
GigaScience, 10, 2021, 1–8

https://doi.org/10.1093/gigascience/giab077
Technical Note

TE CHNICAL NO TE

Linking big biomedical datasets to modular analysis
with Portable Encapsulated Projects
Nathan C. Sheffield 1,2,3,4,*, Michał Stolarczyk 1, Vincent P. Reuter 1,5 and
André F. Rendeiro 6,7

1Center for Public Health Genomics, University of Virginia, VA 22908, USA; 2Department of Public Health
Sciences, University of Virginia, VA 22908, USA; 3Department of Biomedical Engineering, University of
Virginia, VA 22908, USA; 4Department of Biochemistry and Molecular Genetics, University of Virginia, VA
22908, USA; 5Genomics and Computational Biology Graduate Group, University of Pennsylvania, PA 19087,
USA; 6Institute for Computational Biomedicine, Weill Cornell Medical College, NY 10021, USA and 7Caryl and
Israel Englander Institute for Precision Medicine, Weill Cornell Medical College, NY 10021, USA
∗Correspondence address. Nathan C. Sheffield, PO Box 800717, Charlottesville, VA 22908-0717, USA.

E-mail: nsheffield@virginia.edu http://orcid.org/0000-0001-5643-4068

Abstract

Background: Organizing and annotating biological sample data is critical in data-intensive bioinformatics. Unfortunately,
metadata formats from a data provider are often incompatible with requirements of a processing tool. There is no broadly
accepted standard to organize metadata across biological projects and bioinformatics tools, restricting the portability and
reusability of both annotated datasets and analysis software.
Results: To address this, we present the Portable Encapsulated Project (PEP) specification, a formal specification for
biological sample metadata structure. The PEP specification accommodates typical features of data-intensive
bioinformatics projects with many biological samples. In addition to standardization, the PEP specification provides
descriptors and modifiers for project-level and sample-level metadata, which improve portability across both computing
environments and data processing tools. PEPs include a schema validator framework, allowing formal definition of required
metadata attributes for data analysis broadly. We have implemented packages for reading PEPs in both Python and R to
provide a language-agnostic interface for organizing project metadata.
Conclusions: The PEP specification is an important step toward unifying data annotation and processing tools in
data-intensive biological research projects. Links to tools and documentation are available at http://pep.databio.org/.

Keywords: sample metadata standard; interoperability; sample annotation table; metadata validation schema

Introduction

Biological data generation is accelerating, and considerable ef-
fort is now being invested in how to best share it. These efforts
include expansions of databases [1, 2], as well as new data stan-
dards, ontologies, and guidelines for data sharing [3–9]. Major ef-
fort is being invested in building an open data ecosystem upon
which data of many types may be easily shared and reused.

As our ability to generate data increases across scientific dis-
ciplines, analysis often becomes the bottleneck of scientific ad-
vance. To mitigate this, new computational pipelines are un-
der continuous development. These pipelines are increasingly
written using pipeline frameworks, leading to now dozens of
such frameworks that simplify developing reusable computa-
tional pipelines [10], such as the common workflow language

Received: 2 November 2020; Revised: 20 April 2021; Accepted: 4 November 2021

C© The Author(s) 2021. Published by Oxford University Press GigaScience. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any
medium, provided the original work is properly cited.

1

http://www.oxfordjournals.org
http://orcid.org/0000-0001-5643-4068
http://orcid.org/0000-0003-2101-9061
http://orcid.org/0000-0002-7967-976X
http://orcid.org/0000-0001-9362-5373
mailto:nsheffield@virginia.edu
http://orcid.org/0000-0001-5643-4068
http://orcid.org/0000-0001-5643-4068
http://pep.databio.org/
http://creativecommons.org/licenses/by/4.0/

2 Linking big biomedical datasets to modular analysis with Portable Encapsulated Projects

Figure 1: A data interface links data to analysis. (A) Schematic of a data interface. (B) Each analysis typically describes its own unique data interface. (C) The “one lab,
one dataset, one analysis” mode of research tightly couples datasets and analysis. (D) With individual data interfaces, running a dataset through multiple analyses
requires reshaping the data for every pairwise connection of data and analysis. (E) The PEP specification provides a standardized interface that reduces reshaping.

(F) Using PEP, no reshaping is required to run a dataset through a different analytical tool. (G) A PEP may be used in different contexts and by a variety of tools and
programming languages.

