy.

For the short-duration BrdU labelling experiment, we identified BrdU+ cells in the
ependymal layer of each segment of trunk spinal cord (Figure 7G–I) at a proportion of
approximately 1.10% (Figure 7K; Table 4), indicating that a subset of ependymal cells did
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undergo cell division during the two-day injection period. Statistical analysis revealed no
significant regional differences in positivity across the trunk spinal cord (p values > 0.05).

Table 4. Proportion of BrdU+ ependymal cells and 95% confidence intervals for the short-duration
(2 day pulse, 0 day chase) experiment.

Group Segment Mean (%)
95% Confidence Interval
Lower Upper

Original
cranial 1.391 0.244 2.538
middle 0.218 −0.929 1.365
caudal 1.691 0.544 2.838

2 dpa
cranial 0.595 −0.552 1.742
middle 0.247 −0.900 1.394
caudal 0.800 −0.347 1.947

BrdU, 5-bromo-2′-deoxyuridine; dpa, days post-autotomy.

3.5. Ependymal Cell Proliferation Is Unaltered in Response to Tail Loss

We were then interested in determining if ependymal cell proliferation was altered
in response to spinal cord injury. Given the low number of pHH3+ cells observed in
our constitutive proliferation experiment, we limited our investigation to PCNA and the
short-duration BrdU labelling protocol. PCNA immunostaining was conducted on trunk
spinal cords 2 days, 8 days, and 12 days post-tail loss. While PCNA+ cells were detected
in the ependymal layer of each segment at each time point post-tail loss, our quantitative
analysis revealed that the proportion of ependymal cells expressing this marker was less
than 5% for each segment (Figure 7J; Table 3). However, given that the interaction between
time point and segment was nonsignificant, looking at the effect of segment revealed a
significantly higher proportion of cell proliferation in the caudal segment compared to the
cranial segment (p = 0.0321), and in the middle segment compared to the cranial segment
(p = 0.0179; Figure 8). These data indicate that ependymal cells of the middle and caudal
segments of the trunk spinal cord are more proliferative than those of the cranial segment.
Additionally, proportions of PCNA+ cells were not significantly changed across time points
(p values > 0.05).
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Figure 8. The proportion of PCNA+ cells varies along the length of the trunk spinal cord. Combining
data across time points reveals a significantly reduced proportion of PCNA+ cells in the cranial
segment of trunk spinal cord compared to the middle (p = 0.0179) and caudal (p = 0.0321) segments.
CI = confidence interval. Asterisk (*) indicates significance (p < 0.05).

Next, we investigated the effect of tail loss on BrdU incorporation. Using our short-
duration BrdU labelling approach, geckos were induced to autotomize and then imme-
diately pulsed with BrdU (twice daily i.p. injections, 50 mg/kg) for two days, and were
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then collected. At the end of the pulse, autotomized geckos did demonstrate BrdU incor-
poration in the ependymal layer of the cranial, middle and caudal segments (Figure 7K;
see Table 4). Statistical analysis revealed a trend of reduced BrdU incorporation in post-
autotomy geckos (approximately 0.55%), but this group effect did not reach statistical
significance (p = 0.2785; Figure 7L). In addition, there were no differences detected between
segments (p values > 0.05; Figure 7M).

4. Discussion

Here, we conducted a spatiotemporal characterization of trunk spinal cord ependymal
cells in the leopard gecko. We determined that ependymal cells represent a heterogeneous
population. Most (but not all) ependymal cells express SOX2 and, similar to radial glia,
many express the intermediate filaments GFAP+ and Vimentin (but do not co-express the
neuronal marker HuCD). A second population of ependymal cells, herein identified as
CSF-c cells, express HuCD (and sometimes NeuN), but not GFAP. To study cell dynamics,
we used a long-duration BrdU experiment and determined that the majority of mitotically
active cells are slow-cycling. Next, we quantified the S phase marker PCNA and, in a
separate experiment, BrdU following a short-duration labelling experiment. Both assays
revealed that cells of the ependymal layer do actively cycle under homeostatic conditions.
Interestingly, our PCNA data and short-duration BrdU experiment revealed that this
proliferation is unaltered in response to the distal spinal cord injury produced by tail loss.
Taken together, our data suggest that, like the tail, the trunk spinal cord of geckos includes
populations of radial glia within the ependymal layer.

