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Introduction
Artificial intelligence (AI) systems in luminal 
endoscopy are now on the precipice of being 
widely commercially available. The develop-
ment of deep learning (DL) in diagnostic imag-
ing has further potentiated the realms of AI in 
luminal endoscopy and overcomes some of the 
limitations of machine learning (ML) through 
the ability to process high-dimensional endo-
scopic data and to self-identify trainable param-
eters not appreciable to humans. One of the 
most researched DL methods uses convoluted 
neural networks (CNNs) (Figure 1) designed to 
assimilate biological neural networks.1 Here, we 
review the existing data for AI in diagnostic 
endoscopy encompassing upper gastrointestinal, 
small bowel capsule and colonic examinations. 
Additional roles of AI outside diagnosis relevant 

to endoscopy are discussed alongside future 
requirements for research and global adoption of 
AI into routine endoscopic practice.

Upper gastrointestinal endoscopy
AI-augmented endoscopic imaging has been 
studied across benign and malignant patholo-
gies of the upper gastrointestinal (GI) tract. The 
majority of data of AI in the upper GI tract are 
retrospective,2–4 with two real-time diagnostic 
evaluations for the diagnosis of early gastric 
cancer5 and Barrett’s neoplasia.6

Helicobacter pylori
AI could potentially improve the diagnostic yield 
by abating the false positive rate secondary to 
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conventional sampling error. All studies for the 
diagnosis of H. pylori to date involve deep learning 
(DL) and are summarised in Table 1.

Three retrospective CNNs have achieved compa-
rable diagnostic performances with a sensitivity of 
79–87% and specificity of 83.2–87%.7,8 One of 
these CNNs used images classified to location 
and achieved a significantly higher accuracy than 
endoscopists (by 5.3%).7

Preliminary analysis of prospectively collected 
data using a refined feature selection trained arti-
ficial neural network (ANN) of cases and controls 
yielded an accuracy of greater than 80% for the 
detection of intestinal metaplasia, atrophy and 
the severity of gastric inflammation.3

Linked colour imaging (LCI) demonstrates 
encouraging preliminary findings with high 
accuracy of greater than 93%4,9 and appears to 
be superior to blue laser imaging (BLI) with 
areas under the curve (AUCs) of 0.96 and 0.95, 
respectively,4 but requires large-scale study.

Barrett’s neoplasia
Application of AI in this remit is for the detection 
and diagnosis of Barrett’s-associated neoplasia 
using the conventional Seattle biopsy protocol and 
is summarised in Table 1.10 Retrospective studies 
demonstrate overall accuracy for the detection of 
Barrett’s neoplasia of approximately 83–85%.11–13 
Preliminary novel findings of a recent study evalu-
ating histograms of volume laser endomicroscopy 
(VLE) images appear to further optimise diagnos-
tic performance.14 ML using decision trees (DTs) 
on videos of nondysplastic Barrett’s and Barrett’s-
associated dysplasia undergoing acetic acid exami-
nation using i-SCAN (PENTAX) was formed 
upon the mucosal evaluation by three expert 
endoscopists. The overall DT model accuracy of 
diagnosis was 92% and demonstrated augmented 
performance and improvement in the accuracy of 
nonexpert endoscopists using the DT algorithm.15 
Real-time diagnostic study of using DL demon-
strated an overall accuracy of 89.9% in a small test 
sample of 14 cases [36 images of early adenocarci-
noma and 26 nondysplastic Barrett’s oesophagus 
(BE)] and using only 129 images for training.6

Although the current data do not satisfy the pres-
ervation and incorporation of valuable endoscopic 
innovation (PIVI) thresholds for advanced 

imaging technologies of a per-patient sensitivity 
of ⩾90% and a negative predictive value of 
⩾98%,16 through further optimisation of algo-
rithms in large-scale studies, this appears feasible 
and achievable.

Squamous cell neoplasia
Applications of AI include the diagnosis of squa-
mous cell neoplasia (SCC) and the estimation of 
depth of invasion, a pertinent factor to decipher the 
appropriate management strategy driven by a range 
of imaging modalities, summarised in Table 1.