[11], Snakemake [12], Galaxy [13], and Nextflow [14]. Similarly,
technological advances such as Linux containers are increasing
the portability of computing environments [15–18]. Collectively,
these efforts seek to meet the challenge of reproducible analysis
in a complicated and growing ecosystem that combines public
and private data.

These dual efforts to (i) curate open biological data and
(ii) standardize bioinformatics analysis are certainly comple-
mentary. More accessible data combined with easier standard-
ized analysis opens enormous opportunity; however, progress in
each area independently does not necessarily make it easier to
connect the two. In fact, relatively less effort has been placed at
the confluence of data and analysis in biology. We may call this
connection a “data interface,” which describes how a dataset
connects to an analysis tool (Fig. 1A). As it stands, published
bioinformatics pipelines, even if reproducibly built in a standard
framework, typically describe a unique data interface. This im-
plies that a user who wants to try multiple pipelines must man-
ually restructure the metadata for each (Fig. 1B). On the flipside,
data repositories also typically expose the data in unique ways.
In practice, it requires substantial manual effort to plug an arbi-
trary dataset into an arbitrary analysis tool—even if both adhere
to best-practice standards for data sharing or tool development.

This challenge is surmountable for a typical project that
links 1 dataset to 1 analysis process—the “one lab, one dataset,
one analysis” approach, which has been the dominant model
(Fig. 1C). But imagine an attempt to link multiple datasets from
multiple sources to multiple analysis tools. Each pair of data and
tool requires a unique data description, which probably requires
substantial manual data munging (Fig. 1D). The result is that
analysis done by an individual laboratory is often restricted to a
particular dataset generated by that laboratory for that project.
What would it take to build a computing ecosystem that would

relax this coupling, making it routine to mix-and-match data
and pipelines across groups?

A first step to realize this vision is to standardize the
data interface. This would make both datasets and tools more
portable, facilitating data integration and tool comparison. To
this end, we present the Portable Encapsulated Projects (PEP)
specification. The PEP specification standardizes the description
of sample-intensive biological research projects, enabling data
providers and data users to communicate through a common
interface (Fig. 1E). This standardization facilitates using differ-
ent pipelines for the same datasets, or, equivalently, different
datasets for the same pipelines (Fig. 1F).

In addition to standardization, our work with PEP provides
3 additional features that contribute to the interoperability of
data: First, the PEP specification provides portability functions
called “project modifiers” and “sample modifiers,” which make
project metadata annotation independent of a particular com-
puting platform. Second, it provides a validation framework that
can be used first to define and then to validate the sample prop-
erties required for a particular application. Finally, the project
includes tools that read PEPs and handle PEP modifiers in either
R or Python, which can be extended by specialized tools.

With these features, PEPs encourage interoperability across
data and tools. One result is that PEPs can be re-used for many
types of downstream analysis (Fig. 1G). For instance, standard-
ized PEPs enable meta-analysis across hundreds of projects be-
cause each project can be read in a uniform way. Instead of re-
quiring a custom project description, file names, and organi-
zation, databases could simply provide a schema and use the
PEP specifciation to load published projects into a structured
database. Tools that summarize processed data can be made to
use the same PEP that runs the original workflows, making these
summarizing tools more broadly applicable. The PEP specifica-

Sheffield et al. 3

tion thus provides a unifying data organization that can be used
by many tools to make it easier to share data and tools.

The goal of the PEP specification follows the vision of the In-
vestigation/Study/Assay (ISA) biological metadata management
framework [19]. Relative to ISA, the PEP specification empha-
sizes generality, programmatic metadata preprocessing, and in-
tegration into workflow systems. Existing tools can easily ac-
commodate the PEP structure; e.g., Snakemake includes a direc-
tive to import a PEP into a workflow that functions alongside
earlier, specialized data formats [20]. Similarly, our companion
tool, “looper,” can be used to submit arbitrary CWL workflows to
a CWL runner for each sample in a PEP. This sets the stage for a
single data description that can be used as input for multiple
workflows—even workflows built using different frameworks.
Example workflows using PEP sample metadata and several dif-
ferent workflow engines are available in the project documenta-
tion at http://pep.databio.org/.