Consistent with their identification as NSPCs, we found that the majority of ependymal
cells expressed a panel of protein markers characteristic of radial glia, including the inter-
mediate filaments GFAP and Vimentin, and the transcription factor SOX2. Whereas SOX2
expression by ependymal cells is often limited prior to injury, even among regeneration-
competent species [32,46,48,49], we observed widespread immunostaining for this tran-
scription factor in geckos before their tails were removed (see also [11]). Similarly, near ubiq-
uitous expression of SOX2 has also been documented in the spinal cord of the tail [10,11],
which does regenerate, as well as in the mammalian spinal cord, which does not [43,50,51].
By way of explanation, it has been suggested that levels of intracellular SOX2, and not its
ubiquity among the ependymal population, is the key to promoting neural tissue restora-
tion [34,52,53]. For example, neural progenitor cell defects are observed when SOX2 levels
drop below 20%–30% of wildtype levels [54–56], while overexpression of SOX2 inhibits
neurogenesis and promotes gliogenesis in neurosphere cultures [52].

Along with SOX2, ependymal cells of the trunk spinal cord also co-label with Vimentin.
Vimentin is one of the first intermediate filaments to be expressed by embryonic neuro-
progenitor cells, known as neuroepithelial cells [57–59]. Although Vimentin is commonly
replaced by GFAP during development [35], it is retained by many–but not all–species
capable of neuroregeneration [8,36,60,61]. For example, among tail-regenerating lizards,
Vimentin expression within the spinal cord has been reported for Podarcis sicula but not
Anolis sagrei [23,62]. Further supporting their identification as radial glia, most Vimentin+
cells co-expressed GFAP. We also observed GFAP+ cells that lacked Vimentin. One expla-
nation is that these cells may reflect a more mature subset of radial glia-like cells, having
completed the ontogenetic shift from Vimentin to GFAP.

In addition to expressing various proteins associated with NSPCs, we also determined
that ependymal cells of the trunk spinal cord include populations that are quiescent.
Quiescence, or slow-cycling, is commonly reported for stem/progenitor cell populations
across various tissues [31,63–66], including the CNS [12,29,67,68]. As currently understood,
quiescence is a mechanism to avoid senescence and preserve the progenitor pool for
unforeseen circumstances, such as injury [53]. Using a long-duration (20-week) BrdU
pulse-chase paradigm, we confirmed that ependymal cells of the trunk spinal cord are
label-retaining. Significantly, at 20 weeks all BrdU+ cells also expressed SOX2. While
we did not determine the identity of the BrdU+ cells, previous studies have confirmed
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that radial glia, including those from the spinal cord, are typically slow-cycling [12,27,69].
Given that the proportion of label-retaining cells in the gecko spinal cord was not reduced
between the pulse (7 days) and chase (140 days), we predict that the majority of ependymal
cells are slow cycling. Our data suggest that any cells that cycle and acquire the label during
the pulse then go on to retain it for relatively long periods of time, up to 140 days. The
limited population labelled with BrdU at 140 days of chase is likely reflective of the short
length of the pulse, and not the size of the slow-cycling population. Although our long-
duration BrdU data clearly demonstrate that a largely quiescent population resides within
the spinal cord, whether other cells within the ependymal pool are capable of more rapid
constitutive proliferation remains unclear. Among other species, including neurogenic
regions of the zebrafish [29] and mouse [67,68] brain, actively proliferating and quiescent
stem/progenitor cells are known to coexist.

We documented ependymal cells in both the S phase (PCNA) and M phase (pHH3) of
the cell cycle in each of the three trunk spinal cord segments. The differences observed in
the proportion of pHH3+ vs. PCNA+ cells (pHH3 expressing cells were far less common
than cells immunostaining for PCNA) is best explained by the difference in the relative
duration of each phase [38,70]. However, it should be noted that, since both PCNA and
BrdU are proxies for the S phase of the cell cycle [38,71], we might expect that proportions of
PCNA+ cells (~4.7%) and BrdU+ cells after the two-day pulse (~1.1%) be more comparable.
Similar quantitative differences between PCNA and BrdU have been reported elsewhere
(e.g., various tissues in canines; [72]). By way of explanation, it has been noted that
PCNA immunostaining also labels cells undergoing DNA repair [72]. While BrdU is also
incorporated during DNA repair processes, it has been suggested that the concentrations
commonly used are insufficient to detect DNA repair [73,74].

Another important finding was that the trunk spinal cord demonstrates regional
variation with respect to the proportion of PCNA+ cells. More specifically, cell proliferation
was significantly less abundant among the cranial-most populations of ependymal cells.
Although a comparable pattern of proliferative polarity (most abundant in the caudal-most
populations) of spinal cord cells has also been reported for brown knifefish [75], data from
mammals remain equivocal [43,76].