Diagnosis
White light endoscopy.  A retrospective CNN 

demonstrated excellent diagnostic performance 
for the detection of early SCC and differentiation 
from inflammation.17 The preliminary perfor-
mance of CNNs on unseen videos having been 
developed on static images was able to detect 
SCC in 8 of 10 patients.18

Narrow band imaging.  DL using a CNN was 
piloted on manually generated regions of interest 
(ROIs) of narrow band imaging (NBI) intrapap-
illary capillary loops.19 A subsequent large-scale 
study demonstrated a rapid accurate analysis 
taking 27 s for the test database analysis (1118 
images).20 A multicentre NBI DL study of 2770 
images of dysplasia and early neoplasia and 3703 
images of benign lesions trained a model for real-
time diagnosis. Validation of images and videos 
with a heatmap generation for neoplasia demon-
strated a high performance on static images with 
AUC of 0.989 over four validation datasets.21

High-resolution microendoscopy and endo-
cytoscopy.  A tablet interface high-resolution 
microendoscopy system was designed to facilitate 
morphometric nuclear analysis from which neo-
plasia can be diagnosed with an AUC of 93%.22

Preliminary findings of endocytoscopy-based 
CNNs demonstrated encouraging results with a 
sensitivity of 92.6% on a test database of 55 
patients (n = 27 with neoplasia). A step further 
was the development of a GoogLeNet CNN with 
a larger training dataset; 4715 images were evalu-
ated on a test set of 1520 images from 55 patients. 
The receiver operating characteristic curve 
(ROC) was 0.9 for magnification and correctly 
diagnosed 25 of 27 neoplastic and 25 of 28 benign 
oesophageal lesions.23
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Depth of invasion.  Evaluation of a retrospec-
tively trained CNN of SCCs to predict the depth 
of invasion in 68 patients (n = 52 SM1 and n = 16 
SM2) demonstrated a high negative predictive 
value (NPV) of 91.6% ⩾SM2 under white light 
endoscopy (WLE).24

Gastric neoplasia
The function of AI related to gastric neoplasia 
includes diagnosis, estimation of depth of inva-
sion and delineation of borders: vital information 
for treatment strategising. Various imaging 
modality–driven AI have been evaluated and are 
summarised in Table 1.

Diagnosis and delineation of neoplastic borders
WLE.  Inception study of CNNs yielded high 

sensitivity but poor specificity (30.6%).25 Favour-
able results for real-time diagnosis have been 
demonstrated with detection of 64 of the 68 can-
cerous lesions in 62 patients.5

The real-time multicentre study developed and 
validated the DL Gastrointestinal Artificial 
Intelligence Diagnostic System (GRAIDS). A 
large training set of 1,036,496 images from 
84,424 patients was used, with accuracy in the 
external validation sets ranging from 91.5% to 
97.7%; similar to expert endoscopists but supe-
rior to senior doctors/trainees, demonstrating the 
potential to optimise and standardise practice.26

Virtual chromoendoscopy (Fujinon intelligent 
chromoendoscopy).  Primary studies using Fujinon 
intelligent chromoendoscopy (FICE)-driven AI 
models revealed modest results (Table 1);27 how-
ever, diagnostic accuracy improved with BLI and a 
larger validation set of 100 early gastric cancers.28

NBI.  Diagnosis with magnification NBI using 
support vector machine algorithms on only 126 
training images demonstrated excellent diagnostic 
performance with a sensitivity of 97% and speci-
ficity of 95%; however, limited performance was 
seen for delineation of the lesion with border.29 
Further study using magnification NBI CNNs on 
a larger training dataset of more than 2000 images 
yielded an overall accuracy of 90.91% on a test 
dataset of 314 images (170 cancer images).30

Further CNNs have been trained to differentiate 
gastric neoplasia from gastritis using NBI with high 
NPV (91.7%) in a modest test dataset of 258 images 
with a rapid image evaluation (0.02 s per image).31

Depth of invasion.  Unvalidated neural networks 
have demonstrated potential for predictions of 
depth of invasion between T1a and T1b from 
benign lesions with AUC of 0.851.32 A feed-for-
ward ANN demonstrated an overall accuracy of 
64.7% and per depth of T1 at 77%, T2 at 49%, 
T3 at 51% and T4 at 55%.33 Using a larger train-
ing and testing dataset, DL was highly specific 
(96%) for SM2 or deeper invasive cancers: a use-
ful scenario where specificity is the priority for 
therapy planning.34

Surveillance.  Gastric mapping using image 
retrieval networks from an index endoscopic 
examination provides the potential for real-time 
guidance for retargeting areas of concern which 
could be extended for colonic surveillance.35

Small bowel
In addition to pathology detection, applications 
of AI in the small bowel include image enhance-
ment, three-dimensional (3D) image reconstruc-
tion and localisation. AI-augmented capsule 
reading may automate the reading process and 
therefore reduce reading time.