Results
Basic PEP specification

The PEP specification defines a way to organize project and sam-
ple metadata in files using YAML and CSV formats. The term
“project” refers to a collection of metadata that describes a set
of samples. A “sample” is defined loosely as any unit that can
be collected into a project; it consists of sample attributes, usu-
ally with 1 or more that point to data files. A “PEP” is a set of
files that conform to the PEP specification. A common exam-
ple could be a typical biological research “project” made up of a
set of RNA-sequencing samples grouped to answer a particular
question.

The specification defines a PEP in 2 files: an (optional) YAML
configuration file and a tabular comma-separated value (CSV)
annotation file (Fig. 2A). The configuration file provides project-
level descriptions, such as paths to remote or local sources of
data, global analysis parameters, or other project attributes. The
tabular file is a sample table, providing metadata attributes for
each biological specimen included in the project. An optional
third file, the subsample table, can be used to specify sample at-
tributes with multiple values (see http://pep.databio.org/ for fur-
ther details). A basic PEP configuration file has just a few fields
in YAML format, such as this example file (Fig. 2B) that points
to a “samples.csv” file (Fig. 2C), which contains a header line
of sample attributes and then 1 data row per sample. Together,
these 2 files describe a minimal project. The basic PEP format is
thus extremely flexible and can accommodate assorted sample-
intensive biological research project data. Because PEP uses sim-
ple plain text files, it is universally accessible, easy to version
control, and inexpensive to store.

This simple approach is then extended in 2 critical improve-
ments: first, we added features that improve portability called
“project modifiers” and “sample modifiers,” which enable us
to remove environment-specific file paths and analysis-specific
metadata from the sample table, making it easier to use a single
metadata representation for multiple analyses in different com-
puting environments. These “modifiers” are handled by imple-
mentations of the PEP specification, which then provide “mod-
ified,” or “processed,” sample and project metadata for down-
stream tools to consume. Second, we built a validation frame-
work for PEPs that includes a base schema to validate generic
PEPs along with tools to extend this schema to more specific use
cases. This generic + specialization approach allows us to con-
struct re-usable project definitions that can be extended modu-

larly to provide increased specificity. Together, these 2 improve-
ments provide the power and specificity that enable the PEP
specification to unify and enhance our metadata descriptions
for many types of data-intensive biological research projects. We
describe these in more detail below.

Project modifiers

Project modifiers are special project attributes that provide ad-
ditional functionality to a project. The 2 modifiers are “import”
and “amend,” which allow users to either merge or embed PEPs
(Fig. 2D). At times it is useful to create 2 projects that are very
similar but differ just in 1 or 2 attributes. For example, you may
define a project with 1 set of samples and then want an identical
project that uses a different sample table. Or, you may define a
project to run on a particular reference genome and want to de-
fine a second project that is identical but uses a different refer-
ence genome. You could simply define 2 complete PEPs, but this
would duplicate information and make it harder to maintain.
Instead, project modifiers make it easier to tie projects together
through the import and amend relationships.

Project modifier: import
The import project modifier allows the configuration file to im-
port other PEPs. The values in the imported files will be over-
ridden by the corresponding entries in the current configuration
file. Imports are recursive, so an imported file that imports an-
other file is allowed; the imports are resolved in cascading order
with the most distant imports happening first, so the closest
configuration options override the more distant ones. Imports
provide a way to decouple project settings so that more specific
projects can inherit attributes from more general projects. Im-
ports allow users to combine multiple files into 1 PEP descrip-
tion. The import modifier handles sample tables the same way
it does any other attribute. If a sample table is specified in both
an imported and importing PEP, it does not merge or update in-
dividual samples or tables but simply selects the highest priority
value of the “sample table” attribute.

Project modifier: amend
The amend project modifier allows the configuration file to em-
bed multiple independent projects within a single PEP. When a
PEP is parsed, you may specify 1 or more included amendments,
which will amend the values in the processed PEP. Amend-
ments are useful to define multiple similar projects within a sin-
gle project configuration file. Under the amend key, you specify
names of amendments, and then underneath these you specify
any project variables that you want to override for that particular
amendment. It is also possible to activate multiple amendments
in priority order, which allows you to combine different project
features on the fly.