The ability to voluntarily detach (autotomize) the tail is an important adaptation for
many species of lizard, including the gecko. Tail autotomy results in the complete rupture of
the spinal cord and represents a traumatic and yet readily survivable injury. Unexpectedly,
our BrdU labelling strategy found that ependymal cell proliferation was not significantly
altered following tail loss. Reduction in proliferation cranial to the site of spinal cord injury
has been documented in the rat, where a cervical spinal cord injury resulted in reduced
BrdU incorporation in both the olfactory bulb and dentate gyrus of the hippocampus [47].
Paradoxically, in teleost fish, transectional spinal cord injuries increase cell proliferation
outside the area of injury. For example, in zebrafish, cell proliferation increases within the
ependymal layer both cranial and caudal to the lesion site [12]. Furthermore, in the black
ghost knifefish, a high-level transectional spinal cord injury increased cell proliferation at
locations distant from the injury, with the largest increase observed at the tip of the tail [75].
An important caveat, however, is that the knifefish study did not focus exclusively on
the ependymal layer. Interestingly, after contusion injury at the thoracic level in mice, a
wave of ependymal proliferation was observed cranially along the spinal cord but was not
detected caudal to the lesion site [77]. Combined, these data suggest that the CNS is a closed
system, in which injuries to one region produce a system-wide response. Furthermore,
the response of the spinal cord at sites distant to the site of injury in the abovementioned
species, regardless of regenerative competence, is an increase in proliferation. Similarly,
limb amputation in axolotls has recently been shown to increase cell cycle activation and
proliferation in intact, uninjured tissues across the body, including the contralateral limb,
heart, liver and ependymal layer of the spinal cord [78]. We speculate that the failure of the
gecko spinal cord to become activated in the same way represents an adaption associated
with the evolution of tail autotomy. However, we predict that they likely would become
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activated in response to a direct, trunk spinal cord injury given that their phenotype so
closely resembles the phenotype of NSPCs within the regeneration-competent tail spinal
cord. Whether this response would result in functional recovery or glial scarring remains
to be seen.

In addition to radial glia, we also detected cells with a neuronal phenotype, contribut-
ing to the complexity of the ependymal population. More specifically, we identified popu-
lations of cells immunostaining for HuCD (and sometimes HuCD and NeuN). Importantly,
HuCD+ cells were GFAP–. We recognize these cells as cerebrospinal fluid-contacting (CSF-c)
cells (= central canal-contacting cells, liquor-contacting neurons, or cerebrospinal fluid-
contacting neurons; [39,40,42,79]). Similar populations of intermediate filament-bearing
radial glia, representing NSPCs, and HuCD-expressing CSF-c cells have been documented
in the gecko tail [10]. CSF-c cells have been identified in many vertebrate species, from
zebrafish to primates [39,41,42,44,80–82], as well as several species of lizard [83–87]. In
our investigation of geckos, CSF-c cells were located immediately adjacent to the lumen
of the central canal, with a small, bulb-like apical process. Although NeuN expression is
not typically associated with CSF-c cells [40,42–44], weak expression has been observed in
the rat [81]. Despite expressing SOX2, CSF-c cells (unlike radial glia) are not considered to
represent an NSPC population. Instead, they appear to function as mechanosensory cells
or receptors that monitor the pH of cerebrospinal fluid [40–42,79,84–87]. In other lizard
species, CSF-c cells have both cilia and stereocilia [18,83,85,87]), are gamma-aminobutyric
acid (GABA)-ergic [86,87] and produce exosomes [87]. CSF-c cells have also been identified
in the trunk spinal cord following a transectional injury [reviewed in 87].

Among amniotes, lizards are unique in being able to spontaneously regenerate the
spinal cord following a complete amputation (autotomy). Our findings demonstrate
that—similar to the regeneration-competent tail—the entire length of the trunk spinal cord
contains populations of constitutively proliferative NSPC-like cells. We predict that the
same regenerative capacity that is provided to the tail spinal cord is also maintained in
the trunk spinal cord. Given the parallels between the tail and trunk spinal cords, we
propose that the gecko tail spinal cord is a relevant and humane model for the study of
transectional-type spinal cord injuries and gap replacement investigations (sensu [9]).
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//www.mdpi.com/article/10.3390/jdb10020021/s1, Figure S1: SOX2/Vimentin is expressed
by the ependymal layer of the trunk spinal cord, and is unchanged after tail loss; Figure S2:
Radially-oriented GFAP+ processes and astrocytes are present within the white matter of the
trunk spinal cord; Figure S3: GFAP/HuCD is expressed by the ependymal layer of the trunk
spinal cord, and is unchanged after tail loss.
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