Image enhancement
ML algorithms have been developed to reduce 
artefact interference within frames using wavelet 
transformation,36 deblurring algorithms and 
adaptive learning algorithms.37,38

Localisation and 3D image reconstruction
Algorithms for vision-based simultaneous locali-
sation and mapping (vSLAM) have been devel-
oped ex vivo to localise with respectable accuracy 
and orientate to accurately guide therapy inclu-
sion and 3D luminal map reconstruction.39

Pathology detection
Video capsule endoscopy (VCE) reading can be a 
time-consuming process that requires patience 
(mean capsule reading time of 30–40 min) with an 
inherent risk of missing pathology and high inter-
variability of reading due to up to 50,000–100,000 
frames to be viewed. QuickView (Medtronic, 
Dublin, Ireland) selects 10% of the most promi-
nent images for review with a sensitivity for pathol-
ogy detection of 94%.40,41 ML algorithms have 
been proposed using static image analysis in rela-
tively small datasets with AUC of 0.89.42
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DL proves to be promising in this field. AlexNet, 
a pretrained network of static images of erosions 
and healthy mucosa, achieves an accuracy of circa 
95%.43 Deep convolutional neural network 
(DCNN) performance (5360 training images of 
small bowel ulcerations/erosions) was tested on 
10,440 images (440 contained such pathology). 
The AUC was 0.958 [95% confidence interval 
(CI), 0.947–0.968], sensitivity was 88.2% and 
accuracy was 90.8% using a cut-off point of 0.481 
probability score. The DCNN evaluated the 
WCE images at a speed of 44.8 images/s.44

Bleeding
The performance of commercially available 
bleeding detection software such as the Suspected 
Blood Indicator algorithm (Medtronic) has been 
suboptimal (sensitivity of 55%, specificity of 
58%), necessitating further development.40,45

ML demonstrated improved performance (sensi-
tivity of 89.5%, specificity of 96.8%) using ROI 
generation and DT-based learning algorithms 
with the ground truth determined by human-
labelled images.46

DL offers advantages over ML due to superior 
aspects in feature selection for the detection of 
bleeding. Consistency of static image and video 
collection with capsule endoscopy makes it an 
attractive substrate for AI.

DCNNs appear to further improve the detection 
of small bowel angioectasia with a frailty index 
(FI) score of 0.9955 on a test dataset of 10,000 
images.47 Subsequent analysis of 10,488 images 
(488 with angioectasia) revealed an AUC of 0.998 
and NPV of 99.9%.48 Comparable data have been 
observed using a semantic segmentation approach 
with CNN. A total of 4166 VCE videos were used 
from a national multicentre database, from which 
600 control and 600 angioectasia frames were 
selected and divided for training and testing. The 
CNN yielded a sensitivity of 100%, specificity of 
96% and NPV of 100%. The total automated 
video analysis time was 39 min for a capsule of 
50 000 frames.49

Colonoscopy
Colonoscopy with computer-aided detection 
(CADe) is one of the most attractive applications 
and the subject of the broadest literature available 
to date. Additional roles for AI include polyp 

characterisation and the assessment of colitis for 
activity and dysplasia. The potential for large 
datasets results in the ability to perform refined 
training of algorithms and validation studies.50

Polyp detection
CADe aims to mitigate human factors for missed 
lesions such as fatigue, distraction/inattention 
blindness, loss of mucosal inspection during vis-
ual scanning and endoscopist skill. DL appears 
to enhance polyp detection compared with ML; 
however, pre-DL data were limited by small-
scale studies with fewer polyps (<30) and arte-
factual interference. Several studies of real-time 
CNNs illustrate the potential of AI in this area. A 
3D video-trained CNN (3,017,088 manually 
reported frames, 930 polyps) yielded a sensitivity 
of 84% for protruded lesions and 87% for flat 
lesions in real time.51 Further real-time evalua-
tion of a CNN (trained on >8000 images from 
2000 patients) demonstrated impressive diagnos-
tic accuracy of 96% and appeared superior to 
human detection for polyp detection (45 versus 
36),52 however requiring validation.52 Large data 
including training from 1290 patients and valida-
tion cohorts of 1138 patients (27,113 images) 
demonstrated ML algorithm sensitivity of 94.3% 
and AUC of 0.984.53 Further development of 
real-time AI models echoes these findings, 
achieving real-time feedback within 0.03 s/frame 
with sensitivity of 93.7% for the detection of 
nonpolypoid lesions.54