Example:
sample table: annotation.csv

project modifiers:

amend:

my project2:

sample table: annotation2.csv

my project3:

sample table: annotation3.csv

When used in tandem, imports and amendments together
make it possible to create powerful links between projects and
analysis settings that can simplify running multiple analyses
across multiple projects.

http://pep.databio.org/
http://pep.databio.org/

4 Linking big biomedical datasets to modular analysis with Portable Encapsulated Projects

Figure 2: The PEP specification. (A) A PEP consists of a YAML configuration file, a sample table, and a subsample table. (B) The YAML file describes project-level attributes.
(C) The sample table (and subsample table) describe sample-level attributes. (D) Project modifiers allow the PEP to import values from other PEPs or to embed multiple
variations within a single PEP. (E) Sample modifiers can change sample attributes by using the project config YAML file, without actually changing the CSV file.

Sample modifiers

Sample modifiers are project-level settings that adjust sam-
ple attributes. After the sample table is read, sample modi-
fiers are applied, adding new attributes or changing attributes
from the original sample table. Sample modifiers enable keep-
ing analysis-specific sample attributes in the project configura-
tion file so the sample table can be more easily shared across
projects. This allows the creation of a sample table that does
not need to be edited when moved to either a different project or
compute environment, making both project and sample meta-
data more portable.

You can add sample modifiers to a PEP by adding a “sam-
ple modifiers” section to a project configuration file. Within this
section, there are 5 subsections corresponding to 5 types of sam-
ple modifier (Fig. 2E). Three modifiers—“remove,” “append,” and
“duplicate”—are simple operations. The more expressive sam-
ple modifiers—“imply” and “derive”—lend considerable flexibil-
ity to the construction of PEP sample tables.

Sample modifier: remove
The remove modifier simply removes a specified attribute from
all samples. It can be useful if a particular analysis needs to elim-
inate a particular attribute without modifying the original sam-
ple table.

Example:
sample modifiers:

remove:

- genome

Sample modifier: append
The append modifier adds constant attributes to all samples
in a project. For example, if you write “genome: hg38” as an
entry under “append”, then when the PEP is parsed, the sam-
ples will each have an additional attribute, “genome”, with value
“hg38”. This modifier is useful because it allows keeping static
attributes in the project configuration file. It also allows you
to preserve project-level information (like “genome”) separate
from sample-level information, but still pass that information
along to pipelines that require it for each sample. This ad-
dresses the structural mismatch in independence that follows
from project composition—often, samples may be processed in-
dependently while having high dependence among their meta-
data. PEPs are friendly to the “don’t repeat yourself” principle
that improves project maintainability.

Example:
sample modifiers:

append:

genome: hg38

Sample modifier: duplicate
The “duplicate” modifier allows copying an existing sample at-
tribute into a new one. For example, the “genome” attribute
could be a synonym of the “Genome” attribute. This allows us to
tweak settings at the project level, which simplifies use of an al-
ternate pipeline with different requirements, without requiring
modification of the underlying sample table that may break ear-
lier analysis. In the key:value pair, the old attribute name listed
as key will be duplicated to create a new attribute named with
the corresponding value.

Example:
sample modifiers:

duplicate:

Genome: newattr

Sample modifier: imply
The “imply” modifier lets a user add sample attributes that are
modulated on the basis of the value of an existing sample at-
tribute. For example, a common use case is to use “imply” to
set a “genome” attribute for any sample with a specific value
in its “organism” attribute. This enables complete separation of
description of sample-intrinsic properties (like organism) from
project-level values (like reference genome, which may change).

Example:
sample modifiers:

imply:

- if:

organism: human

then:

genome assembly: hg38

Sample modifier: derive
The most expressive sample modifier is called “derive.” This
modifier allows us to create sample attributes that are derived
from other sample attributes. The most common use case is to
specify paths to data files at the project level instead of at the
sample level. This allows tabular sample descriptions to avoid
including any environment-specific information (such as a file
path), so that moving a project from one compute environment
to another requires editing only a single line in the project con-
figuration file.

The derive modifier consists of 2 pieces of data: First, the
“attributes” section lists sample attributes to be derived. Sec-
ond, the “sources” section contains key-value pairs, where the

Sheffield et al. 5

keys are source names and values are string templates. The
source names are the original values of the derived attributes.
The string templates are used to derive new attribute values by
the PEP processor, replacing the source names in the original ta-
ble. These templates may contain sample attributes enclosed by
curly braces, such as {sample name}.

Example:
sample modifiers:

derive:

attributes: [read1, read2]

sources:

key1: "/path/{attr}/{sample name}.fq"
key2: "/path/{attr}/{sample name}.fq"

In this example, {attr} and {sample name} represent other
attributes that are present on the sample. These may be popu-
lated from the sample table or from other attributes that have
been added using a sample modifier such as append.

When derived source paths include a shell variable, derived
attributes enable not only a sample table, but an entire PEP, to
be made completely portable with no editing. For instance, we
could replace “/path” above with “$DATAPATH”, and this PEP
would then point to the correct files on any computing environ-
ment with the “$DATAPATH” environment variable set.

Project and sample validation

To make it easier to standardize PEPs across workflows, we also
implemented a PEP validation tool called “eido”. Eido is a spe-
cialized PEP validator that extends JSON-schema (https://json-s
chema.org/). Because eido is based on JSON-schema, it inher-
its explicit variable typing (e.g., string, number, boolean) and re-
strictions on values (e.g., ranges, regular expressions, enumer-
ated values). Eido then adds a few advanced features that ex-
tend the basic vocabulary to tailor it to the PEP use case. For
example, our validator adds the term “required files”, which al-
lows a schema author to indicate which sample attributes must
point to files that exist. Eido also adds the ability to validate both
project-level and sample-level attributes after PEP project and
sample modifier processing. Eido uses a 2-stage validation that
first validates the configuration file, and then validates individ-
ual samples after they have been processed (Fig. 3A). This en-
sures that sample attributes that are added or modified can be
properly checked. These adjustments to the basic JSON-schema
validation allow eido to satisfy the requirements of validating
bioinformatics research projects.

Data types are defined using PEP schema files, which may be
equivalently saved in either JSON or YAML format. Eido can be
used with a generic PEP specification schema to validate a PEP in
general. The generic schema defines attributes inherent to the
basic PEP specification, including project and sample modifiers,
version, and the general data model of project-level and sample-
level attributes. A schema for a specific analysis can extend this
generic schema, such as by specifying and describing required
sample attributes, noting attributes that point to files on disk,
and identifying allowable values for given attributes. With this
model, tool authors can easily create a schema that describes
more specific requirements for a tool, and eido can validate a
given PEP to make sure it conforms to both the generic schema
and the more stringent schema, ensuring that it can run on a
particular tool (Fig. 3B).

For example, an author of a pipeline may write a schema
specifying that samples must have attributes named “read1”
and “read2”, which must be of type string, and which must
point to input files. Furthermore, the schema specifies that sam-

ples must have an attribute called “genome” that specifies the
genome to align to, perhaps with a list of allowable values. With
this schema published, it is now possible to validate a PEP to
ensure that it fulfills the requirements for this pipeline. PEP
schemas can also import other schemas (Fig. 3C). In this case,
the PEP must validate against all requirements specified by im-
ported schemas to be valid. Complete documentation, descrip-
tions of schema features, and example schemas can be found at
http://eido.databio.org.

PEP implementations in R and Python

The reference implementation of the PEP specification is the
“peppy” Python package, available from the Python Package In-
dex (PyPI). Peppy instantiates in-memory project objects and
provides a Python API for programmatic access to any project
metadata from within Python. A user simply creates a Project
object with prj = Project("config.yaml") and may now in-
teract with the project metadata within Python. This package is
a generic, extensible object framework that enables developers
to build additional tools using these objects. For instance, Snake-
make relies on the peppy package to handle parsing and reading
PEP-formatted project metadata to power a workflow run.

We have also developed an R implementation of PEP in the
“pepr” package, available on CRAN. PEPs can be parsed in R with
a similar function call, prj = pepr::Project("config.yaml"),
which provides an R API for interacting with PEPs in R. These
tools provide a PEP project interface to programmers of 2 of the
most popular data science programming languages, increasing
the portability of PEP projects.

We are interested in future efforts to expand this to other
computing frameworks. These APIs provide basic functions for
interacting with projects and samples, including setting and
accessing variables, extracting the sample attributes and sub-
attributes as a tabular object (using pandas in Python and
data.table in R), and accessing individual samples as objects. In
each case, all the sample and project modifiers are processed be-
hind the scenes so downstream tools can easily make use of the
PEP portability features. The formal API is documented in the
respective package documentation.

Discussion
The promise of PEP

As the amount of available data increases, it is useful to build a
common infrastructure to link it to analytical tools. Currently,
downloading and analyzing an external dataset requires sig-
nificant manual investment. Because each analytical pipeline
typically has a unique interface to input data, testing multiple
competing pipelines on a single dataset requires describing the
dataset multiple times. These manual steps hinder re-analysis
and re-use of existing data.