There are five randomised trials for CADe to 
date with adenoma detection rate (ADR) as the 
primary outcome (Table 2). The comparator in 
all randomised trials is conventional colonos-
copy (CC) using WLE, and all have demon-
strated a significantly higher ADR by CADe.55–59 
The first randomised controlled trial (RCT) 
demonstrated a higher polyp detection rate and 
ADR using CADe (0.29 versus 0.2); however, 
the increased benefit was limited to diminutive 
lesions in the left colon.56 A large validation 
study used a commercially available AI system 
(GI-Genius; Medtronic) on videos of 2684 pol-
yps from 840 patients and 1.5 million manually 
annotated frames of these polyps, which were 
randomised to a validation and training dataset 
by patient. A test dataset of n = 105 (338 pol-
yps) yielded a sensitivity of 99.7% (one missed 
polyp) and a false positive proportion of less 
than 1% of frames per colonoscopy. The reac-
tion time of AI to polyp detection was faster than 
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endoscopists in the majority of cases.60 In the 
double-blind designed trial, subanalysis of the 
initial missed polyps by the endoscopist in the 
CADe arm was small, on the edge of the visual 
field.55 Automated quality control systems 
(AQCS) developed on DCNNs additionally 
measure withdrawal time and stability, and 
bowel preparation to polyp detection, which 
demonstrated a significant increase in ADR 
along with prolonged exposure time (7.03 min 
versus 5.68 min, p < .001) and adequate bowel 
preparation rate.58 A randomised trial of a 3D 
DCNN was evaluated against CC of 1026 
patients in the complete case population. 
Withdrawal time was again prolonged in the 
CADe cohort with a 0.071 false positive risk per 
colonoscopy with no polyps missed.59

Polyp diagnosis
AI-augmented polyp characterisation may serve to 
support the PIVI criteria for diminutive polyps 
including resect and discard (PIVI-1) and diagnose 
and leave (PIVI-2).61 Furthermore, it can provide 
an educational adjunct to endoscopist skill devel-
opment in polyp diagnosis and finally to guide 
endoscopic therapy through the evaluation of depth 
of invasion. AI models have been studied using all 
advanced imaging modalities as a range of image 
substrates. WLE-based models, although an attrac-
tive modality given its global nature, have limited 
performance (accuracy ca. 70%) even with DL and 
a decent sample size.62 Further refinement of DL 
with the ‘deep capsule neural network’ demon-
strates the ability to diagnose and differentiate 
hyperplastic polyps, adenomas and serrated adeno-
mas, traditionally difficult for existing AI models.63

NBI.  NBI-driven (Olympus, Tokyo, Japan) AI is 
the most extensively studied modality to date. 
ML of magnification NBI differentiated neoplas-
tic and nonneoplastic lesions with a sensitivity of 
85–93%.64,65 Retrospective DL studies surpassed 
PIVI-2 criteria with an NPV of 91.5–97%.66,67 
Prospective evaluation with real-time magnifica-
tion NBI also exceeded the PIVI-2 criteria with 
an NPV of 93.3% and was also able to predict 
surveillance strategy in exact agreement with his-
tology in 92.7%.68

Chromoendoscopy.  Preliminary models identify-
ing pit patterns are encouraging (accuracy of 
98.5%).69 Image segmentation using wavelet tex-
tural approaches also demonstrates potential and 
await large-scale study.70

Autofluorescence imaging.  Preliminary study of 
autofluorescence imaging (AFI) based on 
green:red ratios demonstrates an NPV of 96.1% 
in a small patient population (n = 27).71 Real-time 
assessment demonstrated encouraging results 
with a sensitivity of 94.2%, specificity of 88.9% 
and NPV of 85.2%.72

Confocal laser endomicroscopy.  Initial study of 
confocal laser endomicroscopy (CLE) differenti-
ated advanced colorectal cancer with an accuracy 
of 84.5%73 and 89.6% between neoplastic and 
nonneoplastic polyps.74 in addition to the identifi-
cation of optimum images for clinician review.75,76

Endocytoscopy (EndoBrain).  EndoBrain is one of 
the first regulatory body–approved AI systems. 
Initial studies using methylene blue nuclear stain-
ing identified neoplastic features with 89.2% 
accuracy.77,78 Further development for the diag-
nosis of diminutive polyps (n = 144) involving tex-
tural analysis and a support vector machine 
classifier achieved an NPV of 98%, satisfying 
PIVI-2.79 NBI replacing the need for methylene 
blue achieved an accuracy of 90%.80 Retrospec-
tive data of 5843 endocytoscopic images (375 
lesions in n = 242) differentiated invasive cancer 
with an accuracy of 94.1% in 200 test images.81 
Prospective real-time evaluation of EndoBrain on 
466 diminutive lesions (n = 791 patients) in the 
rectosigmoid area satisfied the PIVI-2 criteria 
with an NPV of 93.7%.59,82 Recent retrospective 
comparison of endoscopist (trainee and expert) of 
both methylene blue (MB) endocytoscopy and 
NBI images versus EndoBrain demonstrated 
excellent overall accuracy of EndoBrain (98% 
MB and 96% NBI) and outperformed all endos-
copists in sensitivity and NPV.83

Assessment of colitis
NBI-EndoBrain has been evaluated for the assess-
ment of mucosal healing in ulcerative colitis 
(UC). A retrospective analysis of 187 patients 
(100 used for validation) demonstrated a high 
specificity of 97% for mucosal inflammation.84 A 
retrospective WLE CNN (GoogLeNet) model 
performed favourably with an area under the 
receiver operating characteristic curve (AUROC) 
of 0.86 for Mayo 0 and 0.98 for Mayo ⩽1 with 
the highest accuracy for rectal images (AUROC 
of 0.92).85 A large-scale prospective study of a 
constructed DCNN on 40,758 images from 2012 
patients with UC validated prospectively in 875 
patients was able to detect endoscopic remission 
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to 90.1% accuracy and importantly histological 
remission with 92.9% accuracy and kappa coeffi-
cient agreement with histology of 0.86.86

Quality of endoscopy

Education
The first RCT in AI-augmented gastroscopy 
revealed significantly fewer blind spots identified 
with AI-assisted WLE (WISENSE) versus con-
ventional examination (5.86% versus 22.46%, 
p < 0.001),87 which could potentially extrapolate 
to improving endoscopist skill and quality.

ML with DTs built on video substrates of nondys-
plastic Barrett’s and Barrett’s-associated dysplasia 
using i-SCAN (PENTAX) in 40 patients demon-
strated improved diagnostic accuracy of nonexpert 
endoscopists when using the DT algorithm.15

Automated endoscopy reporting
Piloting of CNN-automated procedure labelling 
such as colonic intubation time, caecal recogni-
tion and withdrawal time on video-recorded colo-
noscopy illustrates high accuracy when compared 
with manual recording (R2 = 0.995).88

Triaging of endoscopy referrals
Triaging referrals in GI endoscopy are subject to 
high variance pending on route of referral and 
straight-to-endoscopy qualifiers which can result 
in delays in patient pathways. Natural language 
processing can provide assistance with ‘auto-tri-
aging’ for suspected cancer referrals, providing 
community clinicians with a vetting tool for refer-
rals for further management including direct 
endoscopy referrals.89 NHS England (UK) 
recently introduced an AI-supported application 
‘C the signs’, a class 1 device with the Medicines 
and Healthcare products Regulatory Agency 
(MRHA) using National Institute for Health and 
Care Excellence (NICE) guidance designed to be 
used in primary care to support clinicians to iden-
tify investigations and referrals required.90

Future considerations and directions.  Digital 
reform is inevitable, necessary and has arrived in 
multiple spectra of healthcare. AI-augmented 
colonoscopy has been acknowledged in the 
recently updated European Society of Gastroin-
testinal Endoscopy (ESGE) Advanced Imaging 
guidance for the diagnosis and detection of 

colorectal neoplasia.91 Further multicentre ran-
domised trials are warranted to evaluate both the 
effect and validity of AI software across patient 
populations and are required to support its global 
uptake. Current AI software is trained on pristine 
images. Further development of AI algorithms 
that are able to adapt to real-life artefacts such as 
faecal residue/mucus yet detect polyps is required. 
In the realms of adopting AI into routing endo-
scopic practice will come a new age of responsi-
bility regarding data storage and protection, 
which will require further attention. A potential 
limitation to this incorporation of AI-augmented 
endoscopy is cost related to installation of hard-
ware, software with on-going required mainte-
nance/upgrade and additional computational 
requirements. In addition, there is the hypotheti-
cal threat of behavioural reliance on AI for endo-
scopic diagnosis; however, the role of AI is an 
adjunct to diagnosis and can potentially be imple-
mented to improve endoscopic diagnosis through 
self-learning. Furthermore, endoscopic manage-
ment is a multifaceted patient-specific decision 
process of which AI-augmented endoscopic imag-
ing is one facet. Future focus on trainees/nonex-
pert endoscopists and QUALY analyses will be 
required to inform the potential wider benefits 
and impact of adopting AI-augmented endoscopy 
into routine clinical practice. It is our duty to 
patients to use technology and advance care to 
the maximum benefit, making for an exciting 
future ahead for endoscopic practice.
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