We here propose reducing this barrier with the concept of
Portable Encapsulated Projects. The PEP specification is at once
standardized and flexible. It provides a loose generic specifica-
tion that can be easily extended for specific use cases. It also
provides a validation framework that can easily accommodate
both generic and specialized PEPs.

Together, PEPs provide an interface between data and tools
that makes each more useful. If a tool developer designs a tool
to read PEPs, then it is immediately possible to apply the tool to
any published, compliant PEPs. To describe how to use the tool,
the developer needs only define a PEP schema, which can be val-

https://json-schema.org/
http://eido.databio.org

6 Linking big biomedical datasets to modular analysis with Portable Encapsulated Projects

Figure 3: PEPs can be validated against generic or specific schemas. (A) Validation uses 2 steps so samples are validated after PEP modification. (B) A generic schema
ensures compliance with the PEP specification, while specialized schemas describe requirements for a particular analysis. (C) PEP schemas can import other schemas.

idated using eido; any project defining these attributes would
then work without modification. Users then immediately know
how to format a project for the tool, and by describing newly
generated data in PEP format, they can immediately plug that
project into the tool. As developers build pipelines that under-
stand PEP format, they make it simple to apply their pipeline to
new PEP-compatible projects as they emerge.

On the flipside, as data producers publish datasets in PEP for-
mat, they make it easy for pipeline developers to test new ana-
lytical techniques on data from a variety of sources. This will
incentivize data sharing and re-use, driving innovation and dis-
covery both in tool development and in understanding of data.

Together, these tools create a programmable link between
data and analysis, making it simple to re-analyze an existing
dataset with a newly developed pipeline, grab a relevant public
dataset to include with newly generated data in a private project,
or test a published PEP-compatible pipeline on some in-house
data.

PEP in practice

We and others have successfully used the PEP infrastructure in
dozens of projects with hundreds to thousands of individual
samples. For example, PEP has been used as the sample meta-
data structure for ATAC-seq [21] and PRO-seq [22] workflows,
which have been used on several downstream projects. We also
rely on the PEP parsers for listing reference genome assets for
the refgenie server [23, 24]. The PEP specification has been used
for a variety of analysis types, such as describing samples for
The Cancer Genome Atlas (TCGA) [25], CRISPR-based screening
[26], DNA methylation analysis [27], simulated genomic interval
data [28], analysis of Type I diabetes genetics [29], and others [30].
A curated list of other research that uses PEP format is main-
tained in the PEP documentation. These examples and others
demonstrate the breadth and versatility of PEP and provide a
starting point for interested developers or users who would like
to see PEP in action.

A call for community involvement

To conclude, we offer a call for community involvement to sup-
port reaching the vision of metadata interoperability. Three key
steps will be required before this can happen: First, we need
tools that support and extend the PEP specification; second, we
need adoption by workflow engines; and finally, we need support

of public datasets and data repositories to accept and provide
data interoperable with the PEP specification.

A first step will be to build tools that operate in this area. To
facilitate community uptake, we are developing a series of tools
that subscribe to the PEP standard. Herein, we described Python
and R packages that read PEPs, along with eido for PEP valida-
tion. These core tools can form the foundation of new tools, and
we hope that others in the community will use them to add
functionality to the PEP ecosystem. For our needs, we are ex-
tending these capabilities with several ongoing projects: First,
“geofetch” is a data fetcher that accepts a list of SRA or Gene
Expression Omnibus (GEO) accession numbers and then down-
loads raw sequence data from the SRA and constructs a PEP,
ready to be plugged into a PEP-compatible analysis tool. Sec-
ond, “looper” is a workflow-engine–agnostic command submis-
sion engine that reads PEP-formatted sample data and runs ar-
bitrary commands. Finally, “BiocProject” is an upcoming project
that adds bioconductor-specific functionality to PEPs, simplify-
ing biological data analysis of PEPs in R.

A second step will be for workflow engines to adopt the PEP
specification for sample metadata. Workflow engines are be-
coming a critical component of biological data analysis, and as
such, they provide an important incentive for the way users and
tool developers organize metadata. Unfortunately, most work-
flow engines still require a custom format for describing input
metadata. We have been reaching out to workflow engine com-
munities, such as the Snakemake [12] and CWL [11] communi-
ties, which already have some support for PEP-formatted meta-
data. We are also developing a metadata conversion function in
eido that would allow users to write custom formatters, mak-
ing it easier to fit PEP-formatted metadata into custom analyses.
We invite collaboration and involvement from other workflow-
oriented communities who could support a community effort
for standardized metadata organization that spans workflow en-
gines.

And third, another important step will be the creation of
datasets and data repositories that understand this format, for
both submission and download. We encourage authors of indi-
vidual papers to consider using a PEP-structured sample table
when publishing descriptions for individual projects. And we in-
vite large-scale data providers to make it possible to download
data descriptions in PEP-compatible files, and even to submit
data in PEP-valid format.

To our knowledge, this is the first major effort to produce a
universal specification and framework for collections of biologi-
cal sample metadata geared toward metadata and data process-

Sheffield et al. 7

ing. PEPs can be tailored with ease to specific use cases with
schemas that define specific tool requirements. We anticipate
that these tools will encourage both bioinformatics pipeline de-
velopers and data producers to subscribe to a common format,
benefiting both and leading to increased ability to extract useful
information from biological data.

Availability of Supporting Source Code and
Requirements

The formal PEP specification can be found at http://pep.databio.
org/. Software mentioned is available in the following locations:
Project name: eido
Project home page: http://eido.databio.org/
Operating system: Platform independent
Programming language: Python
License: BSD-2
RRID: SCR 021076
biotools: eido-python-package
Project name: peppy
Project home page: http://peppy.databio.org/
Operating system: Platform independent
Programming language: Python
License: BSD-2
RRID: SCR 021078
biotools: peppy-python-package
Project name: pepr
Project home page: http://pepr.databio.org/
Operating system: Platform independent
Programming language: R
License: BSD-2
RRID: SCR 021077
biotools: pepr-R-package

Data Availability

Snapshots of the repositories are available in the GigaScience Gi-
gaDB repository [31].

Funding

This work was funded by the National Institute of General Med-
ical Sciences (NIGMS) award R35-GM128636 to N.C.S.

Abbreviations

API: Application Programming Interface; ATAC-seq: Assay for
Transposase-Accessible Chromatin with high-throughput se-
quencing; CWL: Common Workflow Language; ISA: Investiga-
tion/Study/Assay; JSON: Javascript Object Notation; PEP: Portable
Encapsulated Project; PRO-seq: Precision Run-On Sequencing;
SRA: Sequence Read Archive.

Authors’ Contributions

Conceived of the project: N.C.S. Contributed to implementation:
N.C.S, M.S., V.P.R., A.F.R. Wrote paper: N.C.S. Edited and approved
final manuscript: N.C.S, M.S., V.P.R., A.F.R.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

We thank Johannes Köster, Jason Smith, Aaron Gu, and the
Sheffield lab for input.

References

1. Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: Archive
for functional genomics data sets–update. Nucleic Acids Res
2013;41:D991–5.

2. Leinonen R, Sugawara H, Shumway M, et al. The Sequence
Read Archive. Nucleic Acids Res 2011;39:D19–21.

3. Hoehndorf R, Slater L, Schofield PN, et al. Aber-OWL: A
framework for ontology-based data access in biology. BMC
Bioinformatics 2015;16:26.

4. Malladi VS, Erickson DT, Podduturi NR, et al. Ontology ap-
plication and use at the ENCODE DCC. Database 2015;2015:
doi:10.1093/database/bav010.

5. Wilkinson MD, Dumontier M, Aalbersberg IJJ, et al. The FAIR
guiding principles for scientific data management and stew-
ardship. Sci Data 2016;3:160018.

6. Birney E, Vamathevan J, Goodhand P. Genomics in health-
care: GA4GH looks to 2022. bioRxiv 2017;doi:10.1101/203554.

7. Krumholz HM, Waldstreicher J. The Yale Open Data Access
(YODA) project—a mechanism for data sharing. N Engl J Med
2016;375:403–5.

8. Jupp S, Malone J, Bolleman J, et al. The EBI RDF plat-
form: Linked open data for the life sciences. Bioinformatics
2014;30:1338–9.

9. Volchenboum SL, Cox SM, Heath A, et al. Data commons to
support pediatric cancer research. Am Soc Clin Oncol Educ
Book 2017;37:746–52.

10. Leipzig J. A review of bioinformatic pipeline frameworks.
Brief Bioinform 2016;doi:10.1093/bib/bbw020.

11. Amstutz P, Crusoe MR, Tijanié N, et al. Common Work-
flow Language, v1.0. figshare 2016; doi:10.6084/m9.
figshare.3115156.v2.

12. Köster J, Rahmann S. Snakemake–a scalable bioinformatics
workflow engine. Bioinformatics 2012;28:2520–2.

13. Afgan E, Baker D, van den BM. et al.. The Galaxy platform for
accessible, reproducible and collaborative biomedical analy-
ses: 2016 update. Nucleic Acids Res 2016;44:W3–10.

14. Ewels PA, Peltzer A, Fillinger S, et al. The nf-core frame-
work for community-curated bioinformatics pipelines. Nat
Biotechnol 2020;38:276–8.

15. Merkel D. Docker: Lightweight Linux containers for
consistent development and deployment. Linux J 2014;
2014:2.

16. Kurtzer GM, Sochat V, Bauer MW. Singularity: Scientific
containers for mobility of compute. PLoS One 2017;12:
e0177459.

17. Sheffield NC. Bulker: A multi-container environment man-
ager. OSF Preprints 2019;doi:10.31219/osf.io/natsj.

18. Fenstermacher D, Street C, McSherry T, et al. The cancer
biomedical informatics grid (caBIG). Conf Proc IEEE Eng Med
Biol Soc 2005;2006:743–6.

19. Rocca-Serra P, Brandizi M, Maguire E, et al. ISA software
suite: Supporting standards-compliant experimental anno-
tation and enabling curation at the community level. Bioin-
formatics 2010;26:2354–6.

20. Mölder F, Jablonski KP, Letcher B, et al. Sustainable data anal-
ysis with snakemake. F1000Res 2021;10:33.

21. Smith JP, Corces MR, Xu J, et al. PEPATAC: an optimized
pipeline for ATAC-seq data analysis with serial align-

http://pep.databio.org/
http://eido.databio.org/
http://peppy.databio.org/
http://pepr.databio.org/

8 Linking big biomedical datasets to modular analysis with Portable Encapsulated Projects

ments. NAR Genom Bioinform 2021; doi:10.1093/nargab/
lqab101.

22. Smith JP, Dutta AB, Sathyan KM, et al. PEPPRO: Qual-
ity control and processing of nascent RNA profiling
data. Genome Biol 2021;22: doi:10.1186/s13059-021-
02349-4.

23. Stolarczyk M, Reuter VP, Smith JP, et al. Refgenie:
A reference genome resource manager. Gigascience
2020;9:doi:10.1093/gigascience/giz149.

24. Stolarczyk M, Xue B, Sheffield NC. Identity and compatibil-
ity of reference genome resources. NAR Genom Bioinform
2021;3:doi:10.1093/nargab/lqab036.

25. Corces MR, Granja JM, Shams S, et al. The chromatin ac-
cessibility landscape of primary human cancers. Science
2018;362:eaav1898.

26. Datlinger P, Rendeiro AF, Schmidl C, et al. Pooled CRISPR
screening with single-cell transcriptome readout. Nat Meth-
ods 2017;14:297–301.

27. Sheffield NC, Pierron G, Klughammer J, et al. DNA methyla-
tion heterogeneity defines a disease spectrum in Ewing sar-
coma. Nat Med 2017;23:386–95.

28. Gu A, Cho HJ, Sheffield NC. Bedshift: Perturbation of genomic
interval sets. Genome Biol 2021;22:doi:10.1186/s13059-021-
02440-w.

29. Robertson CC, Inshaw JRJ, Onengut-Gumuscu S, et al. Fine-
mapping, trans-ancestral and genomic analyses identify
causal variants, cells, genes and drug targets for type 1 di-
abetes. Nat Genet 2021;53:962–71.

30. Zhou Y, Sun Y, Huang D, et al. epiCOLOC: Integrating
large-scale and context-dependent epigenomics features
for comprehensive colocalization analysis. Front Genet
2020;11:doi:10.3389/fgene.2020.00053.

31. Sheffield NC, Stolarczyk M, Reuter VP, et al. Supporting data
for “Linking big biomedical datasets to modular analysis
with portable encapsulated projects.” GigaScience Database
2021. http://dx.doi.org/10.5524/100936.

http://dx.doi.org/10.5524/100936

